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Abstract

Graph processing is an invaluable tool for data analytics.
In particular, pattern-matching queries enable flexible graph
exploration and analysis, similar to what SQL provides for
relational databases. Graph queries focus on following con-
nections in the data; they are a challenging workload because
even seemingly trivial queries can easily produce billions of
intermediate results and irregular data access patterns.

In this paper, we introduce aDFS: A distributed graph-
querying system that can process practically any query fully
in memory, while maintaining bounded runtime memory con-
sumption. To achieve this behavior, aDFS relies on (i) almost
depth-first (aDFS) graph exploration with some breadth-first
characteristics for performance, and (ii) non-blocking dis-
patching of intermediate results to remote edges. We evalu-
ate aDFS against state-of-the-art graph-querying (Neo4J and
GraphFrames for Apache Spark), graph-mining (G-Miner,
Fractal, and Peregrine), as well as dataflow joins (BiGJoin),
and show that aDFS significantly outperforms prior work on
a diverse selection of workloads.

1 Introduction

Graph processing is a very active area of research, with
a plethora of prior work focusing on classic graph algo-
rithms [35, 36, 38, 48, 53, 58, 61, 62, 82, 85], graph min-
ing [27,29,32,34,42,54,69,74,77], as well as graph query-
ing [1,3,8,10,12,18,31,86] and graph-query languages [4,
5,11,14,17]. Graph algorithms (such as PageRank [57]) are
typically used in batch computations, while graph mining is
used to extract structural properties and compute cumulative
statistics of a graph by exploring its subgraph structures.
Graph queries are a key tool for graph analysis, as indicated
by the large number of existing systems and graph-query lan-
guages. Graph queries provide an expressive interface for
interactive graph exploration with rich dynamic projection
and filtering support that is analogous to SQL for relational
databases (see Section 5 for further details). They focus on
data connections, i.e., edges, allowing users to submit queries

with any pattern, filter, or projection. For instance, the follow-
ing PGQL [14] query:

SELECT al.name, a2.name, al.country = a2.country,
ABS(al.salary - a2.salary) AS salary_diff

MATCH (al:author)-[:1likes]->(a2:author),
(a2)-[:1likes]->(al)

WHERE ABS (al.age - a2.age) <= 10
ORDER BY salary_diff DESC

enumerates the authors of similar age that 1ike each other.
Answering such a query requires finding all homomor-
phic [45] matches of the query pattern in the target graph,
while enforcing filters (e.g., al IS author) and projecting the
requested output (e.g., whether al.country = a2.country).

The dynamic user-defined patterns, filters, and projections,
the focus on edges, and the homomorphic matching make
graph query execution a challenging workload that needs
to handle very large intermediate and final result sets, with
a combinatorial explosion effect. For example, on the well-
researched Twitter graph [47], the single-edge query (a) -> (b)
matches the whole graph, amounting to 1.4 billion results,
and the two-edge query (a)-> (b) -> (c) amounts to 9.3 trillion
matches. This means matching the (a) -> (b) -> (c) -> (a) cycle
needs to consider 9.3 trillion intermediate results. Compared
to relational queries, graph queries can exhibit extremely ir-
regular access patterns [51, 63] and lack of spatial locality,
while calling for low-latency data access.

High-performance graph-querying systems ideally need to
(1) keep the computation in main memory to guarantee low
latency, (ii) scale out to multiple machines in a distributed
manner to handle graphs and queries that exceed the capac-
ity of a single machine, and (iii) control their memory us-
age at the machine level. Controlling memory consumption
during query execution becomes paramount for cloud graph-
processing services, in which multiple users submit queries
that produce results of unpredictable size. Allowing a single
query to monopolize memory would hinder service quality
for users running other queries.

Query execution on graphs is typically based on one of
the two classic graph-traversal strategies: Breadth-first search
(BFS) or depth-first search (DFS). Both BFS and DFS have
major advantages and drawbacks for distributed graph queries:



BFS traversals are easier to parallelize but, as with distributed
joins, suffer from explosion in the size of intermediate results,
cannot be easily pipelined, and stress the network bandwidth
to shuffle data across levels of pattern matching. DFS traver-
sals reduce the size of intermediate results, but are challenging
to parallelize and result in random data access patterns, wast-
ing locality when iterating over neighbors.

In this paper, we introduce aDFS (almost-DFS): A novel
distributed graph-querying system that brings the best of both
DFS/BFS worlds. aDFS extends the graph-processing ca-
pabilities of PGX.D [39] with queries and processes graphs
partitioned across multiple machines fully in memory, combin-
ing BFS and DFS traversals to bound the maximum amount of
memory required for query execution, while achieving a high
degree of parallelism. DFS, together with a distributed flow-
control mechanism, guarantee that the amount of runtime
memory remains within limits, while the BFS exploration
allows for better locality and parallelization during execution.

Worker threads in aDFS mainly prioritize DFS execution
for completing—and thus freeing—intermediate results. The
execution switches to BFS when matching a remote edge (i.e.,
an edge pointing to a remote machine) or when the runtime
detects that the query contains limited parallelism (i.e., a
small set of intermediate results). To elaborate, for local edges,
worker threads perform DFS, unless aDFS detects that there
is a limited amount of available work on the local machine,
in which case they switch to per-thread BFS exploration until
there is enough parallelism. For remote edges, threads buffer
the matched intermediate results and continue with matching
the next edge in a BFS manner (i.e., the next edge is possibly
at the same depth as the current one). Once a buffer is full, the
worker thread sends its contents to the target machine, unless
it is blocked by the flow-control mechanism, which enforces
target memory limits. Section 3 expands on the design and
implementation of aDFS.

Section 4 thoroughly evaluates aDFS and shows that it
is capable of executing trillion-scale queries, with a 10GB
per-machine runtime memory cap. When running our largest
query, aDFS computes a 9.3 trillion count pattern on the
Twitter graph with a rate of 7.3 billion matches per sec-
ond. We compare aDFS to two graph systems (i.e., Apache
Spark GraphFrames [31] and Neo4j [10]) and two relational
databases (i.e., MonetDB [9] and PostgreSQL [15]) using
the LDBC graph and query suite [68]. aDFS completes the
set of queries 43 and 53 times faster than GraphFrames and
Neodj,' respectively, and 8 and 26 times faster than Mon-
etDB and PostgreSQL, respectively (as Section 4.2 shows,
LDBC is “relational-friendly””). We also compare aDFS to
these four systems with schema-less graphs and show that
either aDFS is 16 to 9,200 times faster than the rest, or the
other systems simply fail to complete the queries. Finally, we
compare aDFS with (i) three state-of-the-art graph-mining
systems: G-Miner [27], Fractal [32] and Peregrine [42], as
well as (ii) BiGJoin [19], a dataflow join system. We show

that aDFS is up to 12, 625, and 18 times faster than G-Miner,
Fractal and Peregrine, respectively, and performs comparably
to BiGJoin on mining-oriented workloads. We discuss related
work further in Section 5.

The main contributions of this paper are the following:

» aDFS, which is, to the best of our knowledge, the first
graph-querying system that strictly bounds runtime mem-
ory while operating with fully-distributed computations
over partitioned graphs;

* The novel combination of DFS (for eager completion of
intermediate results), BFS (for performance), and flow
control (for controlling the size of the intermediate state)
to achieve performance and scalability while capping

memory usage; and
* The evaluation of aDFS, which shows that aDFS signifi-

cantly outperforms the state of the art and is capable of
executing queries with trillions of matches.

2 Background and Motivation

Representing data as a graph is becoming increasingly popu-
lar. The main advantage of graphs is that they focus on mod-
eling fine-grained relationships between entities. In contrast,
the relational model concentrates more on rows and relies on
the heavyweight primary-key foreign-key (PK-FK) and join
mechanisms to link entities. However, when using graphs,
different models, data representations, and ways of exploring
them have a major effect on processing performance.

2.1 The Property Graph (PG) Model

Property graphs represent the graph topology as vertices and
edges, and store properties and labels separately. Properties
can be associated to any vertex or edge and take the form of
typed key-value pairs. Labels are key-only and represent types
or categories, e.g., person or animal. Separating the topology
from properties avoids the proliferation of edges and allows
for quick traversals of the graph over its real structure.

2.2 Graph Pattern-Matching Queries
Several languages for graph querying exist, such as
PGQL [14], SPARQL [17], Gremlin [5], and Cypher [11]. In
its simplest form, graph querying makes it possible to find pat-
terns in graphs, with filters and projections. aDFS uses PGQL,
which is modeled after SQL: Projection and aggregation oper-
ations are the same as in SQL, including GROUP BY and ORDER
BY. PGQL adds support for graph patterns and vertex and edge
labels. For example, the query presented in Section 1 adds
the MaTCH clause to an otherwise valid SQL query. It matches
patterns that are homomorphic [45] to the (al)->(a2)->(al)
cycle while enforcing filters (e.g., al has label author), and
it projects or aggregates the requested data—including even
arbitrary expressions—out of the matched vertices and edges.
Graph queries require homomorphic matching of the pat-
tern, as data is projected out of all matches, even if they are
permutations of each other. In contrast, graph-mining systems

1Using Neo4j Community Edition (benchmarks not audited by Neo4;).
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Figure 1: Homomorphic vs. isomorphic matching of a pattern.

focus on isomorphic matching [34] and often use automor-
phism elimination to prune the search space further. Figure |
highlights the differences between isomorphic and homomor-
phic matching of a query pattern. In graph queries, isomorphic
matching and automorphism elimination can be simulated
with filters and/or with query specifiers, such as GROUP BY.

In this work, we focus on the backbone of graph pattern-
matching queries. Accordingly, aDFS only supports a subset
of PGQL 1.1 [14]; in particular, two following features are
missing: Regular path expressions and subqueries. Neverthe-
less, we design aDFS with these features in mind and we
intend to work on them in future work.

2.3 Graphs vs. Relational Joins and RDF

In PG graph systems, edges are stored explicitly and can be
traversed directly. In contrast, in relational databases, relation-
ships are represented with PK-FK. Following any relationship
means joining two tables—or doing a self-join if the keys be-
long to the same table—and producing the intermediate result.
Therefore, while matching multiple-hop paths is a relatively
cheap operation in graph systems, doing the same in SQL
requires a chain of multiple expensive join operations that
materialize intermediate results. Thus, graph systems can be
much more efficient than relational databases when it comes
to matching graph patterns (see Section 4 for a comparison).
Another alternative model is the Resource Description
Framework (RDF) that uses {subject, predicate, object}
triples to represent graphs, which can be queried with lan-
guages such as SPARQL [17]. RDF became popular with the
semantic web [21] and has been the model of choice for many
graph databases starting in the early 2000s [37,80]. A number
of works have focused on distributed RDF graphs [40, 64].
Although the RDF model is equivalent to PG in terms
of expressiveness, there are differences: (i) RDF adds links
for every graph data piece, including constant literals, (ii) it
does not have explicit vertices/edges—yet it can be viewed as
representing graphs, and (iii) and it does not store properties
separately. The de-facto implementation of RDF triples results
in similar PK-FK behavior as aforementioned for relational
databases. Triples force RDF systems to process and join a
much larger number of intermediate results using e.g., a key-
value-style storage, and lose the graph structure, resulting in
slower neighbor lookup. To address these drawbacks, some
RDF systems use asynchronous processing [37], or compute
graph indices, using e.g., the CSR representation, to mock the
graph structure [80]. aDFS focuses on PGQL queries and the

PG model, avoiding complex and expensive joins. We note
that the pattern-matching part of query execution is largely
orthogonal to the graph model and aDFS’s techniques could
be used for RDF graphs.

2.4 DFS, BFS, and Intersections for Graph
Exploration

DFS can expand one intermediate result at a time, starting
from the first variable in the pattern and continuing to the
next ones until the whole pattern is matched. However, this
behavior results in totally random accesses and is impractical
for distributed graph traversals: The only way to continue with
strict DFS is to directly send the intermediate result to the
remote machine and wait until it is picked up and completed.

Thus, graph exploration is traditionally done using BFS:
For each query edge (hop), the entire result set is computed,
and only then does the exploration of the next hop start. This
approach has two main advantages: (i) it is easy to implement,
as work is naturally divided into simple steps (hops), and (ii) it
is relatively easy to parallelize, as the entire input is known
before processing a hop (of course, skewed vertex degrees
still pose a problem). However, BFS has one major shortcom-
ing: Because the intermediate result set is produced between
stages, an intermediate result-set explosion can quickly occur.

Figure 2 illustrates this issue showing the average total per-
machine memory usage and execution time when matching
cycles of various lengths using aDFS and BFS (implemented
in our runtime) on a small graph [16] (875K vertices and
5.1M edges). While both approaches are able to match cycles
of length one to four with similar performance, the memory
consumption of BFS explodes for five-hop cycles at approxi-
mately 60GB on each of the eight machines in the experiment,
and BFS crashes with six-hop cycles after 96 minutes when
one machine runs out of memory (~768GB). Meanwhile, the
memory consumption of aDFS is almost constant.

Recent graph-mining and graph-querying systems [22,42]
adopt a pattern-matching approach that relies on intersect-
ing neighborhood lists. Instead of being vertex-centric (i.e.,
starting from vertices and following edges), the intersection
approach focuses on edges. The benefit of the intersection-
based model is that it takes O(|V]) steps since it allows in-
tersecting multiple incoming edges at a time, as compared
to the vertex-based approaches that are O(|E|). However, in-
tersections require complete subgraph parts to operate. This
necessitates pulling/gathering possibly large amounts of data
from remote machines. To make things worse, queries enu-
merate all automorphisms (i.e., the exploration space could
locally explode) and offer arbitrary user filters and projections,
meaning that in an intersection-based model, one would need
to pull not only the vertex/edge data, but also all the proper-
ties required by the query. Therefore, we use a vertex-centric
approach in aDFS that builds mini-frontiers based on the first
query vertex and enables aDFS to operate on fully partitioned
graphs with limited memory.
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Figure 2: Matching cycles using aDFS vs. BFS.

3 aDFS: A Pattern Matching and Querying
System for Distributed Graphs

The main design goals of aDFS are (i) enabling fast, fully in-
memory distributed queries of any size, while (ii) allowing for
limited, controllable memory consumption during execution.
The rationale for these two goals is as follows. First, high-
performance graph queries demand in-memory execution and
the ever-increasing size of data calls for distribution. Second,
server systems, especially in cloud deployments, are shared
by multiple concurrent users, hence no single query can be
permitted to saturate the system memory. aDFS achieves these
two goals through the following design principles.

1. §3.3: DFS-first and asynchronous communication.
The eager match completion of DFS gives aDFS fine-
grained control on the size of intermediate results dur-
ing query execution, but strict DFS would be inefficient
when matching a remote edge, i.e., an edge that leads
to a remote machine. For that reason, worker threads
do not block when encountering a remote edge, but
place the intermediate result in a message buffer and
continue with other local work instead. Buffers batch
intermediate results: once full, a buffer’s contents are
asynchronously sent to the remote machine for further
processing. Threads only need to block if flow control
dictates so. This buffering results in essentially BFS
exploration of the remote edges of a vertex.

2. §3.4: Flow control. Cross-machine communication is
controlled through a flow-control mechanism that caps
the number of in-flight intermediate result buffers. The
finite nature of these message buffers allows strictly con-
figuring the amount of runtime memory that aDFS re-
quires, while the flow-control mechanism guarantees
query termination and deadlock freedom.

3. §3.5: Dynamic local DFS/BFS. Besides the BES style
of buffering for remote edges, aDFS includes a dynamic
approach for deciding whether to go DFS or expand with
BFS for local matches in order to improve parallelism,
locality, and work sharing across threads.

Before diving into these design principles, we first present
the architecture of aDFS from a high-level point of view
(Section 3.1) and describe how aDFS generates execution
plans for graph queries (Section 3.2).

3.1 High-Level aDFS Architecture

Figure 4 shows the high-level architecture of aDFS. Graphs
are kept in memory and are partitioned across machines
based on simple random vertex partitioning. Random par-
titioning achieves cross-machine balance and does not overfit
to the workload. Of course, intelligent partitioning schemes
could bring performance benefits and are left for future work.
aDFS’s approach is orthogonal to partitioning, i.e., it can work
with any partitioning approach.

For efficient traversals, graphs are stored in the classic CSR
(Compressed Sparse Row) graph format. Due to graph par-
titioning, messaging is necessary for moving intermediate
results to the machine which holds the target vertex. aDFS
maintains two threads on dedicated cores on each machine
for messaging; a sender and a receiver. Consequently, worker
threads in aDFS place their messages in software queues,
from where they are picked up by the sender.

3.2 Distributed Query Execution Planning

Users submit declarative PGQL queries [14] to aDFS. As Fig-
ure 3 illustrates, each query goes through three transformation
steps (marked i through iii) before being executed in step iv.

Step i: Logical query planner. The first step translates the
PGQL query into a logical query plan, which consists of
the logical operators of Table 1. Similar to relational query
planning, a given query can be executed by multiple logical
query plans. In the example of Figure 3, an alternative plan
could rewrite the query as (a)-[e]-(c)->(a)->(b). This first
step directly translates the query to an admissible plan, which
is then optimized in the following steps.

Step ii: Distributed query planner and optimizer. This
step specializes the logical query plan by taking into account
the specific characteristics of aDFS’s runtime. The query plan-
ner rewrites the logical plan in terms of stages and transitions
from one stage to another (called hops). A stage is responsible
for matching or accessing exactly one vertex and contains all
the information necessary for matching the corresponding
vertex and for transitioning to the next vertex with a hop. In
the example of Figure 3, the topmost stage “a” matches the
first vertex a of the query, while the next one matches b. An
out-neighbor hop takes the execution from a to b.

aDFS supports four types of hops that specialize for dis-
tributed execution: neighbor match, edge match, output, and
inspection. Neighbor and edge hops have the same behavior
as the corresponding logical operators in Table 1. An output
hop produces a final match using the current intermediate
result and is always used in the last stage of a match.

Inspection hops are specific to distributed processing: They
bring the current intermediate result back to an already
matched vertex in order to continue query evaluation. In the
example of Figure 3, after matching a and b of (a)-> (b), the
query again needs the neighbor list of the already matched
vertex a in order to continue with matching (a) <-(c). Since
the matched vertex b might be in a different machine than a,
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SELECT a, b.addr <vertex match> <stage a: > Stage @: filter : age >= 18
MATCH hop: out neighbor b hop : out neighbor b
(a)->(b), <neighbor match: out> <stage b> capture: a.type
(a)<-(c), hop: inspection a output : +a
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a.type = c.type AND hop: any-directed edge a
has_label(e, ‘knows’) (Various plans possible for the same Stage 3: filter : a.typ? = c.type
query; one is chosen in the next step) <stage a> hop : any-directed edge a
hop: output Stage 4" ""hop Toutput

Figure 3: From a PGQL query to aDFS execution.
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Figure 4: High-level architecture of aDFS.

the query planner introduces an inspection step to “link” this
disconnected pattern and bring back the context to the ma-
chine of a. If a resides in the current machine, an inspection
hop is essentially a no-op.

In this step, aDFS rewrites the logical query plan with a
cost-based optimizer, implemented using dynamic program-
ming, that is based on the following heuristics: (i) heavily
filtered vertices are preferred for the earlier stages of the plan,
(ii) inspection hops are not free and increase the plan’s cost,
and (iii) the cost of an edge hop is approximately log of the
cost of a neighbor hop, as it can be implemented with a binary
search in the neighbor list of the source vertex. The optimizer
further detects whether a query has a single starting vertex,
by extracting ID equality filters (e.g., ID (person) = 123).In
the example of Figure 3, the optimizer rewrites the query as
(a)-[el-(c)->(a)->(b) because it avoids an inspection hop
and a and e are more filtered as compared to b.

Steps iii-iv: Execution plan and execution. Finally, aDFS
generates a concrete execution plan. Apart from stages and
hops, the execution plan contains filters (on vertices and
edges), as well as information on what data should be in-
cluded in the intermediate results in order to execute filters
of later stages and produce the final output. For example, in
the query of Figure 3, Stage 0 must collect a.type, since it is

Op. Example | Short description
Vertex ) Match vertices of the graph (without following
match X any edge)
Neighbor Having matched the left vertex x, match its
(x) =>(y) : o ; p irections
match neighbors y; can be in-, out-, or any-directional
Edee ) > The vertex x is known (already visited)—test
£ K whether x exists in the neighbor list of the left
match (y)=>(x) . K .
vertex y; can be in-, out-, or any-directional
Table 1: Graph operators used in the logical query plan.

Three transformation steps before execution.

required by the filter of Stage 3. Similarly, Stage 0 must put
vertex a in the intermediate result as it is part of the projection
of the query. Overall, each stage builds up the intermediate
result such that another thread, local or remote, can pick it up
and continue the computation. The resulting execution plan is
then submitted to the aDFS runtime, on which we focus next.

3.3 aDFS’s Depth-First Runtime

The runtime of aDFS is based on the stage and hop constructs
described above. aDFS initiates query execution by applying
Stage 0 (matching of the first vertex variable of the execution
plan) to each vertex of the graph. This bootstrapping process
happens (i) across machines, i.e., each machine starts from
the locally-stored vertices, and (ii) concurrently within each
machine, i.e., each worker thread handles a distinct set of ver-
tices and performs the bootstrapping process on these vertices
one after the other. Hops that follow remote edges send the in-
termediate match (batched) to the destination remote machine
where they are picked up and taken over by a local thread.

Bootstrapping a match. Figure 5 includes a high-level activ-
ity diagram of the aDFS runtime. Completing the execution
of this diagram from Stage O to the last query stage imple-
ments the complete matching starting from a single vertex
of the graph. We explain these steps using the example of
Figure 6. Text in the blue italic face represents the activities in
Figure 5. The aDFS runtime assigns vertex Joe (the dark gray
rounded rectangle of Figure 6) to a worker thread t, which
tries to generate new matches. The thread first tries to match
Joe with Stage 0’s pl using apply stage. If the filter p1.name
= "Joe" returned FALSE, the thread would try to backtrack to
a previous stage and, because there is none, it would simply
complete this invocation. If there were more top-level vertices
to explore, t would start again with a different vertex.

In the example of Figure 6, we assume that the execution
plan matches vertex pl as Stage 0. pl matches Joe and t
continues with the hop: follow next edge operation, starting
from edge (D). Since the :friend label filter is satisfied and
the edge is local, t proceeds via DFS next stage to Stage 1
where p2 is matched with the vertex that has age = 20. At
this point, since the filter p2.age < 35 is satisfied and there is
no next stage, t produces a query output row and backtracks
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Figure 5: Matching operations starting from a given vertex. The backtrack activity
represents returning to the previous DFS stage. Similarly, if the conditional in the
red bold font returns false, the execution backtracks to the previous stage (if any).

to Stage 0 to continue with the next edge. At this point,
edge (@ with label :friend is matched but since it leads
to the vertex with age = 40, the filter on p2 is not satisfied.
Backtracking to Stage O brings us to edge 3 with label
:follows, which is not matched.

Thread t is now done with local edges and starts processing
the remote ones (aDFS does not necessarily match all local
edges first). The first one, edge @), has label : friend, thus t
places the current intermediate result in a messaging buffer
targeting Machine 1 (buffer in message). Once the buffer is
filled up, t tries to send a message with the contents of the
buffer to the destination. As Section 3.4 describes in more
detail, flow control might temporarily block t from sending
the message; in that case, t tries to do some other work (e.g.,
handling an incoming message). Once the thread returns from
performing these other tasks, it retries sending the blocked
message. Finally, t attempts to match the last remote edge ),
which does not match because of its label. With all the edges
of vertex Joe explored and no previous stage to backtrack to,
t completes the invocation.

Handling incoming messages (intermediate results).
Workers eagerly try to receive and process remote mes-
sages, always prioritizing the latest stage with available work.
Threads try to process messages: (i) before starting new
work, i.e., before apply stage at Stage 0 (new top-level ver-
tex), (ii) when flow control (temporarily) disallows message
sending—in that case, the impacted thread picks up a new
message to process while waiting for flow control to release
the blocked message, and (iii) once the matching operations
(see Figure 5) have completed on all local vertices—at that
point, workers continuously wait for incoming messages to
complete any pending work from remote machines.

3.4 Flow Control

aDFS allows specifying the total memory size M of the messag-
ing buffers that hold the intermediate results in any machine,
making it possible to cap runtime memory utilization. Besides
these buffers, aDFS only needs a small per-thread, per-stage,
additional memory allocation to hold the current ongoing
local match and metadata for thread blocking.

In order to enforce this memory cap, aDFS employs a sim-
ple flow-control protocol. aDFS partitions the buffers that
hold intermediate results across the query stages, such that

Trytodo
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P &, [age=22
%, e

Qo h 4
[age:ZO][age:AO][age=30] g [age=25]

Machine 0

Figure 6: Example graph query execution.
Rounded rectangles represent vertices, red
vertices and edges are matched.

no stage can consume all buffers (required to prevent star-
vation). When a buffer with intermediate results is full, the
corresponding worker requests permission to send the con-
tents of the buffer to the target machine. The flow-control
protocol keeps track of the amount of data D that has been
sent to that machine but not yet processed. If D is above a
threshold (computed based on the memory cap M; a machine
does not accept more than M / #Machines worth of interme-
diate results from any other), flow control blocks the message
transmission (controlled per stage, not for the whole query)
and the thread continues with some other work before retrying
to send the message. Once a message has been processed, the
handling thread informs the source machine that its chunk
of intermediate results has been completed and makes the
corresponding memory available for another message. Note
that this simple protocol strictly bounds memory consumption,
i.e., no pattern can violate the memory configuration of aDFS.

Flow-control performance. We evaluate the performance
overheads of flow control; see Section 4 for details on the
detailed experimental setup. Figure 7 compares the query
execution latency without flow control (i.e., all messages of
intermediate results are sent as produced) and with different
per-machine flow-control limits in aDFS. In this experiment,
we use a buffer size of 256KB and eight machines. The per-
machine limit N is the total number of outgoing buffers that
the query execution is allowed to have, therefore it also dic-
tates the maximum amount of memory M that a machine can
use during the execution of the query. Since all intermediate
results could be targeting a single machine at some point dur-
ing execution, M = N x (size of one buffer) x (# machines).

We execute simple SELECT COUNT (*) queries that include
basic patterns such as (a)->(b)->(a) (Q1 and Q2) and
(a)->(b)->(c) (Q3 to Q6), with different filters. The results
show that aDFS is not very sensitive to the flow-control limit,
unless the limit is very low, e.g., 512 messaging buffers. In
that case, the flow control only allows a single outstanding
message per worker, per stage, per machine.

Figure 8 gives more insights in the execution of Q3 with
Livejournal: SELECT COUNT (*) MATCH (a)->(b)->(c). The
figure shows the maximum number of incoming and outgoing
messages for the busiest stage on any of the eight machines,
as well as the number of cases in which the flow-control limits
were reached. For very low limits (N = 512 messages) the
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amount of blocking is very high, which penalizes performance
(more than 3x higher latency). Still, the overhead for switch-
ing stages due to flow control is generally low: Setting N to
8,192 results in only ~10% performance loss as compared to
no flow control (OFF), while reaching 10x fewer maximum
incoming messages (2,087 vs. 21,793) and 4 x fewer outgoing
messages (1,636 vs. 6,430).

3.5 Dynamic BFS for Local Edges in aDFS

For remote edges, aDFS essentially does (per-thread) BFS: A
thread matching a remote edge simply buffers the intermediate
result and continues exploring and matching the same stage,
which might produce new intermediate results.

While local processing could happen in pure DFS, doing
so can result in artificially limited parallelism for queries that
produce small sets of intermediate results. A characteristic ex-
ample is queries with a very narrow starting Stage 0, such as
MATCH (a)->... WHERE ID(a) = X; this narrow-start behav-
ior appears in several real-life queries (e.g., the LDBC queries
of Section 4). In such a query, the whole Stage 0 might pro-
duce a single intermediate result, giving limited opportunities
for parallelism. For these workloads, DFS can significantly
delay the expansion of intermediate results that are produced
in the system (both locally and through messages).

In aDFS, we solve this DFS limitation by dynamically
switching from depth-first exploration to per-thread breadth-
first for local edges. aDFS maintains per-stage counts of the
number of buffers with intermediate results that are ready to
be taken care of by worker threads. A low number of interme-
diate results means that the stage has not expanded enough,
hence some threads could end up not having sufficient work
to perform. When threads in aDFS are processing a local
edge, they use this information to decide whether to go for
BES, i.e., buffer the intermediate result in a local buffer and
continue at the same stage.

In practice, we keep these local buffers small, i.e., up to a
few kilobytes, in order to promote quick local work creation.
We further use a DFS threshold to decide when to work
depth-first: When the sum of the number of local buffers
(produced by the breadth-first expansion) plus the number

machine max. memory consumption.

results of the first query stage.

of message buffers from remote machines is greater than 4 x
the number of threads, threads switch to DFS. Having a low
threshold plus small local buffers allows aDFS to keep the
maximum additional memory consumption limited: If the
DEFS threshold is set to n, the maximum number of threads
is t, the size of local buffers is b, and the query contains
s stages, the maximum additional memory in a machine
is (n+1)*(s—1)*b. In the configuration used for our
experiments (f = 28, n =4r = 128, s < 11, and b = §,192),
local buffers consume less than 12MB additional memory.

Controlled Experiment. Figure 9 illustrates the benefits of
this local-match BFS mode on 8 machines (see Section 4 for

detailed experimental settings) with the following two queries:
1: (a)->()->() WHERE ID(a) < $i
2: (a)->()-[e]l->()->() WHERE e.cost < 0.5

AND ID(a) < $i

using the Twitter graph extended with a uniform random
edge property with values in [0.0,100.0). In both queries,
the 1D (a) < $i filter determines the cardinality of the first
query stage and is used to narrow the starting point. In Q2,
the edge filter also guarantees that the third stage includes
a small number of intermediate results. The dynamicity of
aDFS brings significant performance benefits, especially for
queries with very narrow starting points. For example, for Q1
with $i = 1, Machine O hosts the match for Stage 0; without
the breadth-first mode (“OFF”), a single thread handles all the
55K local edges which lead to Stage 1. In contrast, enabling
dynamic local BFS (“ON”) generates more work early on and
allows splitting the work among local threads, each of which
operates on approximately 2,000 vertices for Stage 1.

LDBC Q20. We also briefly analyze the BFS-mode benefits
on LDBC Q20 (see Section 4 for more details):

MATCH (tC:tagClass)<-[:subClassOf]-(:tagClass)
<-[:hasTypel]l-(:tag)<-[:hasTag]-(:post|comment)
WHERE tC.name IN ('Politics', 'Art', 'Country')

In this query, the first two stages match tagClasses and
Stage O results in only three intermediate results due to the
filter. The local BFS optimization brings 32% latency benefits
(8 vs. 5.5 seconds), by better paralellizing the work across
threads. Without the optimization, the most busy thread, i.e.,
the one that “gets stuck” in performing local DFS work the



most, spends 4 seconds in these local explorations: It matches
about 1,000 vertices in Stage 1, which result in 5.2 million
local matches in Stage 2 and 5 million in Stage 3. In compari-
son, with the optimization, the most busy thread spends only
1.6 seconds in DFS work: It handles 4 million local edges
in Stage 2, which it successfully distributes to other threads
with approximately 500 local BFS buffers. Overall, enabling
dynamic local BFS provides significant speedup on realistic
workloads, while incurring at most a 5% slowdown.

4 Evaluation

The goals of our evaluation are (i) to understand how well
aDFS performs as compared to other systems (graph, rela-
tional, mining and dataflow join systems) that could be used
in similar use cases, (ii) explain how different parts of aDFS
contribute to performance and memory, and (iii) show how
aDFS scales as we increase the number of machines.

4.1 Experimental Settings

Hardware details. We use a cluster of eight nodes, each hav-
ing two Intel Xeon E-2690 v4 2.60GHz CPUs with 14 cores
(hyperthreads disabled/DVFS enabled), for 28 cores in total.
Each processor contains 756GB of DDR4-2400 memory and
LSI MegaRAID SAS-3 3108 storage. Each node includes
a Mellanox Connect-X InfiniBand card, all connected to an
EDR 100Gbit/s InfiniBand network.

Graphs and queries. Unless specified otherwise, our exper-
iments use the five graphs of Table 2. As we mention in
Section 2, the scope of this paper covers user-provided fixed-
pattern queries, thus aDFS implements only a subset of PGQL
1.1. Accordingly, we use the 12 LDBC Business Intelligence
(BI) standard queries [68] supported by PGQL 1.1 (later
PGQL versions support the remaining LDBC queries). Out
of these 12 queries, four represent simple path patterns (i.e.,
Q4, Q17, Q23, Q24) and are directly supported in aDFS. The

remaining ones either include regular path queries (e.g., . ..

MATCH (a)-/:knows*/->(b)), or include sub-queries in pro-
jection or filters (e.g., SELECT ... FROM (SELECT ...) ...).
We devise a simplified variant of these queries in order to
support the benchmark specification as closely as possible.

For example, the original Q6 is:
SELECT id(person),

SUM ( (SELECT COUNT (*) MATCH (m)<-[:replyOf]-(:cmt))) AS rN
SUM ( (SELECT COUNT (*) MATCH (:prsn)-[:likes]->(m))) AS 1IN,
COUNT (*) AS msgN

MATCH (tag:tag) <-[:hasTag]- (m:post|comment)

—[:hasCreator]-> (person:prsn)
WHERE tag.name = ?
GROUP BY person, tag
ORDER BY msgN + (2 * rN) + (10 * 1N) DESC, id(person)

We simplify the query by removing the two COUNT subqueries
in projections and from ORDER BY. We plan to extend the
PGQL support of aDFS in future work.

Note that the queries include patterns of varying complex-
ity, e.g., the one in Q6 above is rather simple, while Q17
matches the following complex pattern:

(x:person)-[:livesIn]->(cl:city)-[:partOf]->(cy:country),
(y:person)-[:livesIn]->(c2:city)-[:partOf]->(cy)

(z:person)-[:1livesIn]->(c3:city)-[:partOf]->(cy)
(x)-[:knows]-(y)-[:knows]-(z)

Methodology. We perform 15 runs of each query and report
the median latency (in Figure 10, the error bars cover all runs).
For each experiment set, we execute the queries in a per-graph
round-robin fashion in order to reduce caching effects (e.g.,
data in the LLC or instruction caches). We use eight machines
for aDFS, GraphFrames, G-Miner, Fractal as well as BiGJoin,
and make sure all systems are configured to use InfiniBand.
The four other systems are single machine.

Engines and their configurations. We configure aDFS to
use up to 4,096 messaging buffers of 256KB per machine
for messaging. This setting translates to approximately 1GB
of intermediate results that can be produced per machine
and limits the worst-case maximum memory consumption
of a single machine to approximately 8GB (1GB outgoing,
plus 7GB incoming). We further use the configuration of
Section 3.5 for the local-edge dynamic BFS, resulting in up
to a few MBs of extra memory per machine. Altogether, the
aDFS runtime consumes approximately 10GB per machine.
Of course, the graph (that resides in memory) and the final
query results consume extra memory than these 10GB. We
use such a low-memory configuration because (i) aDFS is
designed for server deployments and we want to evaluate the
performance at a realistic setting, where a single query cannot
monopolize memory, and (ii) as we show in Figure 7, this
configuration is already sufficient for aDFS to perform well.

We first compare aDFS to two graph systems and two
relational systems which we describe below. In Section 4.5,
we further compare aDFS to three graph-mining systems and
a dataflow join system.

GraphFrames [31] is a distributed graph-querying system
built on top of Apache Spark [2,79]; we use version 0.7 on
top of Spark 2.4.1 with 600GB executor memory per machine.
Neod4j [10] is a single-machine graph database, which stores
its data on disk but uses an in-memory cache for performance
(caching effects are obvious in the first run of each query).
We use Neo4j Community Edition 3.5.3 and allow it to man-
age the full memory of the machine. MonetDB [9,26] is an
in-memory column-store relational database. Its distributed
support is rather rudimentary, resulting in worse than single-
machine performance for our join-heavy workloads. There-
fore, we use MonetDB 11.31.13 on a single machine, config-
ured to use the whole 756GB of memory. PostgreSQL [15] is
a relational database. We use version 11.2, tuned for a single
connection with memory cache size of 564GB and 198GB of

Graph #V #E | Schema | Description
Livejournal [20] 484K | 68.9M No Users and friendships
URandom 100M 1B No Uniform random edges

Twitter [47] 42.6M | 1.47B No
LDBC(100) [68] | 283M | 1.78B Yes
Webgraph-UK [25] | 77.TM | 2.97B No

Tweets and followers
LDBC social
2006 .uk domains

Table 2: The set of graphs we use in the evaluation.
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shared buffers. For both MonetDB and PostgreSQL, we use
the optimized schema/indices designed for the original LDBC
evaluation paper [68]. We choose these four systems as they
cover a broad spectrum of data processing: Distributed graph
dataframes, single-machine graph databases, and in-memory
or traditional relational databases.

4.2 aDFS vs. Other Engines: LDBC

Experiment. We perform an end-to-end comparison of aDFS
to the four aforementioned systems. We use the LDBC
graph and BI queries which constitute an unfavorable work-
load for aDFS and GraphFrames: the LDBC graph has
a relational schema, carefully partitioned in tables, such
as person and post. For relational databases (as well as
Neo4j), this schema enables the exploration of small parts
of the graph for most queries. For example, the pattern
(:post)-[:hasCreator]->(:person) (taken from an actual
query) needs to only access the tables post and person,
which are a relatively small part for the graph. In contrast,
aDFS and GraphFrames operate on the original graph model,
where the whole dataset is a single graph. The end result is
that these two systems perform more broad exploration even
on queries that are very narrow in terms of schema accesses.
Optimizing for relational schemas is outside of the scope
of this work. Still, we choose LDBC with BI queries for our
end-to-end comparison as it shows how aDFS performs on
queries that can be expressed well both in graph and relational
systems. The next sections focus on schema-less graphs.

Results. Figure 10 depicts the query latencies of the five
systems. For most queries, aDFS is one to two orders of
magnitude faster than GraphFrames. aDFS delivers 102 x
average speedup and takes 43 less total time than Graph-
Frames to complete the 10 out of 12 supported queries. Graph-
Frames translates graph queries into dataframe joins, offered
by Apache Spark, which are significantly slower than aDFS’s
graph traversals. Additionally, GraphFrames is memory hun-
gry, consuming hundreds of gigabytes of memory in com-
parison to the small footprint of aDFS. Furthermore, aDFS
completes the 10 supported queries 53 x faster than Neo4;,
with a 35x average speedup, even though Neo4j leverages
the graph schema, as well as the large amount of available
memory with its graph cache. With Neo4j, the whole graph
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Figure 11: aDFS with various configurations on LDBC.

resides in memory after the first run: the error bars clearly
show the effects of the first slow run.

Comparing aDFS to the relational systems, MonetDB and
PostgreSQL, shows two different behaviors depending on the
query size. For large queries, such as Q12 and Q24, which
expand to large parts of the graph with long paths, aDFS is
significantly faster. On the contrary, for small, very relational
queries, such as Q15, Q17, and Q23, the relational systems
can be faster than aDFS. This is expected given that just
the distributed bootstrapping and coordination overheads in
aDFS account for several tens of milliseconds. These different
queries highlight the tradeoff between the relational table-
focused joins and the graph exploration approach of aDFS.
Overall, aDFS completes the whole set of queries 8.4 and
26 times faster than MonetDB and PostgreSQL, respectively.
The average speedups are 10x and 25x against MonetDB
and PostgreSQL, respectively. Conversely, MonetDB is 2.4 x
faster than aDFS on Q23, while PostgreSQL is on average
2.6x faster for Q4, Q15, and Q17.

In conclusion, aDFS achieves better overall performance
than the four other systems while consuming lower/capped
runtime memory.

4.3 Dissecting aDFS with LDBC

Experiment. We again use the LDBC benchmark to show
how different design characteristics of aDFS contribute to
performance and memory usage. In particular, we compare the
pattern-matching-only latency of the default aDF'S (as used in
Section 4.2) to aDFS-no-local-BF'S (we disable the machine-
local dynamic BFS), aDFS-no-fc (we further disable flow



control), aDFS-strict-fc (we make flow control very strict),
and BF'S (we use the BFS implementation of Section 2.4).

Results. Figure 11 includes the results for these configura-
tions. All in all, aDFS is the fastest. With the “dynamic BFS
for local edges” option, aDFS is 31% faster on average than
aDFS-no-local-BFS for 10 queries, while incurring 4% over-
head for the remaining two queries. As we described ear-
lier, queries often have some very “narrow” execution points
with a handful of intermediate results, which leads to poor
parallelization with strict local DFS. In terms of memory
consumption, aDFS consumes slightly more memory than
aDFS-no-local-BFS, not only due to the local buffers, but
also thanks to better parallelization, which results in more
parallel message traffic.

Disabling flow control on top of aDFS-no-local-BF'S can
bring some benefits as shown by aDFS-no-fc. However, the
performance gains are low, as aDFS-no-fc hits almost no
flow-control limits for this workload—i.e., local DFS and
prioritizing messaging buffers from later stages of the queries
result in an efficient execution flow, since none of the stages
“explodes” in terms of memory. Still, aDFS-no-fc exhibits a
20% speedup with up to 5x higher memory consumption.

aDFS-strict-fc represents the closest realistic configuration
to DFS. Processing one intermediate result at a time would
naturally perform poorly, hence, we instead disable dynamic
local BFS and configure each stage to have exactly one out-
going buffer to the next stage per target machine. The results
show that excessive flow control reduces performance. In par-
ticular, aDFS-strict-fc is up to 6 x slower than aDFS, while
consuming up to 4x less memory.

Finally, as a reference, BF'S implements a basic BFS-only
runtime. As expected, BFS performs better than aDFS for cer-
tain queries, as it better leverages locality and parallelization.
Still, aDFS executes the total workload 16% faster than BFS,
while BF'S consumes up to 6 X more memory.

In conclusion, aDFS includes a set of design characteristics
that when put together achieve great performance with low
and controlled memory consumption.

4.4 aDFS vs. Other Engines: Large Schema-
Less Queries
Experiment. The classic property graph model is schema-
less, which enables users to easily query the whole dataset
(unlike the relational model which requires several joins and
unions of results). Therefore, we now compare aDFS to the
other four systems with the schema-less graphs of Table 2: this
workload shows the full power of aDFS in handling very large
queries. For the relational systems, the graphs consist of two
tables: One for vertices and another one for edges. Regarding
queries, we use two simple patterns, a cycle (a)->(b)->(a)
as Q1 and a two-hop path (a)->(b)->(c) as Q2, combined
with aggregations in the SELECT clause (variant “a” performs a
COUNT (*) and variant “b” AVG aggregations on a random vertex
property). The conclusions remain the same for other patterns

and projections (not shown). Note that it is impossible to
evaluate more elaborate patterns, as the competing systems
can barely handle the simple patterns that we use.

Results. Figure 12 depicts the results. In most cases, aDFS
is about 2 orders of magnitude faster than the other systems.
For the large queries and graphs, we also see that the other
systems are either not able to complete the queries within
eight hours, or crash. In particular, GraphFrames crashes after
having consumed its 600GB of executor memory.

The speedups of aDFS over the other systems (for the com-
pleted queries where there is no timeout) are: 16 to 62x for
GraphFrames, 1,105 to 9,200x for Neo4j, 20 to 169x for
MonetDB, and 60 to 190x for PostgreSQL. Neither the join-
based systems (GraphFrames, MonetDB, and PostgreSQL)
nor Neo4j are able to handle well these immense graph explo-
rations, although they have access to hundreds of gigabytes
of memory. In particular, Neo4j spills to disk, hence the ex-
treme performance difference compared to aDFS. Clearly,
for graphs and queries at this scale, a fast graph-optimized
solution such as aDFS, which easily handles these queries,
is required. With the largest query (Q2a on Twitter) aDFS
performs a 9.3T counT in 1,286 seconds, resulting in 7.3B
matches per second, while consuming less than 10GB per-
machine memory for intermediate results.

4.5 aDFS vs. Graph Mining, Dataflow Joins

Experiment. We compare aDFS to (i) three graph-mining
systems,2 namely G-Miner [27], Fractal [32], and Pere-
grine [42], as well as a dataflow join system, BiGJoin [19].
We use workloads from the G-Miner paper [27]: TC, i.e., Tri-
angle Counting, and counting instances of a more complex
pattern referred to as the P-pattern, with the four graphs that
are used to evaluate these operations in the paper. All systems
are distributed apart from Peregrine. For BiGJoin, we only
perform the evaluation on TC as it does not support filters,
and tune the batch size for performance (10%). For aDFS, we
express both triangles and the P-pattern as graph queries.

Results. Figure 13 includes the performance of the four sys-
tems. Triangle counting (TC) highlights the difference be-
tween matching and not matching automorphisms: For the
three graph-mining systems, the search for “unique” trian-
gles is baked in the pattern-matching algorithm, whereas
in aDFS, we implement isomorphism with automorphism
elimination using dynamic filtering (i.e., (a) -> (b) -> (c) -> (a)
WHERE ID(a) < ID(b) AND ID(b) < ID(c)). This results in
expensive filtering and heavier cross-machine communication
than with the other systems. Still, aDFS is faster than G-Miner
and Fractal for all graphs by up to 14x for G-Miner and by
up to several orders of magnitude for Fractal. Peregrine out-
performs all other graph-mining systems including aDFS on
three out of the four graphs, as it is able to intersect adjacency
lists to quickly find common neighbors, an optimization that

2We requested the artifact of Automine [54] for evaluation, but the authors
were not able to provide us with it.
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Figure 12: aDFS vs. other graph and relational systems on simple-pattern queries.

performs particularly well for triangles and which can be im-
plemented in a straightforward manner on a single machine,
where the whole graph is accessible. There is no clear winner
between aDFS and BiGJoin on TC, with each system outper-
forming the other on two graphs. By intersecting local edges,
BiGlJoin’s approach allows for reduced communication and
better performance on the two graphs with the highest average
degrees (Orkut and Friendster).

The P-pattern does not require automorphism checks, as

its vertices are differentiated by labels. We express it as:
(c:c)=->(bl:b)->(:ra)->(c)->(b2:b)->(:d)
WHERE bl <> b2

in PGQL. When matching the P-Pattern, aDFS significantly
outperforms all other systems for all but one datapoint (G-
Miner on BTC); it is on average 12 and 366 faster than Pere-
grine and Fractal, respectively, and 8 x faster than G-Miner on
three graphs. G-Miner achieves the best performance on BTC
mainly because it replicates the target vertex label with each
edge, which increases locality and reduces communication
traffic. Such an optimization is not practical in a real-world
system in which vertices can have many labels and properties
of various types: Replicating these for each edge can have
unacceptable memory overhead.

Overall, although aDFS is designed for different workloads,
i.e., expressive graph queries, it is still very competitive with
state-of-the-art graph-mining systems and a dataflow join sys-
tem on triangle counting and/or a mining-oriented workload.

4.6 aDFS Scalability

Experiment and results. We use the LDBC workload to
illustrate the scalability of aDFS as we vary the number
of machines. Figure 14 includes the speedups, normalized
to the latency of a single machine. Overall, aDFS exhibits
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Figure 14: Scalability of aDFS vs. using a single machine.
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Figure 13: aDFS vs. graph-mining and
dataflow join systems on triangles, patterns.

very good scalability: The average speedup is 1.6x from
one to two machines, 2.5x from one to four machines, and
5.4x from one to eight machines. These numbers include
various distributed coordination and query compilation
overheads, as well as additional fixed costs. The core runtime
of aDFS actually has even better scalability: looking at
pure pattern-matching execution time, without coordination
overheads, GROUP BY, and ORDER BY, the speedup improves
to 1.7x, 2.6x, and 6x from one to two, four, and eight
machines respectively (not shown). aDFS is designed to
scale: More machines translate to more compute resources,
more buffers for intermediate results, and often more BFS
exploration and higher network utilization, as the percentage
of remote edges increases with the number of machines.

5 Related Work

Database Management Systems (DBMSs). DBMSs offer
graph support via a multi-model premise, but focus on SQL-
like rather than pattern-matching querying [7, 12, 13, 52].
Kalinsky et al. [43] acknowledge that using DBMS joins for
graph pattern matching is suboptimal, and propose hardware
support to alleviate the issue. In contrast to DBMSs, aDFS
is an efficient in-memory distributed graph-querying system
that considers graph storage and queries as first-class citizens
and focuses on analytical rather than transactional workloads.

Graph Algorithms. There is a plethora of related work for
executing graph algorithms (such as PageRank [57]). Single-
machine solutions focus on various topics such as propos-
ing DSLs [38] or programming models [55] for graph al-
gorithms, performance optimizations [65, 67], leveraging
hardware features such as NUMA [81] and GPUs [56, 84],
or supporting out-of-core computing [83]. Distributed so-
lutions focus on topics such as asynchronous processing
and performance [35, 50], efficient partitioning [78, 82, 85],
leveraging hardware features such as RDMA [75], sup-
port for secondary storage [61], distributing sequential algo-
rithms [33], approximate computing [70], alternative program-
ming paradigms [76], or fault tolerance [30,71]. aDFS focuses
on graph queries rather than algorithms, but it shares features
with some of these distributed solutions, such as the use of
asynchronous processing or (random) graph partitioning.



Graph Querying. A number of single-node graph-querying
systems were proposed by academia: Sun et al. [66] and Lin
et al. [49] build relational and transactional systems, Graph-
flow [44] is an active graph database that supports evaluating
one-time and continuous subgraph queries, TurboFlux [46]
optimizes fast continuous subgraph matching over a fast graph
update stream, and CECI [22] uses multiple embedding clus-
ters and intersections of neighborhood lists to optimize sub-
graph matching (CECI can be distributed through graph repli-
cation/sharing, not graph distribution as with aDFS, due to
the challenges mentioned in Section 2.4). In earlier work, we
prototyped simple distributing DFS exploration [60].

There are numerous industrial graph-querying solutions.
Neo4j [10] is single-machine and supports Cypher [11]
queries. Amazon Neptune [1] is built for the Amazon cloud.
Facebook Dragon [3] builds indices on updates for accessing
data. Microsoft Graph Engine [8] is an in-memory data pro-
cessing system based on Trinity [63], and TigerGraph [18]
distributes GSQL [4] queries based on the source vertex
data for a given query hop. Furthermore, there are also open-
source distributed solutions. JanusGraph [6] uses distributed
graph storage but does not distribute computation. Graph-
Frames [31] implements graph pattern matching with Spark
using joins of dataframes. Wukong [64,73] is a distributed
graph-based RDF store that leverages hardware features, such
as RDMA and GPUs, which we do not focus on. To the best
of our knowledge, aDFS is the first truly distributed graph-
querying system that works on fully-partitioned graphs and
strictly bounds memory while maintaining great performance.

Graph-Mining systems. Graph-mining focuses on extracting
structural properties and computing complex aggregate statis-
tics [34,74] of a graph by exploring its subgraph structures.
Examples include triangle counting, maximal clique finding,
community detection, and graph matching [27,54,59]. Graph-
querying systems typically employ a vertex/edge-centric pro-
cessing approach: A state is maintained per vertex and com-
municated to its neighbors [54, 69]. Graph-mining systems
typically follow a subgraph-centric (often undirected and
schema-less) processing approach: They attach information
to a large amount of intermediate results composed of sub-
graphs [54] rather than specific vertices. Additionally, graph-
mining systems typically leverage automorphism elimina-
tion [29,32,42], while while graph-querying engines generate
homomorphisms to answer user graph queries.

Recent single-machine systems include RStream [72], Au-
toMine [54], and Peregrine [42]. Distributed systems include
Arabesque [69], NScale [59], G-thinker [77], BiGJoin [19],
G-Miner [27], ASAP [41], and Fractal [32]. aDFS shares
features with some of these systems. For example, forms
of asynchronous computations are used in G-Miner [27]
(with a “task-pipeline” to hide communication overheads)
and BiGJoin [19] (with data-parallel dataflow computations
that pick up dynamically joined columns with the least
matches). Techniques to reduce memory consumption are

used by G-Thinker [77] (buffering excess subgraph-tasks
in a disk-based priority queue), BiGJoin [19] (primarily
using batching to limit memory consumption but not for
intermediate results as with aDFS) and Fractal [32]. Fractal
combines a DFS strategy with a “from-scratch processing”
paradigm which leads to re-computation overheads (absent
in aDFS), as well as imbalances across workers that are
mitigated by work stealing: workers break the DFS strategy to
steal enumerations, which can be at any level of the matched
graph pattern, from other workers. aDFS uses asynchronous
DFS-based graph traversals together with flow control to
strictly bound memory consumption, and can switch to
BFS, in the same graph pattern-matching level, to generate
more local work and to buffer remote edges (see Section 3).
Our in-depth evaluation shows that the performance of
aDFS for graph pattern-matching is competitive with that of
state-of-the-art graph-mining systems.

BFS/DFS. The BFS/DFS tradeoff has been explored in the
context of single-machine parallel task-scheduling runtimes.
Typically, DFS is used to schedule a task graph in order to
curtail memory [28], and BFS is used opportunistically (of-
ten called “work stealing”) to maximize parallelism [23,24].
aDFS leverages these insights in the context of distributed
graph query processing.

6 Concluding Remarks

Conclusions. We have introduced aDFS: A system that
uses an efficient, almost-DFS approach to execute pattern-
matching queries on distributed graphs. aDFS is able to ex-
ecute virtually any query on any in-memory graph using
at most a fixed, configurable amount of memory. aDFS is
also very fast and scalable. We compared aDFS to eight
state-of-the-art systems with diverse characteristics—graph
or relational/join-based, distributed or single machine, in-
memory or disk-based—and showed that aDFS is up to orders
of magnitude faster than them.

Limitations and future work. aDFS uses simple algorithms
for query optimization and graph partitioning, as this paper
focused on runtime support for distributed graph querying.
In the future, we will improve query planning and optimiza-
tion, together with graph partitioning and caching. We will
also consider query optimization opportunities to enable prun-
ing of the traversal space when the underlying data has a
relational-style schema, as described in Section 4.2.
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