ORACLE

Autonomous Memory Sizing Formularization for Cloud-based IoT ML Customers

Guang Wang (Presenter), Oracle Labs Jason Ding (Co-presenter), Oracle Cloud Infrastructure Kenny Gross, Oracle Labs Prasad Ballingam, Oracle Cloud Infrastructure Syed Fahad Allam Shah, Oracle Cloud Infrastructure

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.

Anomaly Detection at OCI AI Services

Oracle DS and AI Platform

OCI AI Services

5

Unified AI/ML platform spanning cloud services, apps and data assets

OCI Anomaly Detection (AD) Service

Builds multiple anomaly detection models and automatically selects the most accurate to flag critical incidents earlier

Automatically identifies and fixes data quality issues

Detect anomalies that span across multiple sensors at the earliest time with least number of false alarms using Oracle's heavily patented (150+ patents) MSET2 algorithm

A Perfect ML Prognostic Solution for IoT Use Case on Oracle Cloud

Oracle Labs

MSET2 (Multivariate State Estimation Technique)

OCI AI Platform

Cloud Infrastructure with ML Kernels

OCI = Anomaly Detection

Powered by

Multivariate State Estimation Technique (MSET2)

The Core of OCI Anomaly Detection Service

MSET2 Data-Flow Framework

Telemetry Data Sensor Farm(s)

The Idea of MSET2 Algorithm

- Consider a system with N signals and M observations under normal operation
- A data subset of the historical measurement consisting of N signals and m observations

$$D = \begin{pmatrix} X_{1,1} & \cdots & X_{1,N} \\ \vdots & \ddots & \vdots \\ X_{m,1} & \cdots & X_{m,N} \end{pmatrix} \in \mathbb{R}^{[m \times N]}$$

- Given a current observation, X_{obs} , is the system behaving normally or abnormally?
- Compute estimate, X_{est}, given D
 - The closest normal behavior
- Compute residual, X_{est} X_{obs}
 - Make a decision based on residual

Ordinary Least Squares

- Estimate is a linear combination of weights
 - $X_{\text{est}} = D\omega_{\text{est}}$
 - $\omega_{\text{est}} = (D^{\mathrm{T}}D)^{-1}D^{\mathrm{T}}X_{\text{obs}}$
 - $X_{\text{est}} = D(D^{\mathrm{T}}D)^{-1}D^{\mathrm{T}} X_{\text{obs}}$
- But... systems are typically non-linear
 - Output is not proportional to the change of input
 - Collinearity due to the repeated or highly dependent sensor signals, causing amplification of uncertainties or crashes from singularities

The Core of MSET2

- Use a different binary operator, \otimes to perform a non-linear comparison
 - $\omega_{\text{est}} = (D^{\mathrm{T}} \otimes D)^{-1} (D^{\mathrm{T}} \otimes X_{\text{obs}})$
- Use pseudo-inverse
 - $\omega_{\text{est}} = (D^{\mathrm{T}} \otimes D)^{+} (D^{\mathrm{T}} \otimes X_{\text{obs}})$
 - $X_{\text{est}} = D(D^{\mathrm{T}} \otimes D)^{+} (D^{\mathrm{T}} \otimes X_{\text{obs}})$
 - $D^{T} \otimes D$ is symmetric and positive definite, characterizing the pairwise correlation between the measurements in D

Memory Sizing Formularization for AD Service

Challenge of Right-Sizing the VM Shape (RAM Configurations)

- Only the size of the data is known prior to the ML run
- Peak memory usage determines the memory capacity requirement
- Peak memory usage significantly larger than the size of the data
- Scales with the square of the number of signals

Typical memory utilization profile

0

Motivation

- Typical sizing approach for a big use case:
 - Run a small use case, figure out the RAM req., scale the numbers up accordingly
 - Likely require shape-changing later
- What is preferred:
 - Predict the peak memory usage upfront quickly, accurately, and autonomously
 - Avoid exhaustive memory preallocation assessments to save operational cost
- As a result, the RAM of the VM Shape can be optimally configured:
 - Accommodate the performance needs
- ¹⁵ while saving cost for customers

Current shape: VM.Standard1.1		Choose the target shape based on the requirements of your workload					
	Shape Name	OCPU		Memory (GB)	Local Disk (TB)	Network Bandwidt	
	VM.Standard1.1	1		7	Block Storage only	Up to 600 Mbps	
	VM.Standard1.2	2	/	14	Block Storage only	Up to 1.2 Gbps	
	VM.Standard1.4	4		28	Block Storage only	1.2 Gbps	
	VM.Standard2.1	1		15	Block Storage only	1 Gbps	
	VM.Standard2.2	2		30	Block Storage only	2 Gbps	
	VM.Standard2.4	4		60	Block Storage only	4.1 Gbps	
	VM.Standard2.8	8		120	Block Storage only	8.2 Gbps	
	VM.Standard2.16	16		240	Block Storage only	16.4 Gbps	
	VM.Standard2.24	24		320	Block Storage only	24.6 Gbps	

Mathematical Formulation

Memory Usage Breakdown for Training

Initial Training Data $4N * \frac{\tau}{\epsilon} + a$ Signals Dynamics Characterization $(4N + (N + m) * m) * \frac{\tau}{\epsilon} + a$ Least Squares Approximations $(4N + (N + 4.6m + 141) * m + 32962) * \frac{\tau}{\epsilon} + a$ Model Validation $((M + 4) * N + (N + m + M) * m + M) * \frac{\tau}{\epsilon} + a$

N: number of signals M: number of observations for training m: a subset of M used for training τ : precision a: deterministic memory usage of the CUDA Toolkit (ver. 10.1.243) ϵ : B to MB conversion factor = 1024²

Mathematical Formulation – cont.

Memory Usage Breakdown for Inferencing

Load Model: $(4N + (N + m) * m) * \frac{\tau}{\epsilon} + a$

Make Inferences:
$$((2M' + 4) * N + (2M' + N + m) * m + M') * \frac{\tau}{\epsilon} + a$$

M': number of observations for inferencing

The deterministic memory usage can be perfectly characterized as a function of variable size and precision

The stochastic memory usage behavior (e.g., proprietary functions in the CUDA library) is characterized leveraging 2D response-surface methodology between the inputs and outputs of the functions

The general methodology employed in the end-to-end framework is adaptable to other nonlinear nonparametric ML prognostic techniques

Validation on a NVIDIA GPU Instance

- A predictive-maintenance use case on an Oracle AD Service testbed
 - 16 OCPU, 320GB RAM
 - V100 GPU with 16GB VRAM
- Real IoT signals from the O&G industry
 - 4k signals and 100k observations for training
 - 4k signals and 80k observation for inferencing
- A lightweight MSET model with m = 8k observations (i.e., $D \in \mathbb{R}^{[8k \times 4k]}$)
- Computed VRAM usage prior to the run
- Measured VRAM usage during the run
- Each step of both training and inferencing phases is validated

Validation Results

19

- The memory usage profiles were completely enveloped by our estimates
- The peak memory usages were accurately predicted in both phases with 0.04% residuals

 \bigcirc

Leverage Memory-Sizing Formularization in AD Service

AD Service Model Training Workflow

AD Service Inferencing Workflow

OCI AD Service Differentiators

Automatic data preprocessing

- Imputes missing values based on ML based estimates
- Patented resampling automatically works with differing time interval signals
- Un-quantizes signal values to help build best model for quantized signal monitoring

1	>
2	
2	···>
2	·>

Developer-focused Al service that automates data science

- Automatic best model creation for the data
 without needing data scientists
- Model output includes overall model accuracy, specific signal accuracy and signal specific statistics for developers to decide if the model is effective for the business use case

Automate business workflows for immediate action

- Estimated value for each identified anomaly
- helps to assess severity of the anomaly occurrence
- Aggregated score of anomaly over time provides whether the anomalies are becoming severe overtime
- Signal specific anomaly score helps to assess relative severity of anomalies across signals

ORACLE Cloud	Applications > Search for resource	s, services, and documentation		
) Search	🔁 Analytics & Al			Anomalies Detect the anomalies for the data contained in the request using the stored model.
me mpute orage tworking acle Database tabases alytics & Al	Analytics Analytics Cloud Fusion Analytics Warehouse Data Lake Big Data Service Data Catalog Data Integration Data Flow	Messaging Streaming Service Connector Hub Machine Learning Data Science Data Labeling	Al Services Language Vision Anomaly Detection Digital Assistant	
veloper Services entity & Security brid	Search for resources, services, and documentatio	on	US West (Phoenix) ^v	Actual Value Estimated Value Anomaly Value
Belect Data Train Model Breview	A model is trained until the accuracy options are met, and then it is saved with a unique model OCID. Training Data Information Name: demo-training-data-assets Bucket Name: jan-demo Show Copy Description: - Namespace: axnvmxuel8i2 OCID:abdmib4ubq Show Copy Object Name:g-data.csv Show Copy Type: Oracle Object Storage Image: Complexity of the storage		me: jan-demo <u>Show Copy</u> e: axnvmxuel8l2	pressure_2
	Model Information Name: demo-model Compartment:6o6vjegn6q Show Description: demo-model		e Alarm Probability(FAP): 0.01 action Ratio: 0.7	Anomaly Score Per Signal vs. Timestamp 0.6 16:10 16:20 16:30 16:40 16:50 17:00 17:10 17:20 17:30

How to Consume OCI AD Service

- Software Development Kits
 - SDK for Java
 - SDK for JavaScript and TypeScript
 - SDK for Python
 - SDK for .NET
 - SDK for Go
 - SDK for Ruby
- REST APIs
- OCI Command Line Interface

Docs

- <u>Release notes</u>
- Docs
- <u>API documentation</u>

Reference architectures

- <u>Anomaly detection for managing assets</u> and predictive maintenance
- Detecting anomalies to predict failure

Blogs

- Product blog
- Algorithm blog

Thank You

Interested in Trying Out AD Service?

Viji Krishnamurthy (PM):

viji.krishnamurthy@oracle.com

Technical Questions?

Guang Wang: guang.wang@oracle.com

Jason Ding: jason.ding@oracle.com

Kenny Gross: <u>kenny.gross@oracle.com</u>

Resources:

Anomaly Detection Documentation: <u>https://docs.oracle.com/en-</u> us/iaas/Content/anomaly/using/home.htm

Oracle MSET2 Blog: https://blogs.oracle.com/bigdata/real-timemachine-learning-use-case

Acknowledgement:

The presented methodology is part of the collaborative project with our former colleague Wei Jiang who contributed to the inception and development phases of the work.

