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Abstract
Software development tools that interact with running programs, for instance debuggers,

are presumed to demand difficult tradeoffs among performance, functionality, implementation
complexity, and user convenience. A fundamental change in thinking obsoletes that presumption
and enables the delivery of effective tools as a forethought, no longer an afterthought.

We have extended the open source multi-language Graal platform with a language-agnostic
Instrumentation Framework, including (1) low-level, extremely low-overhead execution event
interposition, built directly into the high-performance runtime; (2) shared language-agnostic
instrumentation services, requiring minimal per-language specialization; and (3) versatile APIs
for constructing many kinds of client tools without modifying the VM.

A new design uses this framework to implement debugging services for arbitrary languages
(possibly in combination) with little effort from language implementor. We show that, when
optimized, the service has no measurable overhead and generalizes to other kinds of tools.

It is now possible for a client in a production environment, with thread safety, to dynamically
insert into an executing program an instrumentation probe that incurs near zero performance
cost until actually used to access (or modify) execution state. Other applications include tracing
and stepping required by some languages, as well as platform requirements such as the need
to timebox script executions. Finally, opening public API access to runtime state encourages
advanced tool development and experimentation with much reduced effort.
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1 Introduction

A frequent complaint from users of new programming languages (or new implementations
of old languages) is that runtime-based tools (especially debuggers and profilers) typically
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arrive much later, if ever. When tools do arrive, they compromise programmer productivity
in many ways, for example:

Aggressive code optimization obscures bugs and compromises tool functionality in long-
running or production environments.
Compiler extension for tool support increases complexity and decreases tool portability
(and thus availability).
Tool support constrains optimization, which discourages enabling potentially useful tool
support in production environments.

Tools that enhance software development productivity are too often treated as an af-
terthought (e.g. JVMPI, JVMTI for Java [18]), but this was not always so. Gabriel reminds
us that some of the earliest and most influential programming languages, for example Lisp
(1965) [16], Smalltalk (1980) [10], and Self (1989) [1], were actually programming sys-
tems [9]. Their implementations exhibited little distinction between language and tools.
The shift in focus toward compilers as separate artifacts (which optimize utilization of ex-
pensive machines) and away from programming tools (which optimize utilization of expensive
people) came at a cost, reflected in the complaints recited above. Van De Vanter argues that
working programmers should once again “have it all” [26]: modern languages, high perfor-
mance, and productive tools as a fundamental property of run-time environments, without
compromising either of them.

We believe we can bridge that divide and “deliver it all” by integrating highly flexible
language-agnostic instrumentation and tool support deeply into a high-performance multi-
language runtime. A system of this generality has multiple stakeholders, each with priorities
and requirements that must be addressed:

Platform performance engineers must grant access (both read and write) to execution
state without imposing extra implementation complexity on the core platform. That
access must be always enabled, serve many purposes, have no cost when unused, and
incur near-zero overhead (beyond client intervention) in fully optimized code.
Language implementors must enjoy the benefit of working tools (both for eventual cus-
tomers and for themselves during language development) at the cost of supporting a very
small set of language-specific APIs.
Tool builders must be presented with simple, highly flexible APIs for specifying and
capturing execution events. During event handling, many aspects of execution state
must be available through language-agnostic APIs, with language-specific adjustments
available when needed, e.g. for understanding and displaying names, values, etc. It must
be possible to inject fragments of program code, for example breakpoint conditions,
that will be subject to the same optimizations as surrounding program code. Finally,
there must be access to a library of shared services, for example implementing debugger
primitives and aggregating runtime information such as coverage.

The Truffle Instrumentation and Debugging Framework meets these requirements by ex-
tending the open source Graal platform [30]. Graal supports developing high performance
programming language implementations that leverage a great deal of common infrastruc-
ture. We consider Graal the first truly polyglot high performance language implementation
platform. Our expanded vision for instrumentation-based tools is to deliver a highly pro-
ductive, polyglot “Programming Environment out of the box”, with minimal per-language
cost, for Graal-based language implementations.

The contributions of this paper include:
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1. A novel design for a language agnostic instrumentation framework, implemented by
extension to the Graal platform, that meets all stakeholder requirements and serves many
purposes. Those purposes include, in addition to conventional tools already mentioned,
tool-related functionalities that are expected to be built into the implementations of some
languages. The core platform also benefits from this extension, for example trivially
making it possible to timebox program execution and support sampling-based analyses.

2. New APIs in the Graal platform that implement those requirements. Most notably, it is
now possible for a client in a production environment, with thread safety, to dynamically
insert into an executing program an instrumentation probe that incurs near zero perfor-
mance cost until actually used to access (or modify) execution state. A probe can also be
used to inject code fragments (e. g. breakpoint conditions) subject to full optimization
as if the original source had been rewritten. It is also possible for clients, using Truffle
APIs, to customize compilation of their code when needed.

3. Case studies showing the effectiveness and practicality of these extensions for many
purposes. They now support features required in some specific language execution envi-
ronments, some platform features such as timeboxing execution, measurement services in
development such as code coverage and profiling, and an always-on “debugging service”
that we call the Debugging API.

The Debugging API is the most developed client of Truffle instrumentation. It pro-
vides debugging services for the NetBeans IDE [19], the platform’s own REPL-style shell,
and other experimental systems. It also as serves as motivation and a running example
throughout the remainder of this paper.

Debugging API services operate uniformly across all Truffle implemented languages,
even when are used together via language interoperation features of the Graal platform.
Execution can be halted, either at first possibility or at breakpoints. Breakpoints, specified
by source lines or by text regions, can be configured with conditions, as one shots, or with
ignore counts and can be dynamically enabled/disabled. Access to suspended execution
state includes location and cause of suspension, stack frames, local variables in any frame,
among others. Clients can evaluate code fragments in the context of any stack frame and
resume execution as either Continue, Step In, Step Over, Step Out, or Kill.

Section 2 begins with background on the Graal platform’s essential features, followed in
Section 3 by a summary of the key insights and design ideas that make the Instrumentation
and Debugging Framework possible. Section 4 describes how the framework provides ac-
cess to dynamically specified execution events, together with a performance evaluation that
demonstrates minimal run-time overhead. Section 5 describes the per-language support that
implementors must provide to support the tools built so far, together with a summary show-
ing that the burden is quite low relative to the traditional cost of providing tools. Section 6
describes APIs that allow many kinds of tools to be built without additional modification to
the runtime. Section 7 evaluates the overall suitability of the Instrumentation and Debug-
ging Framework for its intended goals by reviewing case studies where it is used. Section
8 reviews significant related work, section 9 summarizes the current and future outlook for
the project, followed by conclusions in Section 10.

2 Background: the Truffle-Graal platform

The Graal project began as an advanced Java-in-Java compiler developed for the Maxine
Research VM [28]. When paired with the Truffle library for implementing programming
languages as self-optimizing Abstract Syntax Tree (AST) interpreters [31], Graal became a
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productive platform for creating very high performance programming language implemen-
tations. A core of reusable host services greatly simplify guest language implementations,
including dynamic compilation, automatic memory management, threads, synchronization
primitives, and a well-defined memory model. Truffle-implemented languages currently in-
clude Javascript, R [25], Ruby [23], and Python [27], among others. Figure 1 summarizes
the structure of a deployed guest language program.

Guest Language Implementation

Host Services

Guest Language Application

OS

Application 
Developer

Language 
Developer

VM Expert

Guest Language

Managed Host Language

Written by: Written in:

OS Expert

Figure 1 System structure of a guest language implementation utilizing host services to build a
high-performance VM for the guest language.

A guest language implementation begins with an AST interpreter, a straightforward
but traditionally poor-performing technique. Truffle ASTs replace optimize specific nodes
dynamically by replacement with more specialized versions. This can be done safely, even
in multi-threaded execution environments. For example, the newly created Truffle AST in
Figure 2 is populated by uninitialized (“U”) nodes. Nodes transition during execution by
replacement to type-specific nodes, such as the ones exclusively for Integer (“I” in the figure).
Each specialization is accompanied by a guard that verifies on each execution the validity of
the specialization. A guard failure transitions a specialized node to a more generic version
(“G”) that handles all possible cases. Truffle ASTs are required to stabilize after a finite
number of node replacements, as suggested by the permissible “Node Transitions” inset in
Figure 2.

Figure 2 Truffle ASTs speculate and optimize ...

Whenever an AST stabilizes, Graal dynamic optimizes [3] its interpreter, using partial
evaluation [8] to produce highly optimized and specialized machine code. Guard failure in
optimized machine code triggers dynamic deoptimization [13], transferring execution back
to the interpreter without loss of execution state, as shown in Figure 3. Dynamic deopti-
mization frees the compiler to apply speculative optimizations [6] more aggressively, while
avoiding compilation overhead for not-yet-seen or slow-path cases.
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Figure 3 ... and transfer to interpreter and reoptimize

Figure 4 summarizes the components of the Graal platform. A recent Java extension1
allows hosting Truffle-Graal on an unmodified JVM.

Figure 4 Graal technology stack

3 Truffle Instrumentation design overview

The goal of the Truffle Instrumentation and Debugging Framework is to significantly sim-
plify the construction of tools needing dynamic access to execution state in a very high
performance runtime environment. The most difficult challenge is to do this without sacri-
ficing performance. Inspiration for a new approach to this challenge comes from two sources:
Self [1] and Aspect Oriented Programming (AOP) [14].

Dynamic optimization, pioneered by Self, confounded traditional approaches to debug-
ging. Self debugging was eventually enabled through development of the ability to deoptimize
dynamically without loss of execution state [13]. Self’s breakpoint strategy became: deop-
timize the method and rewrite its internal representation to include a debugger call. The
runtime may eventually reoptimize, and breakpoint removal is just another rewrite.

AOP is a family of metaprogramming systems that were performance-limited in practice
by lack of support for efficient manipulation of runtime state. A solution was developed in
the form of a generalized interposition model2 for language VMs [12].

The Graal platform already provides many of the otherwise challenging low-level services
needed to support optimized instrumentation.

Safe AST rewriting of executing methods can be used to interpose via dynamic insertion
of instrumentation nodes.
Deoptimization can be invoked by instrumentation when needed.

1 http://openjdk.java.net/jeps/243
2 The only implementation of this model was an experiment that demonstrated its general applicability
to various AOP models without concern for performance [22].
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Execution state (when deoptimized) is completely accessible as structures in the Java-
implemented interpreter, for example stacks, frames, and frame slots.
AST node executions can be interpreted as instrumentation events, using highly opti-
mized platform abstractions and implementation techniques.

Meeting the varied and sometimes conflicting goals for Truffle Instrumentation depends
on a clear separation of concerns into three areas with very different priorities, strategies,
and measures of success.

First, execution event reporting must have near-zero overhead. This can only be accom-
plished by building interposition directly into the lowest levels of the Graal platform and by
making performance the absolute priority. Section 4 presents more details, including per-
formance measurements that demonstrate near-zero cost for the instrumentation machinery
itself.

Second, the supporting framework for clients (including some internal to the platform)
to access and interpret execution events must require minimal support from each language
implementation. Section 5 describes the language-specific adaptations that have been added
so far to support clients, for example the Debugging API. A summary of instrumentation-
imposed requirements for language implementors shows that the burden is modest.

Finally, a client-facing API must provides convenient access to these language-agnostic
services, designed to make construction of many different kinds of tools possible. Among
many kinds of flexibility, it must be possible for multiple clients of instrumentation be
simultaneously active without mutual interference. Section 6 presents more details. A
summary of clients built using the framework, several by independent parties, demonstrates
the effectiveness of the client API.

Figure 5 summarizes extensions to the Graal platform that implement these ideas.

Figure 5 Graal extensions for instrumentation (arrows)

4 Low overhead access to runtime state

This section describes the implementation of low-level platform extensions needed to support
the Truffle Instrumentation and Debugging Framework: the dynamic capture and reporting
of execution events with access (both reading and writing) to execution state. Subsequent
sections describe client APIs and use cases, from the perspective of language implementors
(Section 5) and tool builders (Section 6).

Minimal overhead is the highest priority, achieved using three pervasive strategies. First,
keep functionality simple, leaving clients to make their own performance tradeoffs. Second,
implement functionality using Truffle nodes for maximum optimization. Finally, defer extra
node allocations and deoptimizations as long as possible.

The explanation is organized in a bottom-up fashion, treating these topics in turn:
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Enabling instrumentation at a program location by dynamically inserting a probe.
Routing events from a probed location to an interested client by creating a subscription.
Specifying program locations for a subscription by creating a query.
Patching a guest language program at a probed location via code injection

The section concludes with a performance evaluation that demonstrates the low overhead
achieved by these performance-critical parts of the framework.

4.1 Probes
Truffle Instrumentation takes place at specific AST nodes that have language-provided meta-
data associated to support instrumentation (more about this in Section 4.3). The framework
prepares a node for instrumentation by inserting two additional nodes, as shown in Figure 6.

A language-provided wrapper node that acts as a proxy for its child and reports events;
and
A language-agnostic probe node that propagates events to clients.

Figure 6 Probing a node

The wrapper reports an event to the probe node just before the child executes and
another event just after. Listing 1 summarizes those event signatures, discussed in more
detail in Section 6.

void onEnter ( EventContext , Frame)
void onReturnValue ( EventContext , Frame , Object )
void onReturnExceptional ( EventContext , Frame , Throwable )

Listing 1 Event signature

Truffle AST’s thread safety ensures that probing and un-probing can be dynamic and
lazy in order to minimize memory footprint.

Truffle node replacement implicitly deoptimizes any compilations that depend on its
methods. However, the platform will eventually reoptimize a modified AST, including in-
strumentation nodes. Optimization eliminates event propagation code that ends up doing
nothing. For example, the newly inserted probe in Figure 6 has no clients and incurs zero
time overhead when fully optimized.

4.2 Subscriptions
Truffle Instrumentation connects an interested client to a probed node by inserting an ad-
ditional node to manage the subscription. Figure 7 shows a probed node with an attached
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Figure 7 A probed node with three chained subscriptions

“chain” of three subscription nodes, one for each of three independent clients. When a sub-
scription node receives an event from its parent, it propagates it first with an ordiary Java
method call to its client and then to its child (successor in the chain) before returning.

As with wrappers and probes, subscription nodes can be inserted and removed safely,
at the cost of deoptimization. Event propagation methods will be aggressively optimized,
possibly eliminated if clients do nothing.

4.3 Queries
Each Truffle subscription applies to a set of program locations specified by a query. These
specify criteria such as particular sources, source kinds, and line numbers, for example “line
42 in mysource.js”. A stepping debugger or a coverage tool might use the query “every
statement”. Section 6 describes the API for queries. Language implementations “markup”
AST nodes with instrumentation meta-data needed for matching program locations: precise
source attribution plus symbolic tags such as “statement” (more detail in Section 5.1).

A new subscription is represented by a binding that dynamically maintains its set of
matching nodes, updated for example when new ASTs appear. Moreover, subscriptions can
appear and disappear arbitrarily. The implementation challenge is to maintain subscription
nodes, as shown in Figure 7, in the presence of changing subscriptions and a changing
collection of ASTs.

A brute force implementation walks every AST whenever the binding set changes. It also
reviews every binding whenever a new AST is created. Wrapper, probe, and subscription
nodes are added and removed as needed.

A first optimization relies on the static fact that the source code specified for an AST
root node subsumes the source for all children. It can often be determined that a query with
source specifications could not match any nodes in an AST by checking the root (pseudocode
rootCheck in Listing 2);

The next optimization relies on the dynamic fact that probed nodes are unlikely in
many situations to be executed before another binding set change, if ever. The optimized
strategy is to invalidate any probe3 whose subscription set is out of date, an inexpensive
operation that does not modify the AST. Probes check validity before routing every event,
also an inexpensive operation in fully optimized code. Only when a validity check fails will
dependent code be deoptimized so that the subscription chain can be updated (and validity
reset) before continuing (checkSubscriptions in Listing 2).

3 Each probe node uses a Truffle Assumption object to instruct Graal that the chain of subscription
nodes (Figure 7) should be treated as final. The compiler inserts a very efficient guard in optimized
machine code that does not deoptimize anything until a call to Assumption.isValid() fails.
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def rootCheck (AST , binding )
// could binding match any source locations in AST?

def addAST (AST)
for all bindings

if rootCheck (AST , binding )
for all nodes in AST

if match(node , binding )
probe = probe(node)
invalidate (probe)

def addBinding ( binding )
for all ASTs

if rootCheck (AST , binding )
for all nodes in AST

if match(node , binding )
probe = getProbe (node)
if probe == null

probe = probe(node)
invalidate (probe)

def removeBinding ( binding )
for all ASTs

if rootCheck (AST , binding )
for all nodes in AST

if match(node , binding )
assert probed (node)
invalidate (probe)

def checkSubscriptions (probe)
if invalid (probe)

remove all subscription nodes
node = getNode (probe)
for all bindings

if match(node , binding )
addSubscription (probe , binding )

if number of subscriptions > 0
validate (probe)

else
remove (probe)

Listing 2 Subscription maintenance pseudocode

4.4 Code injection
The type of subscription described in Section 4.2 propagates event notification to clients via
ordinary Java method calls. Clients are given access to execution state in the form of Java
APIs (described in Section 6) for implementation objects such as stacks, frames, and slots.
This access is essentially outside the guest language execution context.

A second form of subscription, code injection, allows clients to provide fragments of guest
language code to be executed inside the guest language environment, as shown in Figure 8.
This kind of subscription propagates an event by simply executing, in the context of the
probed node, a client-provided AST fragment. Injected code becomes part of the AST
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and can be fully optimized together with the surrounding code. Neither return values nor
exceptions are allowed to affect guest language execution.

Figure 8 A probed node with injected code

Important use cases for code injection include optimizeable breakpoint conditions and
tracing code, both of which are evaluated for performance in the following section and
discussed in later sections.

4.5 Evaluation: runtime overhead
We evaluated performance characteristics of the Instrumentation and Debugging Framework
with two use cases in the Ruby programming language [7]: implementing set_trace_func,
a standard feature of the language, and building a simple debugger that sets breakpoints.

Our experimental system is a Sun X4-2 server running two Intel Xeon E5-2660 Ivybridge
CPUs with 8 cores and 16 hardware threads each at 2.20GHz, 256 GB of RAM, and running
Oracle Linux Server 6.5. We used Graal 05845, based on OpenJDK 1.8.0_111 with JVMCI
0.23.

We compared TruffleRuby, the Graal platform implementation, against JRuby [17], an
implementation using conventional JVM technology. Both implementations live in the same
repository at commit 379e8.

We used a simple Mandelbrot program from the Computer Language Benchmarks Game.
In JRuby set_trace_func is disabled by default, so we first measured baseline per-

formance with tracing disabled. We ran it for four minutes and took the mean average
of the iteration times for the last two minutes to very generously allow for warmup. In
TruffleRuby set_trace_func is always enabled, so tracing was already enabled in that first
measurement.

Our first experiment used Ruby’s set_trace_func feature, which installs a callback to
be run each time the interpreter arrives at a new source line. With both implementations
in turn, we ran four additional measurements:

with set_trace_func enabled but unused;
then with an empty callback installed;
then with the call back replaced by one that increments a global variable; and finally
with all callbacks removed.

Table 1 shows results with mean average time per iteration shown in seconds (so lower
is better) and one standard deviation as an error. We can see that the baseline perfor-
mance of TruffleRuby is an order of magnitude better than JRuby when tracing is disabled.
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Table 1 Performance times for set_trace_func, lower is better

Disabled Before Empty Increment After

JRuby 0.555 ±0.004 15.928 ±0.062 125.371 ±0.0 338.526 ±0.0 16.707 ±0.047
TruffleRuby 0.044 ±0.001 0.044 ±0.001 0.085 ±0.001 2.096 ±0.006 0.044 ±0.0

Table 2 Performance times Ruby debugging, lower is better

Disabled Before Not-taken Conditional After

JRuby 0.555 ±0.004 14.39 ±0.725 37.503 ±0.023 45.368 ±0.03 39.004 ±0.082
TruffleRuby 0.044 ±0.001 0.044 ±0.001 0.044 ±0.0 0.044 ±0.0 0.044 ±0.0

TruffleRuby tracing is always enabled, so there is no impact on performance until a call-
back is installed. In JRuby, however, enabling tracing disables the just-in-time to bytecode
compiler, which does not support tracing.

Installing an empty trace callback reduces performance in JRuby by another order of
magnitude on top of the existing slowdown, but only slows TruffleRuby to half speed. A
callback that increments a global variable slows both JRuby and TruffleRuby, but in this
state TruffleRuby is still 100x faster than JRuby. When the callback is removed entirely
TruffleRuby performance returns to the baseline level, but JRuby performance appears to
suffer permanently.

An empty trace in TruffleRuby still has an impact because the Ruby logic for calling any
block has some overhead, such as checking the mutable class of the block for the correct way
to call it. If the trace instrument is modified to not call the trace block then the generated
machine code for methods is exactly the same with the instrument installed or not.

In a second experiment, we modified the same Mandelbrot program to start a debugger
which we used to insert breakpoints. In JRuby we used the ruby-debug module, a Java
extension promoted as a faster alternative to historical Ruby debuggers. In TruffleRuby we
implemented the same functionality using the Instrumentation and Debugging Framework.

Similar to the previous experiment, we measured performance with debugging disabled,
then with debugging enabled but no breakpoints installed. We then installed a breakpoint
on a line on a branch that is not taken as the benchmark runs. Next we install a conditional
breakpoint on a line that is taken, but for which the condition is never true. Finally, we
removed all the breakpoints.

Similar to the previous experiment, results in Table 2 show that simply enabling debug-
ging decimates JRuby performance. Installing a breakpoint that is never reached further
reduces performance even though it is not actually in the path of execution. The extra work
to test the breakpoint condition adds a further penalty. After all breakpoints are removed
performance seems to remain permanently reduced. In TruffleRuby there is no performance
impact to enabling debugging, as it is enabled by default. A breakpoint on a line never
reached has no impact on performance, and the expression in the conditional breakpoint is
inlined into the generated machine code for the method and is not measurable. When all
breakpoints are removed, performance remains at the level as if a debugger had never been
attached.

These two experiments show that the Instrumentation and Debugging Framework allows
us to implement language features and a debugger that can be always enabled with no impact
on peak temporal performance, that have very low impact on performance when in use, and
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revert to no impact on performance when no longer in use.

5 API extensions for language implementors

The Truffle Instrumentation and Debugging Framework, much like the underlying Graal
platform, derives much of its advantage from services that are language-agnostic: applicable
to many languages. Programming is not language-agnostic, however. Productive tools
must account for variations among languages. Truffle instrumentation extends the APIs for
language implementors by adding requirements for language-specific support.

The platform’s language-agnostic instrumentation support has been designed to keep
those requirements to an absolute minimum. The intention is to make instrumentation
support “cost effective” for language implementors. With minimal extra effort, they will
themselves enjoy the benefit of working tools throughout development. The ultimate bene-
ficiaries are eventual end users.

This section describes Truffle instrumentation APIs from the perspective of additional
requirements for language implementors. It concludes with a summary of those requirements
that demonstrates a much lower level of effort than traditionally needed for per-language
tools of this complexity.

5.1 Markup

The Graal platform, including instrumentation, treats all AST nodes very much the same.
This is an enormous advantage for execution and optimization, but not for people. Pro-
grammers think of code interchangeably as either source text or language-specific program
elements (e.g. statements, expressions, blocks), depending on the mental task at hand, but
never as ASTs [2]. Truffle language implementors support human tool users by “marking
up” language-specific AST nodes with both textual and structural meta-data needed for the
low-level query matching implementation mentioned in Section 4.3.

Source Attribution Every Truffle AST node that represents a syntactic program element
provides source information by overriding Node.getSourceSection. A SourceSection de-
scribes precisely the corresponding text location, makes the text available if needed, and
supports two-way mapping between AST and code. That supports translating a line num-
ber to a node when creating a breakpoint, for example, and to translate a node to a code
display when a program halts. Truffle source attribution is more thorough than needed for
traditional debugger support, which is typically limited to statement line numbers. Clients
can access program elements at any level of detail so that, for example, a debugger could
easily be configured to step through every operation in a complex expression.

Tags A debugger must decide where (i.e. which node) to halt when stepping. Language
implementors supply this information by associating a symbolic tag with those nodes by
overriding Node.isTaggedWith(Class<?> tag) to return true for StatementTag. Other
tags currently in use include CallTag and RootTag. More tags will be added as the suite of
built-in services grows. For example, a recent experiment explored how tagging AST nodes
where program values are managed could be used to track dynamic data dependencies.
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5.2 Visibility

Clients of the Debugging API can enumerate the stack frames and frame slots using only
the Graal platform’s language-agnostic abstractions. Language implementations, however,
sometimes use such abstractions for purposes that correspond to nothing useful or intelligible
to a programmer. Truffle instrumentation introduces the notion of internal elements and
invites language implementors to identify instances that would be counterproductive to
reveal under normal circumstances. Examples of internal elements include:

Sources that contain no code sensible to a programmer. For example implementations of
language builtins, should normally not appear in debugging sessions (designated during
creation by applying Source.Builder.internal()).
Frames that correspond to no visible program call. For example Ruby implements most
control constructs as method calls, which should not appear in ordinary stack traces
(designated by the source associated with the frame being marked as internal). Whether
a frame is designated internal currently derives from the marking of its associated source.
Frame slots that hold implementation-related state. For example, certain intermediate
values might appear in slots that correspond to no local variable (designated by infor-
mation in the language-provided FrameFormat).

It is important that an internal designation be independent of other considerations and
easily changed for improved usability. It reflects a judgement that programmers would
not benefit (and might be mystified) seeing such an element during ordinary interaction.
Instrumentation clients are free to ignore the designation, however. For example a special
debugger mode for Truffle language implementors might reveal internal elements.

5.3 Presentation

Debuggers and other tools often display program information beyond simple source text, for
example names and values. How such information should be appear is often language-specific
and sometimes a matter of convention: i.e. what programmers expect.

As with the internal designation, it is important that language-specific presentation be
independent of other considerations and easily modified to increase usability. Examples of
language-specific presentation that might appear in a debugging session include:

Method/Procedure Name for every AST. The language implementation overrides the
method RootNode.getName() for this purpose only, used most commonly by the debug-
ger in backtrace displays.
Language Name at every node. Every AST root has a language property assigned via
annotation @NodeInfo. This becomes important in polyglot debugging sessions, where
a backtrace may contain frames in multiple languages.
Local Variable Name for every member of a frame. This is currently provided by
FrameSlot.getIdentifier(), but a more flexible source is under development in the
language-provided FrameFormat.
Values, for example from execution results or in frame slots. Language values are known
only as instances of Object in Graal platform services. A debugger must display spe-
cial values (e.g. each language’s null value) appropriately and use language conven-
tions for numbers, especially floating point. Each language implementation overrides
TruffleLanguage.toString(C context, Object value) to produce a simple string
for any language value.
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Objects. More detail can be extracted from values using Truffle’s support for language
interoperation [11]. This is a message-based protocol that allows very low overhead cross-
language calls among Truffle-implemented languages, and partial access to foreign ob-
jects. That support is expressed in a message protocol, for example to deal with primitive
values (Message.IS_BOXED, Message.UNBOX), with object references (Message.IS_NULL),
and with object fields (Message.READ, Message.WRITE, Message.INVOKE).

5.4 Eval and patch
A more direct form of interaction by debuggers is to evaluate a newly provided fragment
of language code as if it were injected into a running program. In one case the injection is
virtual, where the fragment is executed separately but in the context of a halted program.
In the other case the fragment becomes part of the program.

Eval Debuggers, especially in the context of REPL-style interaction, allow programmers
to “eval” code fragments in the context of a halted execution and display the result. Ide-
ally this accounts also for the lexical context and works at any frame in the current stack.
Language implementations prepared to evaluate program fragments in halted contexts over-
ride TruffleLanguage.evalInContext(String, Node, Frame). Not all languages are pre-
pared to do this, of course, but it has been straightforward for dynamic languages that have
an eval operator.

Patch Debuggers are expected to support breakpoints with dynamically assigned condi-
tions. These are expressions in the debugged language that must be evaluated each time
execution reaches a breakpoint location. Implementing this feature often degrades perfor-
mance, both for the expression and surrounding code. Truffle instrumentation provides a
solution: a language-agnostic mechanism that injects into a probed location a fully optimiz-
able AST fragment (Section 4.4). Language implementations support injection via override
of TruffleLanguage.parse(Source, Node, String...).

5.5 Other requirements
Certain kinds of errors, both syntactic and runtime, are inherently language-specific. The
current convention for reporting those errors, a language-provided string wrapped in an
exception, has proven inadequate and is being replaced by a more complete report. The
new report will also include, among other language-specific diagnostics, a stack trace in the
same language-agnostic format used in the debugging API.

Low-level event capture requires any instrumentable node must be prepared to generate
an instrumentation wrapper for itself (Section 4.1). It must be language-specific so that, in
addition to capturing events, it can act as a proxy for the node it wraps. Node implementa-
tions provide wrappers by implementing the interface method Instrumentable.factory(),
which creates appropriate wrapper instances on demand. Platform machinery is in place to
generate wrapper classes automatically in straightforward cases.

5.6 Evaluation: language-specific support requirements
Table 3 summarizes the API requirements for Truffle language implementations to support
instrumentation fully. Five are met by existing language requirements without modification.
Source attribution needs to be more complete than is typical in runtime environments, and
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each language’s eval operator needs to be adapted to the framework API. The remaining
requirements are new to the platform and are still evolving.

Table 3 Summary: Language-dependent Instrumentation Support

Existing Language Support – Unmodified
@NodeInfo.language()
TruffleLanguage.parse(Source, Node, String...)
FrameFormat
FrameSlot.getIdentifier()
Foreign object interoperation protocol

Existing Language Support – Extended
Node.getSourceSection()
TruffleLanguage.evalInContext(String, Node, Frame)

New Language Support
Node.isTaggedWith(Class<?> tag)
RootNode.getName()
Source.Builder.internal()
TruffleLanguage.toString(Context, Object)
Instrumentable.factory()

6 Versatile client API

Building tools that need dynamic access to execution state often requires understanding
a great deal about VM internals. In many cases tools cannot be built at all without tool-
specific VMmodifications. This section summarizes the client API of Truffle Instrumentation
and Debugging Framework, designed to lower that burden.

Clients are both internal to the Graal platform (e.g. to support language implementation
features or timeboxing) and external (e.g. debuggers, code analyzers, and experiments).
A greatly simplified subset of the Debugging API implementation (the Graal platform’s
“debugging service”) serves as a running example.

A good measure of the effectiveness of this API appears in Section 7, which describes
the diverse set of clients that currently depend on Truffle instrumentation.

Instruments An instrumentation client extends class Instrument and is installed by place-
ment on the class path of a Truffle execution environment. Listing 3 contains the skele-
ton for a simple instrumentation-supported debugging service. The framework activates
Instruments on demand (method onCreate()), when requested by a client, and deactivated
(methodonDispose()) when no clients remain. A newly activated instrument receives the
argument Env for access to basic features of the current execution environment, for example
i/o streams and instrumentation support.

@Registration (id = "debug - service ")
public final class DebugService extends Instrument {

@Override
protected void onCreate (Env env) {

// Set up debugging support
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}
@Override
protected void onDispose (Env env) {

// Release resources
}

public void setBreakpoint ( SourceSectionFilter ,
ExecutionEventListener ) {

...
}
...

}
Listing 3 Skeleton debugging service

Listing 4 sketches a simple scenario for a client tool. It starts by requesting access to
the debugging service from the Truffle execution environment (lines 1-2). It then sets up
access to some code by creating a Source instance, using a builder that supports many other
options (line 3). Lines 4-7, which set a breakpoint and execute the code, will be described
in more detail one line at a time.

1. PolyglotEngine engine =...; // A Truffle execution environment
2. DebugService debugService =

( DebugService ) engine . getInstruments (). get("debug - service ");
3. Source mySource = // Access to program source

Source . newBuilder (" myProgram .xx"). build ();
4. SourceSectionFilter location = ...; // Specify location in mySource
5. ExecutionEventListener callback =...; // Called when program halts
6. debugService . setBreakpoint (location , callback );
7. engine .eval( mySource ); // Run program , expect a callback

Listing 4 Debugging scenario

Filters Clients request events in general by describing a set of program locations with an
instance of SourceSectionFilter. This class is the client implementation of instrumen-
tation queries, described in Section 4.3. Listing 5 shows how the example client on line 4
describes the location for a breakpoint (“the statement at line 42 in myprogram.xx”) using
some of the options available in a builder.

4. SourceSectionFilter location = // Specify location in mySource
SourceSectionFilter . newBuilder ()

. sourceIs ( mySource ).

. lineIs (42)

.tagIs( StandardTags . StatementTag )

.build ();
Listing 5 Describe breakpoint location

All builder specifications must be satisfied for the filter to match a program location. In
addition to tags (any number can be specified), filters can currently be specified by (any
number of) specific source names, by (any number of) languages, by line ranges, by character
ranges, and whether a source has been marked as “internal”.

A filter can match any number of locations. For example a coverage tool might request
an event at every statement execution by creating a filter that only specifies that tag. The
builder pattern ensures that additional kinds of specifications can be supported in the future
without breaking API compatibility.
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Event Listeners The Instrumentation framework delivers event notifications from a probed
program location via calls to instances of ExecutionEventListener, using the event signa-
tures mentioned in Section 4.1. Listing 6 shows how the example client’s callback listener,
created on line 5, captures execution state just before the specified statement is executed.
Program execution continues when the callback method returns.

5. ExecutionEventListener callback = // Called when program halts
new ExecutionEventListener () {

public void onEnter ( EventContext context , Frame frame) {
// Handle breakpoint halt

}
public void onReturnValue ( EventContext context ,

Frame frame , Object result ) {}
public void onReturnExceptional ( EventContext context ,

Frame frame , Throwable exception ) {}
};

Listing 6 Breakpoint callback receiver

Execution state Event notifications include information about the context of the event.
The EventContext argument appearing in Listing 6 provides the static context, which in-
cludes:

the Node instance where the event takes place, which allows access to the whole AST,
Source information for the Node, including language, source, text location, and concrete
text, and
tags associated with the Node.

The Frame argument provides dynamic context, including method locals.

Subscription Returning now to the debugging service implementation first sketched in List-
ing 3, the revision in Listing 7 shows how it creates a breakpoint in response to the call on sce-
nario line 6. The debugging service calls the instrumentation framework (attachListener())
to create a subscription, described in Section 4.2. That subscription will notify the client call-
back whenever execution reaches the specified program location, which may happen during
execution of the code taking place via the call on line 7 in the scenario.

@Registration (id = "debug - service ")
public final class DebugService extends Instrument {

Instrumenter = instrumenter ;
EventBinding binding ;

@Override
protected void onCreate (Env env) {

instrumenter = env. getInstrumenter ();
}

public void setBreakpoint ( SourceSectionFilter location ,
ExecutionEventListener callback ) {

binding = instrumenter . attachListener (location , callback );
}
...

}
Listing 7 Debugging service sets a breakpoint
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The resulting EventBinding instance is a handle that can be used to cancel the subscription,
which otherwise remains active for the lifetime of the instrument. Any number of subscrip-
tions can be created (and disposed) at any time. A filter is immutable and can be shared
by many subscriptions; likewise a listener can participate in many subscriptions.

Instrumentation errors Exceptional return from any ExecutionEventListener method is
treated as an implementation failure by instrumentation clients. The instrumentation frame-
work captures exceptions, reports them out-of-band, and allows guest language execution
to continue.

Code injection Breakpoints created in the above scenario are unconditional. Adding con-
ditions requires Truffle instrumentation support for code injection, described in Section 4.4.
The general approach is to convert the condition (a guest language textual expression) to an
AST fragment and attach it to the program AST where it will be evaluated each time exe-
cution arrives. When fully optimized by the platform, the performance effect is equivalent
to the source code having been rewritten at each injected location and eventually optimized
by the Graal platform. The following paragraphs demonstrate how the debugging service
does this.

A Truffle subscription for code injection requires a factory to produce ASTs, an imple-
mentation of the interface in Listing 8.

interface ExecutionEventNodeFactory {
ExecutionEventNode create ( final EventContext context );

}
Listing 8 A factory for AST fragment injection

Truffle instrumentation invokes the factory lazily, the first time execution reaches each spec-
ified program location. The resulting AST, whose root extends ExecutionEventNode, is
then patched into the AST as shown earlier in Figure 8, where it will be executed each
time program execution reaches the probed node. The factory is invoked lazily so the static
context of each location can be considered, for example to bind variables.

Simply patching in the conditional expression would have no effect, however. As noted
in Section 4.4, the instrumentation framework ignores return values from injected code.
Instead, the debugging service returns a new instance the node class shown in Listing 9.

class CondBreakNode extends ExecutionEventNode {
@Child Node conditionNode ;

CondBreakNode (Node node) {
conditionNode = node;

}

@Override
public void onEnter (Frame frame) {

if (( Boolean ) condition .call(frame )) {
// Handle conditional program halt

}
}

}
Listing 9 Conditional breakpoint node
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The field conditionNode holds the AST fragment that evaluates the conditional expression,
which the debugging service creates by delegation to the appropriate language implemen-
tation. The @Child annotation is one of the Truffle conventions that enables aggressive
AST optimizations. For brevity, this listing ignores handling of exceptional or non-boolean
returns.

Finally, Listing 10 shows a revised implementation of the example debugging service,
this time with a method for creating conditional breakpoints.

@Registration (id = "debug - service ")
public final class DebugService extends Instrument {

Instrumenter = instrumenter ;
EventBinding binding ;

@Override
protected void onCreate (Env env) {

instrumenter = env. getInstrumenter ();
}

public void setBreakpoint ( SourceSectionFilter location ,
final String condition ) {

ExecutionEventNodeFactory factory =
new ExecutionEventNodeFactory () {

public ExecutionEventNode create ( EventContext context ) {
Node condNode =...; // parse condition in context
return new CondBreakNode ( condNode );

}
};

binding = instrumenter . attachFactory (location , factory );
}
...

}

Listing 10 Debugging service with conditional breakpoints

To recapitulate, when a debugging client requests a conditional breakpoint:
The debugging service creates an ExecutionEventNodeFactory that holds the text of
the condition;
Instrumentation creates a new subscription via a call to attachFactory().
The factory, when called, first creates an AST to evaluate the condition in context (by
delegation to the language implementation) and then returns a new CondBreakNode that
wraps that AST.
Truffle instrumentation attaches the new CondBreakNode, where it is executed immedi-
ately and on every subsequent execution.
Each time the CondBreakNode is executed, it evaluates the condition and notifies the
debugger if true.

Source events Many kinds of events other than execution events at AST nodes are impor-
tant to tools built upon the Instrumentation and Debugging Framework. For example, the
listener in Listing 11 can be used to create a subscription that notifies each time a Source
is newly loaded into the runtime. That subscription can also be filtered, for example by
MIME types.

public interface LoadSourceListener {
void onLoad ( LoadSourceEvent event );
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}
Listing 11 A Listener for Source events

It is also possible to query for Source instances that have already been loaded, optionally
subject to a filter.

Evolution We anticipate that, as the Graal platform continues to evolve, we will add
subscription support for more kinds of events. In every case this will result from negotiated
tradeoffs among complexity, runtime overhead, and API generality for clients. The API
design allows for this growth without breaking backward compatibility.

7 Results

A significant measure of success for any software framework is the number (and diversity)
of clients. This section evaluates the versatility of the public Truffle instrumentation APIs
by reviewing software that now depends on it.

Although originally conceived as a support layer for programming tools, Truffle instru-
mentation now supports a growing number of platform features. For example, very few lines
of instrumentation code were needed to address an unanticipated program requirement: the
need to timebox programs by terminating execution when a specified amount of time has
passed.

A novel and growing feature of the execution Graal platform is low overhead language
interoperation [11], which Truffle instrumentation supports almost transparently.

Some otherwise difficult language features have been addressed by instrumentation:
A Ruby programmer may at any time call set_trace_func, which requires that a speci-
fied block of code be executed dynamically before each statement in the running program.
This feature is notorious for confounding performance, but can run fully optimized using
Truffle instrumentation as demonstrated in Section 4.5.
A feature of the R language is an interactive shell that must be prepared at any time to
turn on stepping through specified methods, which is easily addressed using techniques
similar to those used in the platform’s Debugging API.

The Truffle Debugging API is now a core service of the Graal platform. Two clients
within the framework depend on it: the NetBeans IDE [19] (via a specially developed JPDA
adapter) and a REPL-style shell with debugging commands. Breakpoints are implemented as
simple instrumentation event subscriptions, and breakpoint conditions are fully optimizable.
Other tools have been prototyped and are expected to be added eventually to a suite of
default platform tools: code coverage and profiling.

A growing number of tools that depend on Truffle instrumentation have been developed
the third parties, including some that were unknown to the authors of this paper until
published. Here are two examples. A PhD dissertation at UC Irvine used a very early
version of Truffle instrumentation to build a low-overhead framework for event profiling,
applied it to Truffle implementations of Python and Ruby, and performed cross-language
comparisons of benchmark implementations [21]. A masters thesis at the University of Tartu
(Estonia) used Truffle instrumentation for three implementations (of increasing generality)
of dynamic method reloading for Truffle-implemented languages [20].
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8 Related work

Self [1] also implemented debugging using the abstractions of the underlying system. For
example, a breakpoint was a “self halt” statement inserted dynamically into a running
program. The Truffle Instrumentation and Debugging Framework generalizes that strategy
to many languages, by extending Truffle ASTs with an interposition model, and to many
kinds of concurrently non-interfering tools through a generalized API.

Self also pioneered full service debugging in dynamically optimized code. The compiler
was extended to store just enough information to enable deoptimization when needed, restor-
ing full access to execution state without loss of information [13]. Deoptimization is essential
to Graal’s ability to speculate [5], and Truffle instrumentation relies upon it as well.

Tool access to Java execution state is often implemented by rewriting bytecode. Early
work in dynamic bytecode modification acknowledged its potential application to tools [4].
In the context of the Graal platform, however, bytecode level support would be at the wrong
level of semantic abstraction. Truffle Instrumentation clients are written in Java, the same
level as the implementation (host) language, and events are expressed as node execution,
which maps naturally to guest language semantics. Finally, Truffle Instrumentation’s sup-
port for multiple, non-interfering clients would be awkward at best to support via bytecode
rewriting.

The Maxine Inspector is a dedicated debugger and heap inspector for the metacircular
Maxine Research VM [28]. The Inspector is also built using abstractions of the VM im-
plementation, with which it shares a considerable amount of code. This approach provided
excellent functionality but does not generalize past debugging the VM itself.

There have been attempts to automate the delivery of debuggers and other tools in
language-agnostic frameworks. Some impose important constraints on language implemen-
tation, for example the framework for debugging proposed by Wu et al. [29]. Others lack
the performance advantages of close runtime integration, for example debuggers generated
by the Spoofax language workbench [15].

Observing execution events in managed runtime environments generally requires intru-
sive VM modifications, for example meta-programming infrastructure for Aspect Oriented
Programming. Those modifications typically target specific AOP approaches as narrowly
as possible in order to minimize performance cost and complexity. This limitation was
addressed by an abstract model for built-in VM support based on highly flexible inter-
position [12]. Truffle instrumentation also uses interposition, realized in the context of
Truffle-Graal by dynamic injection of nodes into ASTs under interpretation.

An early experiment with the Graal platform demonstrated the potential of node-based
interposition, prototyped by a simple in-language debugger for Ruby [24].

9 Status and future work

We plan to extend the kinds of execution events that can be captured beyond the few
mentioned in this paper. Possibilities include other syntactic elements such as expressions,
but also events that do not always have syntactic counterparts such as exceptions and
object allocation. New possibilities for the Debugging API include richer access to language-
specific variations in use of stack frames, as well as the ability to pop frames and reenter
execution. Work is underway on other platform services, including ones that gather data such
as coverage, profiling, and data dependency. Finally, we expect to continue supporting and
encouraging experimentation with tools that might otherwise require prohibitively difficult
VM modification.
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10 Conclusions

We have shown that the Graal platform for creating high performance language implementa-
tions can also deliver an open-ended suite of high performance, very low overhead developer
tools for those languages with minimal extra per-language effort. Three platform extensions,
part of the Truffle Instrumentation and Debugging Framework, make this possible. First, a
low level, flexible, and efficient event reporting mechanism provides access to execution state
suitable for many purposes. Second, extensions to the platform’s language implementation
API provide just enough per-language adaptation to allow the creation of a general purpose
language-agnostic framework for building tools. That framework, together with tools such
as debuggers that use it, works for all platform-supported languages, either singly or when
used in combination via the platform’s language interoperation features. Finally, a versatile
new client API simplifies greatly the construction of tools that need some kind of dynamic
access to language execution state. That access is provided by built-in support that is itself
subject to the aggressive optimization proved by the underlying Graal platform.

We have yet to find any reason why Truffle instrumentation should not be always enabled,
as well services that use it such as the Debugging API.
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