
Automatic Array Transformation to Columnar Storage
at Run Time

Lukas Makor∗
Johannes Kepler University

Linz, Austria
lukas.makor@jku.at

Sebastian Kloibhofer∗
Johannes Kepler University

Linz, Austria
sebastian.kloibhofer@jku.at

David Leopoldseder
Oracle Labs
Austria

david.leopoldseder@oracle.com

Daniele Bonetta
Oracle Labs
Netherlands

daniele.bonetta@oracle.com

Lukas Stadler
Oracle Labs
Austria

lukas.stadler@oracle.com

Hanspeter Mössenböck
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Today’s huge memories make it possible to store and process large
data structures in memory instead of in a database. Hence, accesses
to this data should be optimized, which is normally relegated either
to the runtimes and compilers or is left to the developers, who often
lack the knowledge about optimization strategies. As arrays are
often part of the language, developers frequently use them as an un-
derlying storage mechanism. Thus, optimization of arrays may be
vital to improve performance of data-intensive applications. While
compilers can apply numerous optimizations to speed up accesses,
it would also be beneficial to adapt the actual layout of the data
in memory to improve cache utilization. However, runtimes and
compilers typically do not perform such memory layout optimiza-
tions. In this work, we present an approach to dynamically perform
memory layout optimizations on arrays of objects to transform
them into a columnar memory layout, a storage layout frequently
used in analytical applications that enables faster processing of
read-intensive workloads. By integration into a state-of-the-art
JavaScript runtime, our approach can speed up queries for large
workloads by up to 9x, where the initial transformation overhead
is amortized over time.

CCS CONCEPTS
• Software and its engineering→ Dynamic compilers; Run-
time environments; Interpreters; • Information systems →
Column based storage.

KEYWORDS
Columnar Storage, Array Storage, Program optimization, Dynamic
Language, Dynamic Compilation
ACM Reference Format:
Lukas Makor, Sebastian Kloibhofer, David Leopoldseder, Daniele Bonetta,
Lukas Stadler, and Hanspeter Mössenböck. 2022. Automatic Array Trans-
formation to Columnar Storage at Run Time. In Proceedings of the 19th
International Conference on Managed Programming Languages and Runtimes

∗Both authors contributed equally to the paper

MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the 19th
International Conference on Managed Programming Languages and Runtimes (MPLR
’22), September 14–15, 2022, Brussels, Belgium, https://doi.org/10.1145/3546918.3546919.

(MPLR ’22), September 14–15, 2022, Brussels, Belgium. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3546918.3546919

1 INTRODUCTION
The amount of created, gathered and processed data is constantly
increasing [46, 59, 63] and so are the demands for data analyt-
ics and computation [33, 37, 41, 50, 57]. With data visualization
and computing extending more and more into dynamic languages
and runtimes, the problem of optimizing those processes is no
longer restricted to databases and query languages. However, while
databases can resort to query planning [13, 28, 70] and storage
optimization techniques [1, 2, 22], programming languages have to
rely on the developers to optimize the data layout and processing.

To model large data workloads, developers use data structures
available in their programming languages. One fundamental data
structure available in almost every programming language are ar-
rays. Thus, modern runtimes and compilers are tailored to optimize
accesses to arrays. However, one optimization aspect that is hardly
targeted by current runtimes, while playing a key role in database
optimizations, is specializing the memory layout of a data structure
based on its usage. Processing contiguous memory, for example,
leads to a better cache utilization (fewer cache misses) than ran-
dom memory access [18]. Records are typically stored as individual
objects. Consequently, the objects representing the records are scat-
tered throughout the heap. Hence, successive accesses to record
data result in many cache misses and suboptimal performance.

To tackle this problem,we propose optimizing arrays of (uniform)
objects on-demand via run-time transformation of the underlying
memory layout to a columnar storage format. Columnar storage is
frequently used in databases [8, 22, 64]. There, all records of a table
are decomposed into their individual column values, with each col-
umn arranged linearly in memory. Records are then merely position
indicators to the corresponding property values in each column.
This linear representation enables more efficient data access due to
improved cache utilization, for example, when iteratively accessing
the same column of different records.

https://doi.org/10.1145/3546918.3546919
https://doi.org/10.1145/3546918.3546919

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

1 let totalSalaries = 0
2 for (let i = 0; i < emps.length; i++) {
3 const e = emps[i]
4 e.bonus = Math.floor(e.totalRev * 0.02)
5 e.sal = e.sal + e.bonus
6 totalSalaries += e.salary
7 }

Listing 1: A method that calculates new salaries in a loop

Listing 1 showcases an example of a bulk operation that may
appear in a typical data-intensive application:
The bonuses and salaries of a large array of employees are updated
and the resulting salaries are accumulated. The left-hand side of
Fig. 1 shows the memory layout of such a data structure in a lan-
guage runtime such as Google V8 [6] or GraalVM [53], where the
different employee objects are scattered across the heap. For this
query, a columnar layout—as depicted on the right-hand side of
Fig. 1—would bring several advantages: Loading the actual object
references could be omitted, as the data is directly accessed via
“property columns” with linear memory layout. Object field ac-
cesses could be replaced by array accesses, which would foster data
locality and cache utilization [12, 39]. On modern architectures, the
improved loop structure may even enable loop vectorization [11]
by using SIMD instructions [35, 36].

bonus

sal

totalRev

200

3000

50k

0

2600

40k

400

3700

80k

���

���

���

emps 0 1 2 ���

200
3000
50k

0
2600
40k

400
3700
80k

���
���
���

bonus
sal

totalRev

transform

Figure 1: The original memory layout and the columnar
layout of the salary example

We chose to implement our approach for JavaScript, because
of the many different areas in which JavaScript is used, ranging
from web development [27], (in-memory) databases [48], and visu-
alizations [9] to server-side data processing using Node.js [15]. We
integrated this approach into the GraalVM JavaScript runtime [51]
based on the Truffle Framework [29, 65, 68], as GraalVM JavaScript’s
implementation simplifies the integration of columnar arrays into
the language. The combination of the Truffle Framework and the
high-performance GraalVM JIT Compiler [19, 44, 62] enables us
to integrate custom compiler optimizations specifically targeting
accesses to columnar arrays.

We focus on large arrays of objects that are used in read-intensive
workloads, ideally accessed in loops (queries) and enable a restora-
tion of the original representation if unsupported accesses occur.
Using heuristics based on profiling information, we automatically
identify suitable arrays and transform them at run time, hence the
implementation imposes no additional effort for the developer.

In summary, this paper contributes the following:
(1) A novel storage strategy for arrays of objects, which enables

automated transformation into a columnar layout. This includes
a transition system to both selectively apply and revert the
transformation depending on the array usages.

(2) An ECMAScript [23] compliant implementation of this storage
strategy in the production-quality GraalVM JavaScript runtime.
Our implementation achieves speed-ups of up to 9x for specific
queries on large workloads.

(3) A set of novel compiler optimizations that utilize the tight inte-
gration of the Truffle framework and the GraalVM Compiler, to
selectively optimize accesses to arrays based on their observed
run-time state.

(4) An evaluation of our approach based on microbenchmarks and
TPC-H queries [14].
The rest of this paper is structured as follows: In Section 2, we

provide background information on the runtime and compiler in-
frastructure on which our approach is based. Section 3 details our
storage transformation approach in JavaScript and describes the
integration into the language implementation, while the necessary
performance optimizations are part of Section 4. In Section 5, we
describe some of the limitations of our current implementation.
Section 6 contains an extensive evaluation of our approach. Sec-
tions 7 and 8 compare our implementation with similar approaches
in literature and suggest potential extensions.

2 BACKGROUND
We implemented our approach by using the Truffle framework [65,
68] in combination with GraalVM [53] and the GraalVM Com-
piler [19, 44, 62]. This enables significant control over the data
representation in the language itself, the run-time interpretation
process as well as the partial evaluation and compilation process
including the applied optimization techniques.

2.1 GraalVM
GraalVM [53] is a state-of-the-art, high-performance polyglot run-
time environment. As a Java runtime, it enables the execution of
Java bytecode languages such as Java, Kotlin, or Scala but also
supports execution of dynamic (e.g., JavaScript and Ruby) or LLVM-
based languages via Abstract Syntax Tree (AST) interpretation and
compilation via partial evaluation [34, 42, 67, 69].

The GraalVM Compiler is the dynamic just-in-time (JIT) com-
piler of the GraalVM [19, 44, 62]. It transforms the bytecode into
the graph-based intermediate representation Graal IR [19, 21] and
applies aggressive optimizations to produce high-performance ma-
chine code. By using run-time profiling information, the GraalVM
Compiler can furthermore apply speculative optimizations [21]. If
an assumption fails, a deoptimization [20, 31] is triggered, the com-
piled code is invalidated and execution falls back to the interpreter.

In our approach, we use the GraalVM Compiler to apply opti-
mizations to speed up accesses to transformed arrays.

2.2 Truffle Framework
Truffle [29, 65, 68] is a language implementation framework for exe-
cuting guest languages on a Java virtual machine. A guest language
is integrated by implementing an AST interpreter [69] using the
Truffle API. Additionally, Truffle supports interoperability between
different guest languages.

When executing on GraalVM, the AST is partially evaluated us-
ing profiling information gathered at run time [67]. The GraalVM

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

Compiler furthermore uses this information to optimize the gen-
erated machine code towards peak performance. Currently, there
are a number of implementations of dynamic languages such as
JavaScript [51], Ruby [54] or Python [52], but also LLVM-based
languages such as C/C++ [60] are supported.

2.2.1 Truffle Object Storage Model. The Truffle object storage
model (OSM) [66] is a generic, language-agnostic model that can be
utilized to handle object storage for a variety of Truffle languages.
As it was built with dynamic languages inmind, dynamically adding
and removing properties from an object is an optimized feature
of the OSM. It has built-in support for optimizations such as type
specialization and polymorphic inline caches.

In the OSM, objects are equipped with immutable shapes, that
describe their current memory layout and specify how individual
properties can be accessed. Whenever an object modification would
require altering the shape, the object is instead assigned a new shape
and its memory layout is transformed. By caching these shapes
at object accesses within the AST, the compiler can subsequently
optimize property accesses by utilizing the known constant off-
sets. Each shape and its transition history—the property additions
and removals that resulted in this shape—form a unique combi-
nation. Specifically in JavaScript, these shapes and the available
optimizations are comparable to V8’s hidden classes [3].

2.3 GraalVM JavaScript
GraalVM JavaScript [51] is a high-performance, ECMAScript [23]
compliant JavaScript implementation, built using the Truffle frame-
work. As with other Truffle languages, GraalVM JavaScript also
supports language interoperability. Furthermore, a custom Node.js
backend [55] enables execution of Node-based applications using
the Truffle Framework.

2.3.1 JavaScript Object Layout. GraalVM JavaScript [51] builds
its object representation on top of the Truffle OSM (Section 2.2.1),
where objects have dedicated constant shapes that may be switched
at run time. In addition to information about the properties them-
selves, each shape also references a type descriptor, the so-called
object type, which can be arbitrarily defined by the language im-
plementation. In GraalVM JavaScript, this type descriptor is used
to define the behavior of the corresponding object, i.e., to regulate
accesses to the underlying object storage. This concept is used,
for example, to differentiate between regular objects, functions,
promises, and JavaScript proxies, whose property accesses may
trigger underlying function calls.

const nums = []
for (let i = 1; i <= 50; i++)
 nums.push(i * 10)

nums[2] = { a: 100, b: 300 }

10 20 30 ���
0 1 2

500
49

int[]
nums

���
0 1 2 49

Object[]

10 20 100 ���
Integer
500

Object
300

nums

Figure 2: Exemplary array transition in GraalVM JavaScript

2.3.2 JavaScript Array Semantics. Arrays are not part of the Truffle
OSM, thus GraalVM JavaScript defines its own schema to model
the semantics of JavaScript arrays [23].

In JavaScript, arrays do not always constitute linear memory
regions but can also have holes in between or they may not start
at index 0. Moreover, they can be used to store elements of arbi-
trary user types, hence data may be highly polymorphic. Arrays in
GraalVM JavaScript are also equipped with a type descriptor—the
array strategy—, in this case representing the different array layouts.
Upon modification, the array strategy therefore has to verify that
the corresponding operation does not violate the current layout.
Otherwise, a transition to a new strategy that allows the operation
is initiated, potentially coupled with a transformation of the array
storage to fit this new layout.

Fig. 2 showcases one such transformation, where a primitive
integer array is transformed into an array of objects as soon as an
object is inserted. This requires a transformation of all primitive
integers to boxed values.

3 STORAGE TRANSFORMATION IN
JAVASCRIPT

As a proof-of-concept, we previously created a run-time data anal-
ysis and storage transformation framework for the Truffle research
language SimpleLanguage [40, 45]. However, for JavaScript—a lan-
guagewith a complex type system and intricate runtime semantics—
a more sophisticated approach is required. Our goal is not to change
the existing array implementation but rather to define a new strat-
egy (cf. Section 2.3.2) that arrays can transition to at run time.
Such a new strategy has to support the traditional ECMAScript
semantics [23] and should add no overhead to arrays that are not
in columnar format.

3.1 Array State Changes
As shown in Section 2.3.2, GraalVM JavaScript uses a complex
model to represent JavaScript arrays and abide by the standard.
When performing storage transformation on such arrays, we simi-
larly have to ensure compliance and respect all allowed operations
on arrays. Furthermore, transforming the array contents into a
columnar format is an expensive process and must only happen, if
we can be reasonably sure that the new structure yields benefits
during further execution of the program. We achieved all that by
introducing our own array strategy into the language. This strategy
intercepts all accesses to the respective array and employs coun-
ters to automatically identify large and frequently read arrays. As
accumulating such metrics causes overhead upon each array ac-
cess, we developed a 4-state approach for how to migrate arrays
to this strategy. This approach allows us to gradually introduce
more tracking mechanisms as the array becomes more suitable for
storage transformation.

Fig. 3 shows the different states an array has to traverse in order
to be eligible for storage transformation:

1 As soon as an element is added to an empty array, the strat-
egy is set according to the element type. We focus on arrays of
objects, hence we only consider arrays with the built-in strategy
JSObjectArray (and no primitive arrays). This process is still part

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

JSObjectArray TrackingArray ColumnarArray

...
N

1EmptyArray

Insert object

change object type enable tracking
2 3

transform array storage

Writing elements Reading elements

...
M

Figure 3: The different strategies that an array has to acquire to be considered a viable candidate for transformation

of the built-in GraalVM JavaScript array transitions. The JSObject-
Array strategy also already signals that the array, i) only contains
objects (no mixtures of primitive values and objects), ii) starts at
0 and iii) is strictly contiguous, i.e., it does not contain any holes.
However, at this point the array may still contain objects of any
shape. Also note that only the references to the array elements are
stored in contiguous memory, while the objects themselves are still
scattered all over the heap.

2 As new items get added to the array, we check whether the
array size exceeds a configurable threshold () 1). At that point, we
trigger a transition to our custom TrackingArray array strategy.
Transitioning to the TrackingArray strategy does not change the
array layout, but only enables more sophisticated tracking: We
count read accesses to the array and automatically change the strat-
egy again whenever an invalid access occurs (e.g., removing an
element from the array). Typically, the tracking and the correspond-
ing array transitions happen during interpretation and thus do not
affect partial evaluation and compilation.

3 Finally, if the read count exceeds another configurable thresh-
old ()2), a transition to the ColumnarArray strategy is triggered
and the array layout is transformed.

In the current implementation, threshold) 1 is by default set to
50000 and threshold)2 to 25000. Based on our experience, these
numbers strike a balance between a moderate minimum array size
and still allowing for the optimizations to significantly speed up
processing due to a certain number of expected accesses.

3.2 Array Transformation
The transformation of an array is split into two parts: First, we verify
the actual array contents to make sure that they indeed fit into a
columnar layout. Then, we allocate the resulting data structure and
copy the data. This part constitutes most of the overall overhead.
Fig. 4 shows the memory layout of an array before and after the
transformation. The top part of the figure displays the initial layout,
akin to the one presented in the example in Fig. 1. In the following
sections, details about the transformation process that results in
the components and memory layout depicted in the bottom part of
Fig. 4 are presented.

Array Verification. As JavaScript is a dynamic language, we can-
not statically check whether the array holds only values of a single
type. Instead, we have to check that all objects in the array share
the same shape (cf. Section 2.2.1).

In the same sense, we check every object property for compliance
and prevent transformation if they are incompatible (e.g., ECM-
Script [23] accessor properties or non-writable properties are not
supported). If the verification fails, the process is interrupted and
the array is not transformed.

Object Transformation. To achieve a true columnar layout, we al-
locate property arrays of the corresponding types for each property
of the elements’ shape and copy over the data. The bottom part of
Fig. 4 depicts the resulting memory layout, with, e.g., the bonus val-
ues of all objects stored in one array. At the same time, the original
properties in the objects are deleted to save memory. As a conse-
quence, one problem arises: To read a property value of a particular
object, typically the object reference and the property key are re-
quired. However, due to the transformation, a property access must
now read the data from the given position in the corresponding
property array and not from the object itself (see propertyArrays
in Fig. 4). This means that we require additional information for
property accesses, i.e., the array instance in which the property
arrays are stored and the index in these arrays. Therefore, upon
transformation we store those two pieces of information—the tu-
ple representing the array location—as new properties arrRef and
arrIdx in the object. In the example in Fig. 4, arrRef references
emps and arrIdx contains the object’s index in the array. For prop-
erty accesses, this information is subsequently queried and allows
access to the real data.

The type descriptor (see Section 2.3.1) of the objects in the array
is changed to a custom proxy type, to reroute object accesses to
the transformed storage. Additionally, we set a flag in the array
to signal the layout change and to speed up status checks. In liter-
ature, objects that refer to columnar data structures are typically
called proxy objects [47, 56], hence we also use this terminology
throughout the rest of the paper. Note that these proxy objects are
not to be confused with ECMAScript proxy objects [23].

3.3 Proxy-Based Object Access
To create the connection from a proxy object to the array, the
two properties arrayRef and arrayIdx are installed in the proxy
objects, as seen in Fig. 4. Hence, when a property of a proxy object is
accessed, arrayRef is used to identify the transformed array and to
access its property arrays. Subsequently, arrayIdx is used to access
the property arrays at the correct position. During compilation,
we apply various optimizations to improve the property access
performance. These optimizations are further discussed in Section 4.

Multiple Arrays. When a proxy object is contained in multiple
transformed arrays, it needs to track all the array locations it is
part of (i.e., all array-position tuples). Therefore, we introduce an
additional property in each proxy that is part of multiple arrays, that
stores a set of all array-index tuples. Property read operations can be
performed from any of these array locations, but write operations
on proxies have to be performed on each columnar array that the
object is part of to keep all the individual property arrays in sync.

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

emps

0
emps

1
emps

2
���
���

arrRef
arrIdx

emps

bonus

sal

totalRev

200

3000

50k

0

2600

40k

400

3700

80k

���

���

���

0 1 2 ���arrayStorage:

new proxy
properties

propertyArrays:

emps
0 1 2 ���arrayStorage:

objects
200
3000
50k

0
2600
40k

400
3700
80k

���
���
���

bonus
sal

totalRev

transform

emp0

removed properties

emp1 emp2

emp0 emp1 emp2

proxy objects

Figure 4: Storage transformation and resulting proxies

3.4 Array Restoration
Transformed arrays still have to exhibit the same semantics as com-
mon arrays. Therefore, whenever an operation occurs that is not
supported by the columnar array strategy, we have to ensure that
the original array is restored first. Unsupported operations include
changes to an object shape—e.g., adding, removing, or changing
the type of properties—and inserting new objects with a different
shape into the array. To restore an array, we revert the columnar
storage by recreating the original properties with the correct data
from the property arrays. Subsequently, we restore all objects’ type
descriptors and change the array strategy (see Section 3.1).

4 PERFORMANCE OPTIMIZATION
As the integration of our approach represents a significant intru-
sion into the language implementation, it inherently also comes
at a cost in terms of run-time performance. Fig. 5 depicts the con-
trast between a field access in GraalVM JavaScript without storage
transformation (a) and reading the value from a property array via
a transformed proxy object, as well as the optimizations that we
apply: As shown in (b), to read data from a proxy object, we first
have to retrieve its array location—i.e., the tuple of array reference
($arr) and the position in the property arrays ($i). With this infor-
mation, we can then load the fitting property array via the array
reference and finally the actual value from the determined position
in the property array.

By utilizing the GraalVM Compiler infrastructure, we can apply
specific optimizations to the components that we introduce, to
produce highly-optimized machine code and to compensate for the
overhead. Some of these optimizations are depicted in Fig. 5 (c) to
(f) and are described in detail in the following sections.

4.1 Access Intrinsics
By transforming the array storage and redirecting all accesses to
object properties to the matching property arrays, we introduce a
number of new memory accesses, which inherently slow down the
performance of individual accesses.

The compiler adds a number of checks to ensure that memory ac-
cesses are valid (omitted from Fig. 5 (b) due to brevity). This includes
boundary checks at array accesses, null checks when accessing ob-
jects, and contextually redundant type checks. By exploiting our
knowledge about the created data structures, we can safely remove
most of those checks during compilation by using custom compiler
intrinsics that result in fast, unchecked accesses, safeguarded by
the constraints of our data structure.

4.2 Marking Array Accesses
To perform optimizations at compile time, we have to detect ac-
cesses to columnar arrays and proxies in the IR. For each proxy,
we also have to know both the array and the position where it
was loaded from. Therefore, we mark each location where a proxy
is loaded from a columnar array (<mark>(e, emps, i)). This is
illustrated in Fig. 5 (c).

4.3 Single-State-Compilation
While optimizing individual accesses results in localized benefits,
one goal of our approach is to enable additional compiler optimiza-
tions due to the new data layout. Upon compilation, we therefore
want to ensure that only one state of an array (i.e., unmodified or
transformed) is compiled. By focusing on just one of these variants,
we can apply much more sophisticated optimizations on the indi-
vidual accesses at the cost of possible deoptimization if the array is
observed to be in a different state.

Fig. 5 (d) shows an example of such an optimization: The check
if (emps._isTransformed) is replaced with a guard on the same
condition, which would switch execution back from compiled code
to interpretation if the guard fails. If the guard succeeds, we can
perform additional optimizations on checks that are transitively
true on transformed arrays. In the example, we can eliminate the
check if (e._isProxy), because we know that a transformed array
contains only proxy objects.

4.4 Array Location Access Optimization
As stated above, after transformation, access to a property value
must be rerouted to load the value from the respective property
array. Without optimization, this process negatively impacts per-
formance, as we effectively trade loading the array element and
accessing the property for loading the array location tuple, loading
the property array, and eventually loading the value.

While we cannot get rid of this overhead during interpretation,
we can make use of the GraalVM Compiler to improve the situation:
At compile time, the TruffleAST is partially evaluated, a process that
optimizes the code but also inlines most of the nested method calls
to enable subsequent optimizations [67]. In many cases, the result
of this is that whole loops—such as depicted in the initial example
(Listing 1)—end up in the same compilation unit, hence in a single
Graal IR graph. For our approach this means that very often both
loading of the array element (const e = emps[i]) and subsequently

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

let totalSal = 0
for (let i = 0; i < emps.length; i++) {
 const e = emps[i]
 totalSal += e.sal
}

let totalSal = 0
for (let i = 0; i < emps.length; i++) {
 const e = emps[i]
 if (e._isProxy) {
 $arr = e.arrRef
 $i = e.arrIdx
 $sals = $arr._propertyArrays[/*sal*/]
 totalSal += $sals[$i]
 } /* otherwise regular object access */
}

(a) original (b) after transformation

(f) loop-invariant code motion(d) replacing array check with guard

let totalSal = 0

guard emps._isTransformed
$sals = emps._propertyArrays[/*sal*/]

for (let i = 0; i < emps.length; i++) {
 totalSal += $sals[i]
}

let totalSal = 0
for (let i = 0; i < emps.length; i++) {
 const e = emps[i]
 if (emps._isTransformed)
 <mark>(e, emps, i)
 if (e._isProxy) {
 $arr = e.arrRef
 $i = e.arrIdx
 $sals = $arr._propertyArrays[/*sal*/]
 totalSal += $sals[$i]
 } /* otherwise regular object access */
}

(c) marking array/proxy accesses

let totalSal = 0
for (let i = 0; i < emps.length; i++) {
 const e = emps[i]
 guard emps._isTransformed
 if (emps._isTransformed)
 <mark>(e, emps, i)
 if (e._isProxy) {
 $arr = e.arrRef
 $i = e.arrIdx
 $sals = $arr._propertyArrays[/*sal*/]
 totalSal += $sals[$i]
 }
}

(e) connect marked accesses

let totalSal = 0
for (let i = 0; i < emps.length; i++) {
 const e = emps[i]
 guard emps._isTransformed
 <mark>(e, emps, i)
 $arr = e.arrRef
 $i = e.arrIdx
 $sals = emps._propertyArrays[/*sal*/]
 totalSal += $sals[i]
}

Figure 5: (Compile-time) Optimizations on property accesses (high-level representation)

accessing a property of the corresponding proxy object (e.sal)
appear in the same IR graph.

We can detect such accesses at compile time using the markings
described in Section 4.2. In a custom compiler phase, we detect
array element accesses (<mark>(e, emps, i)) followed by proxy
accesses (e.arrRef, e.arrIdx) as depicted in Fig. 5 (d). For such
patterns, we can skip loading the arrRef and the arrIdx by directly
utilizing the marked values at the element access, i.e., using emps
and i instead of e.arrRef and e.arrIdx.

Going back to the memory layout of a transformed array in
Fig. 4, the marked proxy, array and index match the arrRef and
arrIdx values stored in the proxy. Hence, rerouting those values
results in the same program semantics but skips the additional
property accesses, as depicted in Fig. 5 (e). After this optimization,
loading property values is effectively independent of loading the
proxy object, as accessing the property arrays is decoupled from
accessing the proxy object. Naturally, we have to ensure that no
memory violation (e.g., a method call that may result in an array
restoration) occurs between the marked access and the arrRef and
arrIdx usages before applying this optimization.

4.5 Preserving Cache Locality
Objects may be part of multiple arrays. In this case, the transformed
proxy objects must hold a set of array references and array indices
to indicate the positions of the properties in the different property
arrays. This is required to propagate property writes to all affected
columnar arrays (cf. Section 5.3).

As shown in Section 4.4, we have to access the arrRef and
arrIdx properties to access the real data of a proxy. However, from
the perspective of the proxy, we cannot say which array location is
the “right” one, i.e., the array and index this proxy was originally
loaded from (const e = emps[i]). As each array contains exactly
the same data for this proxy in the property arrays, we can, in
fact, pick an arbitrary array location. While this is semantically
correct, picking the “wrong” one may have a severe impact on the
performance: If a proxy is loaded in a loop, choosing different array
locations may result in accesses to different property arrays per
iteration, essentially voiding all the benefits of the columnar layout.

Fortunately, the compiler optimization described in Section 4.4
already takes care of this problem: By always replacing the marked
proxy property accesses with the marked arrays and indices, we
ensure that we always access the same property arrays in each loop
iteration. Thus, we can preserve cache locality in compiled code.

4.6 Follow-up Optimizations
The optimizations described above not only reduce the overhead
of property accesses but also enable optimization of the loop itself.
As shown in Fig. 5 (f), the guard as well as loading the property
array are now loop-invariant operations, hence existing compiler
optimizations such as loop-invariant code motion [4] can move those
instructions before the loop. Therefore, only the property array
access remains within the loop.

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

5 CURRENT LIMITATIONS
Like all runtime-only optimizations based on heuristics, our tech-
nique might not always result in better performance. In this section,
we summarize the main aspects that may limit its effectiveness in
JavaScript applications.

5.1 Array Writing after Transformation
Inserting an object into a columnar array requires deconstruction
of the object into the individual properties and # individual array
writes for # properties. Additionally, the object has to be trans-
formed into a proxy. Therefore, write operations to columnar arrays
can cause significant slowdowns.

While write-intensive workloads are not a target of our approach,
we nevertheless have to handle insertions in columnar arrays. As
our focus was on optimizing read-intensive workloads, we decided
to perform a restoration of the original array in case of a write
access to the array. While this causes some overhead due to the
restoration process, we can limit the overhead of the actual write
operation, as the object no longer has to be deconstructed. Also,
consecutive writes no longer suffer from this performance penalty.

5.2 Modification of Transformed Objects
While we allow modifications to transformed objects, we have
to ensure that those modifications abide by the shared shape’s
constraints. Therefore, if a modification threatens to violate this
contract, we force a restoration of the whole array. One problematic
aspect of this is storing primitive numbers: In Truffle, those types
are mapped to Java primitives, i.e., separate types for various integer
ranges and floating-point numbers. Due to JavaScript’s numeric
type encompassing both integer and floating-point numbers, a
restoration may also happen if we assign to a numeric property,
previously assumed to be integer, a floating-point value.

5.3 Objects in Multiple Arrays
When a proxy object is part of multiple columnar arrays, all arrays
have to contain the object’s property data in their property arrays.
Therefore, if the object is modified, the changes have to be mirrored
in all arrays that contain the object. We specifically check whether
an object is part of only a single array and introduce optimizations
for this case. However, if a proxy is contained in # columnar arrays,
modifying the object requires # writes to the different property
arrays, or—in the worst case—a restoration of all # arrays if the
modification is not supported by the columnar layout.

5.4 Contiguous Array Requirement
As mentioned before, we rely on an existing array strategy to signal
that an array is eligible for storage transformation. However, this
dependency also means that we currently do not support storage
transformation of non-contiguous arrays (arrays with holes) or non-
zero-based arrays.

5.5 GC Problems Due to Proxies
While the link of proxy objects to their corresponding arrays is nec-
essary to access the corresponding data, it also may cause increased
memory consumption: If an array is no longer referenced from

the user code, array references within a proxy may keep it alive
with respect to garbage collection. Fundamentally, a transformed
array can only ever be collected when none of its proxy objects are
referenced from outside the array.

6 EVALUATION
Our approach is primarily designed to speed up frequently exe-
cuted queries on large arrays. Over time, the optimizations should
amortize the initial tracking and transformation overhead. Unfortu-
nately, typical JavaScript benchmarks rarely contain such use cases.
Rather, most data-intensive benchmarks use database languages
such as SQL. Hence, we evaluated the performance of our approach
both with custom microbenchmarks to analyze specific scenarios
and with a custom JavaScript port of the TPC-H Decision Sup-
port Benchmark [14] to measure the impact on business-oriented
queries. Additionally, we evaluated the impact of the transforma-
tion process itself. To ensure compliance with the standard, we
tested our implementations by utilizing the V8 and ECMAScript
test suites [24]. Combined, these suites consist of around 51000 test
cases of which around 2000 attempted a storage transformation,
with around 500 succeeding. The array verification prevented trans-
formation of the other arrays. All benchmarks were executed on a
dual-socket Intel(R) Xeon(R) CPU E5-2690 @ 8x2.90GHz with 32
logical cores and 192G available RAM. Our approach is based on
GraalVM EE version 22.2.

6.1 Query Microbenchmarks
We designed a number of JavaScript microbenchmarks 1 to test the
capabilities of our approach in various scenarios. Most microbench-
marks implement a specific query that operates on a large (array)
dataset with a predefined workload size, notably filter operations
(collecting all objects of an array that satisfy a certain filter cri-
terion), aggregation operations (aggregating certain properties of
the objects in the array) and property writing operations (updating
certain properties of all objects in the array).

We executed all microbenchmarks with different workload sizes
(i.e., different array lengths) and varying numbers of iterations
(i.e., how often the array was processed in that way). We ensure
appropriate warmup for 180 seconds for each benchmark. Fig. 6
shows the results of this evaluation. As the numbers show, our
approach is not suitable for smaller workloads or for workloads
with only few iterations. This is due to the initial transformation
overhead, which in some cases requires significantly more time
than the actual operations in the loop (see Section 6.4).

As workload sizes and iterations increase, however, we see that
the performance of some benchmarks improves significantly, with
aggregate and writeProperty reaching speedups of over 7G and
5G , respectively. The combinedOps benchmark benefits the most
with a speedup of around 9x on the largest workload size. While
other benchmarks such as filter and the salaries example from
before are boosted as well, others—particularly those that use com-
plex properties for filtering (filterByDate, filterByString)—are
not or negatively impacted.

1The source code is available at: https://github.com/lmakor-jku/data-intensive-js-
benchmarks

https://github.com/lmakor-jku/data-intensive-js-benchmarks
https://github.com/lmakor-jku/data-intensive-js-benchmarks

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

0.0

0.4

0.8

1.2

1.6

2.0

10
0

00
0

ite
m

s
re

l.
sp

ee
du

p

100 iterations 500 iterations 1000 iterations

0.0

2.0

4.0

6.0

8.0

10.0

1
00

0
00

0
ite

m
s

re
l.

sp
ee

du
p

aggregate
filterByDate

filter
filterByString

writeProperty
combinedOps

salaries

Figure 6: Microbenchmark throughput of our approach relative to baseline without storage transformation (higher is be�er)

The evaluation furthermore emphasizes that the ideal targets
for our approach are large arrays: As depicted in the charts, even
with 1000 iterations the overhead on the smaller workload is too
impactful and prevents performance improvements on most bench-
marks. With large workloads, however, even with fewer numbers
of iterations we can already see speedups, as the columnar lay-
out causes performance benefits in each loop iteration; only the
filter-based benchmarks show regressions. By analyzing the emit-
ted IR at various stages, we observed that filtering does not reach
the same levels of improvement as the other operations, as the
writing process (i.e., filling the resulting array) is more costly than
reading and checking the actual property values. Similarly, date
and string properties require additional property accesses on the
resulting objects (e.g., reading the actual bytes of a string, access-
ing the timestamp value), hence our current approach for storage
transformation cannot significantly improve such operations.

To summarize, we see that transforming an array into a colum-
nar layout can indeed improve performance on bulk-processing
operations over time. On the other hand, our approach suffers from
the transformation overhead and is less suitable if the targeted
loops exhibit more complex operational patterns.

6.2 Lodash Microbenchmarks
Lodash [16] is a real-world JavaScript library providing higher-order
utility functions for processing arrays and objects. At the time of
writing, the Lodash npm package 2 has more than 40 million weekly
downloads. Hence, it seems reasonable to evaluate our approach

2https://www.npmjs.com/package/lodash

using Lodash as an example for a library used in production to
show the applicability of storage transformation. We used Lodash
version 4.17.21.

In the following, we present the results for 4 different workloads,
based on the already presented microbenchmarks, but this time
implemented using Lodash instead of vanilla JavaScript. In each
benchmark, we create an array with 1 million elements and we
repeat the Lodash function 500 times on the whole array. For a
benchmark execution, 10 warm-up iterations followed by 10 mea-
sured iterations were performed. In the following sections, only the
call of the respective Lodash function is listed.

Filter. To implement the filter microbenchmark, we used Lo-
dash’s filter function. The filter function allows passing an
array and a predicate, i.e., a function that returns a boolean value
for a given input. It returns a new array containing all elements for
which the predicate returns true.

_.filter(arr , function(o) {

return o.a == 1

})

Aggregate. To implement the aggregate microbenchmark, we
used Lodash’s reduce function. The reduce function takes the
array to be processed, an accumulation function, and an initial value.
The accumulation function takes the accumulator and the current
array element and returns a new accumulator that is subsequently
used in the next iteration. For the first iteration, the given initial
value is used as the accumulator. The result of the function is the

https://www.npmjs.com/package/lodash

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

last computed accumulator. Hence, we use the reduce function to
accumulate the properties e of all array elements.

_.reduce(arr , function(sum , o) {

return sum + o.e

}, 0)

WriteProperty. To implement thewritePropertymicrobenchmark,
we used Lodash’s forEach function. ForEach takes the array to be
processed and a function, which is called for each array element.

_.forEach(arr , function(o) {

o.salary = o.salary + o.age * 10

})

Salaries. To implement the salary calculation microbenchmark,
we used Lodash’s reduce function, as it allows us to accumulate the
total of the salaries and to update the bonus and salary properties.

_.reduce(arr , function(totalSalary , o) {

o.bonus = Math.floor(o.totalRevenue * 0.02)

o.salary = o.salary + o.bonus

return totalSalary + o.salary

}, 0.0)

aggregate filter writeProperty salaries

1.0

1.5

2.0

2.5

3.0

re
l.

sp
ee

du
p

baseline
columnar

Figure 7: Lodash query time of our approach relative to
baseline without storage transformation (higher is be�er)

The results of these Lodash-based microbenchmarks are depicted
in Fig. 7. The numbers show that for most workloads the trans-
formed version is faster than the baseline without our optimization.
In the salaries benchmark, the compiler cannot remove all checks
related to the reduce operation, hence the accesses do not become
loop invariant. This results in moderate performance numbers.
While the aggregate microbenchmark shows the biggest speedup
of more than 2.5x on average, also the filter and write workloads
are sped up by around 1.5x.

6.3 TPC-H
As TPC-H benchmarks are typically based on SQL, we used custom
JavaScript ports to make them executable on the GraalVM Java-
Script Node.js engine, while making sure that all queries are defined
in native JavaScript without use of external libraries. We decided
on 5 queries that mostly use array operations without subselects
or more complex SQL operations, namely 1, 6, 12, 14, 19. We used
the standardized TPC-H dataset generator with scale factor 1 to

q1 q6 q12 q14 q19

0.8

1.0

1.2

1.4

1.6

1.8

2.0

re
l.

sp
ee

du
p

baseline
columnar

Figure 8: TPC-H query time on our approach relative to
baseline without storage transformation (higher is be�er)

generate approximately 1GB of data and used a custom wrapper
to load the resulting data and to execute the query. We took 20
measurements for each query andwithin eachmeasurement applied
the query 500 times on the data set.

Fig. 8 depicts the relative speedups on each of those queries. Par-
ticularly the performance of query 6 and query 19 improved, with
the former achieving speedups of around 30% and the latter of more
than 80%. The performance of query 12 is similar to the baseline,
while query 1 and 14 are negatively impacted, with slowdowns of
around 10% and 20%, respectively. We explain these differing re-
sults with the nature of the queries: Queries 6 and 19mostly feature
iteration over the individual tables and eventual grouping, while
queries 1 and 14 use grouping and sorting operations or a complex
aggregation in combination with date functions, respectively.

6.4 Transformation Impact

Table 1: Transformation overhead

Iterations Total Query Transf. Transf.
(#) (ms) (ms) (ms) (%)

Aggregate
1 1647 512 1135 68.9

100 1922 955 967 50.3
1000 2487 1444 1043 41.9

Filter
1 1927 886 1041 54.0

100 4827 3804 1023 21.2
1000 25 145 24 042 1103 4.4

WriteProperty
1 2385 1342 1043 43.7

100 3632 2638 994 27.4
1000 10 088 8995 1093 10.8

Salaries
1 1838 655 1183 64.3

100 2536 1321 1215 47.9
1000 3538 2430 1108 31.3

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

While the transformation overhead is an issue, it is necessary for
our approach and—as the previous figures showed—can be amor-
tized by the speedups achieved through compiler optimizations.
To better estimate the overall impact, however, we also evaluated
this transformation overhead. Our setup for these benchmarks is
as follows:

We create a randomized array of 1 million objects (with equal
shapes to make them viable for transformation) and loop over this
array while performing a particular operation (aggregation, filter-
ing, etc.) on each element. Depending on the benchmark configura-
tion, we execute the same operation on the whole array repeatedly
(1, 100, 1000 repetitions). We measure the total time (i.e., overall
time for all repetitions of a query) as well as the time required to
perform the transformation.

Table 1 contains the results of this evaluation. If the benchmark is
only executed with one iteration, the overhead in the queries takes
up from 45% to around 70% of the total time. But the results show
that this overhead does not scale with the number of iterations,
such that with 1000 iterations it only takes up from 4% to 40% of
the total time. As the transformation overhead is independent of
the number of iterations, its share of the overall time decreases the
more iterations are performed.

Overall, the results show that our approach is mostly beneficial
for workloads that are bulk-processed a number of times, such that
the performance improvements in repeated iterations can amortize
the overhead over time.

7 RELATEDWORK
7.1 Columnar Arrays
Mattis et al. [47] implemented a custom library that provides colum-
nar data structures. They use proxy objects to represent the objects
in an array and reroute property accesses to property arrays. The JIT
compiler of the PyPy runtime subsequently applies optimizations
to speed up accesses.

While they offer an API for programmers to enable a columnar
storage layout, we automatically transform suitable arrays of ob-
jects at run time. While their API enables more explicit selection of
the arrays that should be columnar, it also shifts the responsibility
to the programmer. With our approach, the developer does not
have to make estimates about the operations that will be performed
on an array or about the intricacies of the data that it may hold.

In contrast to our approach, they lazily create proxies upon
read access, to potentially remove them via escape analysis during
compilation. However, this also prevents them from preserving
object identity in proxies. As we always transform the contained
objects into proxies, we cannot remove their allocation or accesses
during compilation, but preserve referential identity. Nevertheless,
as discussed in Section 4.6, we can move accesses out of loops.

In a similar work, Pivarski et al. [56] augment an analysis frame-
work used in the field of high energy physics to efficiently use
columnar arrays. Their datastore already supports a columnar lay-
out, but as their queries are typically implemented in C++ using
complex nested loops, the framework forces a materialization of
the corresponding objects beforehand. They perform code trans-
formation at AST level to replace object accesses with accesses
to the columnar storage to improve performance and to prevent

allocations. In contrast to both Mattis et al. [47] and our approach,
they perform this transformation statically, without the use of a
JIT compiler. Additionally, as their data is already in a columnar
layout, they do not require additional run-time transformations to
optimize accesses or queries.

7.2 Memory Layout Optimizations
Researchers have further shown a variety of other techniques to
improve the memory layout of objects and data structures. These
include object splitting that separates fields based on access fre-
quency [26], allocation pools to partition heap objects based on
profiling information and temporal relationships to improve data
locality [10, 43], as well as implementations and theoretical models
of struct of array layouts (columnar arrays) in areas such as high
performance computing (HPC) [25, 32]. Due to our integration into
GraalVM, we do not have a similar level of control over the mem-
ory management. In contrast to some of these works, our approach
should apply optimizations without interference by the developer.
Hence, it neither requires explicit specification of the desired mem-
ory layouts nor does it leave the choice of a fitting memory layout
for particular data up to the developer.

7.3 Self-Managed Collections
Nagel et al. [49] implemented a C# API for self-managed collections
(SMCs), which place their content in off-heap memory regions to
circumvent garbage collection and to improve the data layout. In
such collections, individual data blocks contain all objects of the
same type. Each slot within a data block may contain an object
and also tracks the current slot state, i.e., whether it contains an
object and whether the contained object is used or can be reclaimed.
Accesses are regulated via a global indirection table, where object
references point to an entry in the indirection table, which in turn
points to the slot containing the actual object data.

The off-heap memory model allows them to utilize fast, unsafe
operations on low-level pointers to facilitate speedups. Modifica-
tions to the JIT compiler allow optimization of the indirect accesses.
Additionally, SMCs are thread-safe and use compaction to reduce
memory consumption.

Their approach requires the use of dedicated collection data
structures while we try to optimize plain arrays. Their approach
is designed to improve performance of LINQ queries, hence a spe-
cific collection API makes sense. In JavaScript (and other dynamic
languages), however, such query APIs are far less widespread and—
more importantly—not natively part of the language, thus we aim
at optimizing data structures for more abstract query patterns, i.e.,
loop structures.

As JavaScript is increasingly used for data visualization and
analysis, libraries and frameworks with JavaScript bindings such
as Apache Arrow [5] and RAPIDS [58] are gaining popularity. They
offer a columnar storage format for dynamic languages but provide
no means of automatically transforming arrays into this format.

7.4 Storage Strategies for Collections
Storage strategies are also available in other runtimes and languages,
such as described by Bolz, Diekmann, and Tratt [7]. They integrated
this concept for Python collections into the PyPy runtime. Based on

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

the assumption that even in dynamic languages homogeneous col-
lections of elements appear frequently, this allows them to adapt the
storage strategies on-demand, depending on the inserted elements.
Thus, they can reduce boxing overhead on primitive collections,
bypass type checks, and speed up certain operations based on the
type information.

Their storage strategies appear to be somewhat similar to the
array storage strategies already available in GraalVM JavaScript,
with specific focus on efficiently modeling primitive arrays. We
extended these strategies for arrays of objects, for a more complex
but also more restricted transformation with significant gains for
certain workloads. Whereas they target multiple collection types
within the language, our approach is currently restricted to arrays.

7.5 Query Optimization
In literature, there are many works on query optimization in pro-
gramming languages:

Zhang et al. [71] optimize JavaScript loop structures via both
offline and online analysis: First, they generate a number of query
plans (i.e., variants of a loop pattern) and measure their perfor-
mances. At run time, they then try the different plans on actual
input data chunks and identify the best plan based on the execution
time. Over time, their system can dynamically adapt this plan based
on new performance observations. For loops, plan changes man-
ifest themselves in loop body rewrites to reorder conditions and
utilize SIMD operations. They integrated this system into the Truf-
fle framework, where each query plan at run time is represented
by a different AST, which is then compiled to machine code by the
GraalVM Compiler.

Babelfish by Grulich, Zeuch, and Markl [30] goes in a similar
direction. They also provide their own Truffle extension to enable
optimization of polyglot user-defined functions (UDFs). They unify
the representation of both the queries and their embedded UDFs
and use custom Graal IR to access the data set and mimic query
operations. Subsequently, the query is compiled to native machine
code. By leveraging Truffle’s partial evaluator, they can specialize
operations and inline the nested queries to prevent the call overhead
and enable follow-up optimizations such as scalar replacement and
loop optimizations.

Schiavio, Bonetta and Binder [61] use Truffle and GraalVM for
a polyglot query API. They consume SQL strings, optimize them
with an external query planner and subsequently generate new
AST nodes. Furthermore, their queries allow accesses to both in-
language collections as well as to external data structures, by defin-
ing specific providers.

In contrast to our work, the above-mentioned approaches focus
on optimizing individual queries without specifically transforming
or modifying the underlying data structure. While we argue that
optimization of individual queries may also benefit a data structure
that is already in columnar layout, the goal of our work is to show-
case the transformation of an array at run time and subsequently
optimize accesses to the array. The latter enables query optimiza-
tion in the compiler but to a lesser degree than the approaches listed
above. Hence, it may be part of a future extension to specifically
investigate query optimizations with columnar storages in mind.

7.6 Run-Time Data Structure Selection
There is also work on other dynamically adapting data structures,
e.g., describing a high-level API to encode potential storage trans-
formations [17] or automated indexing and transformation within
a dedicated API based on observed query behavior [38]. In contrast
to our work, however, those approaches typically require changes
to the underlying program to explicitly choose the given APIs or
explicitly define expected data structure transitions.

8 FUTUREWORK
Future extensions to our approach aim at i) investigating transfor-
mation potential of reference type properties (e.g., dates, strings),
ii) preventing compilation-deoptimization cycles and iii) polyglot
support for other Truffle languages.

8.1 Meta-Circular Storage Transformation
Arrays of objects with reference type properties often do not benefit
from our approach. The emerging problem is best illustrated via
an example: Assuming that a transformable array contains objects
with Date type properties. Date objects typically store the actual
timestamp in primitive properties, hence, using the date for a com-
parison requires accessing this property. If this access occurs for a
columnar array in a loop, our optimizations can only replace the
loading of the object holding the date property with an access to a
property array (holding all the date references), but the access to
the actual Date object containing the timestamp remains.

In the example, we could transform the property array containing
all date objects, which would allow us to simplify the loop body
to one access to a new property array containing the timestamp.
Hence, we could skip loading the original proxy object and loading
the date object.

8.2 Compile-Time Query Duplication
Due to the restrictions mentioned in Section 4.3, somemethods may
not reach a “stable” state: If a method is alternatingly called with a
transformed and a not-(yet-)transformed array, we repeatedly have
to deoptimize the already compiled method and start compilation
anew. To solve that problem, we can duplicate loops that contain
both, the fast path handling the columnar array and the slow path
handling the original array representation, introducing a branch-
ing instruction prior to the duplicated loops and optimizing them
respectively. Naturally, one aspect of such a compiler optimization
is the increase in code size, so additional heuristics will have to be
used in order to decide, what and when to duplicate.

8.3 Polyglot Support
While we implemented our prototype for JavaScript, we expect that
it could also speed up certain workloads in other Truffle languages
such as Python or Ruby. Unfortunately, the array representations
of the individual language implementations do not share common-
alities via the core framework similar to the Truffle OSM. Hence,
porting our approach would require some engineering effort and
may further require an alternative to our object-to-proxy transfor-
mation (unless supported by the language implementation).

MPLR ’22, September 14–15, 2022, Brussels, Belgium L. Makor, S. Kloibhofer, D. Leopoldseder, D. Bone�a, L. Stadler, and H. Mössenböck

9 CONCLUSION
In this work, we developed an approach for automated array storage
transformation in JavaScript. The transformation creates columnar
arrays from arrays of objects and adapts accesses to this new data
structure. As a consequence, we can speed up accesses to these
arrays, hence our approach is especially suited for processing of
arrays within loops. We integrated our approach into the GraalVM
JavaScript runtime, based on the Truffle Framework, that uses the
GraalVM infrastructure to enable run-time optimization by using
profiling information and speculative optimizations. We gain per-
formance benefits by applying dedicated optimizations at compile
time, such as removing redundant checks, compiling methods with
respect to the array state, and subsequently moving loop invariant
accesses out of hot loops. If an array is modified in a way that
conflicts with our representation, we enable a restoration of the
original array.

An evaluation of our approach on a set of microbenchmarks
as well as the TPC-H benchmark suite shows that we can achieve
significant speedups on bulk operations on large arrays, while
suffering from the transformation overhead on smaller or more
complex operations. We argue that future work such as compile-
time duplication of loops could improve upon our approach and
yield better results, even on smaller, less repetitive workloads.

ACKNOWLEDGMENTS
This research project was partially funded by Oracle Labs. We thank
all members of the Virtual Machine Research Group at Oracle Labs.
Oracle, Java, GraalVM, and HotSpot are trademarks or registered
trademarks of Oracle and/or its affiliates. Other names may be trade-
marks of their respective owners. We also thank all researchers at
the Johannes Kepler University Linz’s Institute for System Software
for their support of and valuable feedback on our work.

REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compres-

sion and Execution in Column-Oriented Database Systems. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (SIGMOD
’06). ACM, New York, NY, USA, 671–682. https://doi.org/10.1145/1142473.1142548

[2] Daniel Abadi, Daniel Myers, David DeWitt, and Samuel Madden. 2007. Ma-
terialization Strategies in a Column-Oriented DBMS. In 2007 IEEE 23rd In-
ternational Conference on Data Engineering. IEEE, Istanbul, Turkey, 466–475.
https://doi.org/10.1109/ICDE.2007.367892

[3] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas.
2014. Improving JavaScript Performance by Deconstructing the Type System.
SIGPLANNot. 49, 6 (June 2014), 496–507. https://doi.org/10.1145/2666356.2594332

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles,
Techniques, and Tools. Addison-Wesley Pub. Co, Reading, Mass.

[5] Apache Software Foundation. 2022. Apache Arrow. The Apache Software
Foundation.

[6] Lars Bak. 2022. V8 JavaScript Engine. https://v8.dev/. (accessed 2022-06-29).
[7] Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Storage Strategies

for Collections in Dynamically Typed Languages. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. ACM, Indianapolis Indiana USA, 167–182. https:
//doi.org/10.1145/2509136.2509531

[8] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online Pro-
ceedings. www.cidrdb.org, Asilomar, CA, USA, 225–237.

[9] Mike Bostock. 2022. D3.Js - Data-Driven Documents. https://d3js.org/. (accessed
2022-06-29).

[10] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-
Conscious Data Placement. In Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS VIII). Association for Computing Machinery, New York, NY, USA, 139–149.

https://doi.org/10.1145/291069.291036
[11] D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing Compilers: A Test Suite

and Results. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing
(Supercomputing ’88). IEEE Computer Society Press, Washington, DC, USA, 98–
105.

[12] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. 1994. Compiler Opti-
mizations for Improving Data Locality. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VI). Association for Computing Machinery, New York, NY, USA,
252–262. https://doi.org/10.1145/195473.195557

[13] Richard L. Cole and Goetz Graefe. 1994. Optimization of Dynamic Query Eval-
uation Plans. In Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’94). ACM, New York, NY, USA, 150–160.
https://doi.org/10.1145/191839.191872

[14] Transaction Processing Performance Counci. 2021. TPC Benchmark H - Standard
Specification. Technical Report 3.0.0. Transaction Processing Performance Counci
(TPC), San Francisco, CA, USA. 138 pages.

[15] Ryan Dahl. 2022. Node.Js. https://github.com/nodejs/node. (accessed 2022-06-29).
[16] John-David Dalton. 2022. Lodash. https://github.com/lodash/lodash. (accessed

2022-06-29).
[17] Mattias De Wael, Stefan Marr, Joeri De Koster, Jennifer B. Sartor, and Wolf-

gang De Meuter. 2015. Just-in-Time Data Structures. In 2015 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Onward!) (Onward! 2015). ACM, New York, NY, USA, 61–75.
https://doi.org/10.1145/2814228.2814231

[18] Ulrich Drepper. 2007. What Every Programmer Should Know about Memory.
Red Hat, Inc 11 (2007), 2007.

[19] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon, Christian
Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative
Intermediate Representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop. Shenzhen, China, 9.

[20] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Specula-
tion without Regret: Reducing Deoptimization Meta-Data in the Graal Compiler.
In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ
’14). ACM, Cracow, Poland, 187–193. https://doi.org/10.1145/2647508.2647521

[21] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. 2013. An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages (VMIL ’13). ACM, New
York, NY, USA, 1–10. https://doi.org/10.1145/2542142.2542143

[22] Amit Dwivedi, C. Lamba, and Shweta Shukla. 2012. Performance Analysis of
Column Oriented Database Vs Row Oriented Database. International Journal of
Computer Applications 50 (July 2012), 31–34. https://doi.org/10.5120/7841-1050

[23] ECMA International. 2020. ECMA-262, 12th Edition, June 2021. Technical Report 12.
ECMA (European Association for Standardizing Information and Communication
Systems), San Francisco, CA, USA. 879 pages.

[24] ECMA International. 2022. Tc39/Test262. Ecma TC39.
[25] Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and

Susan Eisenbach. 2017. You Can Have It All: Abstraction and Good Cache
Performance. In Proceedings of the 2017 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2017). Association for Computing Machinery, New York, NY, USA,
148–167. https://doi.org/10.1145/3133850.3133861

[26] Michael Franz and Thomas Kistler. 1998. Splitting Data Objects to Increase Cache
Utilization. Technical Report.

[27] Google. 2022. Angular. https://angular.io/. (accessed 2022-06-29).
[28] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM

Comput. Surv. 25, 2 (June 1993), 73–169. https://doi.org/10.1145/152610.152611
[29] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and

Hanspeter Mössenböck. 2015. High-Performance Cross-Language Interoper-
ability in a Multi-Language Runtime. In Proceedings of the 11th Symposium on
Dynamic Languages (DLS 2015). Association for Computing Machinery, New
York, NY, USA, 78–90. https://doi.org/10.1145/2816707.2816714

[30] PhilippMarian Grulich, Steffen Zeuch, and VolkerMarkl. 2021. Babelfish: Efficient
Execution of Polyglot Queries. Proc. VLDB Endow. 15, 2 (Oct. 2021), 196–210.
https://doi.org/10.14778/3489496.3489501

[31] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging Optimized
Code with Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992
Conference on Programming Language Design and Implementation (PLDI ’92).
Association for Computing Machinery, New York, NY, USA, 32–43. https://doi.
org/10.1145/143095.143114

[32] Holger Homann and Francois Laenen. 2018. SoAx: A Generic C++ Structure of
Arrays for Handling Particles in HPC Codes. Computer Physics Communications
224 (March 2018), 325–332. https://doi.org/10.1016/j.cpc.2017.11.015

[33] Liang Hong, Mengqi Luo, Ruixue Wang, Peixin Lu, Wei Lu, and Long Lu. 2018.
Big Data in Health Care: Applications and Challenges. Data and Information
Management 2, 3 (Dec. 2018), 175–197. https://doi.org/10.2478/dim-2018-0014

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1109/ICDE.2007.367892
https://doi.org/10.1145/2666356.2594332
https://v8.dev/
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/2509136.2509531
https://d3js.org/
https://doi.org/10.1145/291069.291036
https://doi.org/10.1145/195473.195557
https://doi.org/10.1145/191839.191872
https://github.com/nodejs/node
https://github.com/lodash/lodash
https://doi.org/10.1145/2814228.2814231
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.5120/7841-1050
https://doi.org/10.1145/3133850.3133861
https://angular.io/
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.14778/3489496.3489501
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/143095.143114
https://doi.org/10.1016/j.cpc.2017.11.015
https://doi.org/10.2478/dim-2018-0014

Automatic Array Transformation to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

[34] Christian Humer, ChristianWimmer, ChristianWirth, AndreasWöß, and Thomas
Würthinger. 2014. A Domain-Specific Language for Building Self-Optimizing AST
Interpreters. In Proceedings of the 2014 International Conference on Generative Pro-
gramming: Concepts and Experiences (GPCE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 123–132. https://doi.org/10.1145/2658761.2658776

[35] Intel. 2010. A Guide to Vectorization with Intel® C++ Compilers.
[36] intel. 2022. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume

1: Basic Architecture, Chapter 5 - Instruction Set Summary.
[37] Xiaolong Jin, Benjamin W. Wah, Xueqi Cheng, and Yuanzhuo Wang. 2015. Signif-

icance and Challenges of Big Data Research. Big Data Research 2, 2 (June 2015),
59–64. https://doi.org/10.1016/j.bdr.2015.01.006

[38] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures. In CIDR.
www.cidrdb.org, Monterey, CA, USA, 11.

[39] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and Baris Kasikci.
2021. DMon: Efficient Detection and Correction of Data Locality Problems Using
Selective Profiling. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). USENIX Association, Virtual, 163–181.

[40] Sebastian Kloibhofer. 2021. Run-Time Data Analysis to Drive Compiler Opti-
mizations. In Companion Proceedings of the 2021 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH Companion 2021). Association for Computing Machinery,
New York, NY, USA, 9–12. https://doi.org/10.1145/3484271.3484974

[41] Alexandros Labrinidis and H. V. Jagadish. 2012. Challenges and Opportunities
with Big Data. Proc. VLDB Endow. 5, 12 (Aug. 2012), 2032–2033. https://doi.org/
10.14778/2367502.2367572

[42] Florian Latifi, David Leopoldseder, Christian Wimmer, and Hanspeter Mössen-
böck. 2021. CompGen: Generation of Fast JIT Compilers in a Multi-Language VM.
In Proceedings of the 17th ACM SIGPLAN International Symposium on Dynamic
Languages (DLS 2021). Association for Computing Machinery, New York, NY,
USA, 35–47. https://doi.org/10.1145/3486602.3486930

[43] Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation: Improving
Performance by Controlling Data Structure Layout in the Heap. SIGPLAN Not.
40, 6 (June 2005), 129–142. https://doi.org/10.1145/1064978.1065027

[44] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization - CGO
2018. ACM Press, Vienna, Austria, 126–137. https://doi.org/10.1145/3168811

[45] Lukas Makor. 2021. Run-Time Data Analysis in Dynamic Runtimes. In Compan-
ion Proceedings of the 2021 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity (SPLASH Com-
panion 2021). Association for Computing Machinery, New York, NY, USA, 6–8.
https://doi.org/10.1145/3484271.3484973

[46] MarketsandMarkets. 2022. Big Data Market Size, Share and Global Market
Forecast to 2026 | MarketsandMarkets. https://www.marketsandmarkets.com/
Market-Reports/big-data-market-1068.html. (accessed 2022-04-27).

[47] Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and Malte Ap-
peltauer. 2015. Columnar Objects: Improving the Performance of Analytical
Applications. In 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!). ACM, Pittsburgh PA
USA, 197–210. https://doi.org/10.1145/2814228.2814230

[48] Joe Minichino. 2022. LokiJS. https://github.com/techfort/LokiJS. (accessed
2022-06-29).

[49] Fabian Nagel, Gavin Bierman, Aleksandar Dragojevic, and Stratis Viglas. 17.
Self-Managed Collections: Off-heap Memory Management for Scalable Query-
Dominated Collections. , 71 pages. https://doi.org/10.5441/002/edbt.2017.07

[50] Simone Ferlin Oliveira, Karl Fürlinger, and Dieter Kranzlmüller. 2012. Trends
in Computation, Communication and Storage and the Consequences for Data-
intensive Science. In 2012 IEEE 14th International Conference on High Perfor-
mance Computing and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems. IEEE, Liverpool, UK, 572–579. https:
//doi.org/10.1109/HPCC.2012.83

[51] Oracle. 2021. Graal.Js. https://github.com/graalvm/graaljs. (accessed 2020-09-09).
[52] Oracle. 2021. GraalPython. https://github.com/graalvm/graalpython. (accessed

2020-09-09).
[53] Oracle. 2021. GraalVM. https://www.graalvm.org/. (accessed 2020-07-23).
[54] Oracle. 2021. TruffleRuby. https://github.com/oracle/truffleruby. (accessed

2020-09-09).

[55] Oracle. 2022. Node.Js Runtime. https://www.graalvm.org/22.0/reference-manual/
js/NodeJS/. (accessed 2022-04-25).

[56] Jim Pivarski, Peter Elmer, Brian Bockelman, and Zhe Zhang. 2017. Fast Access to
Columnar, Hierarchically Nested Data via Code Transformation. In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, Boston, MA, USA, 253–262.
https://doi.org/10.1109/BigData.2017.8257933

[57] Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, Mei-Ling Shyu, and S. S. Iyengar.
2018. Multimedia Big Data Analytics: A Survey. ACM Comput. Surv. 51, 1 (Jan.
2018), 10:1–10:34. https://doi.org/10.1145/3150226

[58] RAPIDS Development Team. 2018. RAPIDS: Collection of Libraries for End to End
GPU Data Science.

[59] David Reinsel, John Gantz, and John Rydning. 2018. The Digitization of the
World from Edge to Core. International Data Corporation, Framingham 16 (2018),
28.

[60] Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. 2016. Sulong -
Execution of LLVM-based Languages on the JVM: Position Paper. In Proceedings
of the 11th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems - ICOOOLPS ’16. ACM Press, Rome,
Italy, 1–4. https://doi.org/10.1145/3012408.3012416

[61] Filippo Schiavio, Daniele Bonetta, and Walter Binder. 2021. Language-Agnostic
Integrated Queries in a Managed Polyglot Runtime. Proc. VLDB Endow. 14, 8
(April 2021), 1414–1426. https://doi.org/10.14778/3457390.3457405

[62] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Par-
tial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO
’14). ACM, Orlando, FL, USA, 165–174. https://doi.org/10.1145/2581122.2544157

[63] Statista. 2021. Total Data Volume Worldwide 2010-2025. https://www.statista.
com/statistics/871513/worldwide-data-created/. (accessed 2022-04-27).

[64] Mike Stonebraker, Daniel Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB ’05). VLDB Endowment, Trondheim, Norway, 553–564.

[65] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (SPLASH ’12). ACM, Tucson,
Arizona, USA, 13–14. https://doi.org/10.1145/2384716.2384723

[66] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Mössenböck. 2014. An Object Storage Model for the Truffle
Language Implementation Framework. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java Platform Virtual
Machines, Languages, and Tools - PPPJ ’14. ACM Press, Cracow, Poland, 133–144.
https://doi.org/10.1145/2647508.2647517

[67] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-Performance Dynamic Language Runtimes.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2017). Association for Computing Machinery,
New York, NY, USA, 662–676. https://doi.org/10.1145/3062341.3062381

[68] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, Indianapolis, Indiana, USA, 187–204. https:
//doi.org/10.1145/2509578.2509581

[69] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In Proceedings of
the 8th Symposium on Dynamic Languages (DLS ’12). Association for Computing
Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/2384577.2384587

[70] Rui Zhang, Saumya Debray, and Richard T. Snodgrass. 2012. Micro-Specialization:
Dynamic Code Specialization of Database Management Systems. In Proceedings
of the Tenth International Symposium on Code Generation and Optimization (CGO
’12). Association for Computing Machinery, New York, NY, USA, 63–73. https:
//doi.org/10.1145/2259016.2259025

[71] Wangda Zhang, Junyoung Kim, Kenneth A. Ross, Eric Sedlar, and Lukas Stadler.
2021. Adaptive Code Generation for Data-Intensive Analytics. Proc. VLDB Endow.
14, 6 (Feb. 2021), 929–942. https://doi.org/10.14778/3447689.3447697

https://doi.org/10.1145/2658761.2658776
https://doi.org/10.1016/j.bdr.2015.01.006
https://doi.org/10.1145/3484271.3484974
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.1145/3486602.3486930
https://doi.org/10.1145/1064978.1065027
https://doi.org/10.1145/3168811
https://doi.org/10.1145/3484271.3484973
https://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html
https://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html
https://doi.org/10.1145/2814228.2814230
https://github.com/techfort/LokiJS
https://doi.org/10.5441/002/edbt.2017.07
https://doi.org/10.1109/HPCC.2012.83
https://doi.org/10.1109/HPCC.2012.83
https://github.com/graalvm/graaljs
https://github.com/graalvm/graalpython
https://www.graalvm.org/
https://github.com/oracle/truffleruby
https://www.graalvm.org/22.0/reference-manual/js/NodeJS/
https://www.graalvm.org/22.0/reference-manual/js/NodeJS/
https://doi.org/10.1109/BigData.2017.8257933
https://doi.org/10.1145/3150226
https://doi.org/10.1145/3012408.3012416
https://doi.org/10.14778/3457390.3457405
https://doi.org/10.1145/2581122.2544157
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2259016.2259025
https://doi.org/10.1145/2259016.2259025
https://doi.org/10.14778/3447689.3447697

	Abstract
	1 Introduction
	2 Background
	3 Storage Transformation in JavaScript
	4 Performance Optimization
	5 Current Limitations
	6 Evaluation
	7 Related Work
	8 Future Work
	9 Conclusion
	References

