
Secure Information Flow by Access Control:
A Security Type System of Dual-Access Labels
Omitted for submission1

1 Omitted for submission

Abstract
Programming languages such as Java and C# execute code with different levels of trust

in the same process, and rely on a fine-grained access control model for users to manage the
security requirements of program code from different sources. While such a security model is
simple enough to be used in practice to protect systems from many hostile programs downloaded
over a network, it does not guard against information-based attacks, such as confidentiality and
integrity violations.

We introduce a novel security model, called Dual-Access Label (DAL), to capture information-
based security requirements of programs written in these languages. DAL labels extend the access
control model by specifying both the accessibility and capability of program code, and use them
to constrain information flows between code from different sources. Accessibility specifies the
privileges necessary to access the code while capability indicates the privileges held by the code.
DAL’s security policy places a two-way obligation on both ends of information flow so that they
must have sufficient capability to meet the accessibility of each other.

Unlike traditional lattice-based security models, our security model offers more flexible in-
formation flow relations induced by the security policy that does not have to be transitive. It
provides both confidentiality and integrity guarantees while allowing cyclic information flows
among code with different security labels, as desired in many applications. We present a generic
security type system to enforce possibly intransitive information flow polices, including DAL,
statically at compile-time. Such security type system provides a new notion of intransitive non-
interference that generalizes the standard notion of transitive noninterference in lattice-based
security models.

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Modern programming languages, such as Java and .NET Common Language Runtime (CLR),
have been designed for Internet applications and extensible systems. In order to execute code
with different levels of trust in the same process, these languages rely on a fine-grained access
control model to manage the security requirements of program code from different sources.
Typically, security-sensitive code (e.g. code accessing system resources) is encapsulated by
the library code. While untrusted code (e.g. code downloaded from the Internet) may use
the library code, only authorized code is allowed to access security-sensitive code either
directly or indirectly. Such a security model provides an intransitive access control policy to
prevent unwanted transitive accesses via indirect calls, enforced by a runtime mechanism
that inspects the full call chain on the current stack.

While such an access control policy is simple enough to be used in practice to protect
users and systems from many hostile programs downloaded over a network, it does not
restrict information flows, which may inadvertently allow unauthorized code to influence or
be influenced by the execution of security-sensitive code. This limitation can lead to subtle
security vulnerabilities that programmers find difficult to identify. Previous proposals attempt

licensed under Creative Commons License CC-BY
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Secure Information Flow by Access Control

to strengthen this security model by exploring variants of the operational semantics that yield
stronger theorems, for example, using a stricter call relation that potentially prohibits many
good programs [1] or applying a transitive integrity policy without considering confidentiality
[24]. In addition, these security models are not enforced statically by the compiler, and may
rely on programmer disciplines to provide appropriate runtime checks.

In this section, we review the access control model in Java/CLR and examine its security
requirements and limitations. Then we informally introduce our solution to this problem—a
general security model that provides an intransitive information flow policy using the access
control specification of Java/CLR.

1.1 Access Control Model in Java/CLR
The access control model used in languages, such as Java and CLR, guards access to system
resources [14]. It specifies which privileges, in the form of permissions, are allowed for code
from specific sources. Before invoking security-sensitive code which operates on system
resources or sensitive information, a security check is performed against the execution stack
to verify that all callers currently on the stack have been granted sufficient privilege. When
the inspection fails, i.e., some caller on the stack is not authorized, a security exception is
thrown. Such a runtime security check is often referred to as stack inspection. The purpose
of stack inspection is to provide an intransitive access control policy to prevent confused
deputy attacks [17], when unauthorized code accesses security-sensitive operations indirectly
(transitively) by calling authorized code.

Stack inspection is often used with the intent of preventing unwanted information flow
between untrusted code and security-sensitive code [18]. Typically a security check is
performed before confidential information (produced by security-sensitive code) is released,
or tainted information (produced by untrusted code) is used. However, such an access
control mechanism cannot prevent information-based attacks, because stack inspection is
insufficient to track information propagation. Confidential information may be leaked to
unauthorized code after stack inspection—a confidentiality violation. As well, tainted data
left by unauthorized code that has exited the execution stack before stack inspection may
be used in security-sensitive operations—an integrity violation. Patterns abstracted from
real-world programs are used to describe some of these issues, and are illustrated in Figures
1–3. The examples use Java syntax and its security check, but they are also applicable to
CLR.

Figure 1 illustrates the example of a resource that needs to be protected from unauthorized
access, as often found in libraries. The private native method L.create is security sensitive,
which creates a system resource with the specified name. It may be accessed via the public
method L.createResource, and the created resource may be stored in a private field and
returned by the public method L.getResource. In order to prevent unwanted interference
from unauthorized application code, a pair of security checks are enforced programmatically
to guard the creation and release of the resource in methods L.createResource and L

.getResource respectively via the permission Permission("resource"). The method M.

defaultResource creates a default resource via L.createResource using the default resource
name. The design intent of these classes is that the resource can be created and used by
only an authorized caller that has been granted Permission("resource").

Unfortunately, this design intent can be easily violated, as illustrated in Figure 2. The
permissions granted to all classes are summarized in Table 1. The class L containing system
operations may be part of the library that is typically trusted and thus granted full privilege
(via the special AllPermission). The class M that uses L is also part of the full trusted library.

Omitted for submission 23:3

1 public class L {
2 private Resource resource;
3 private native Resource create(String name);
4 public void createResource(String name) {
5 AccessController.checkPermission(
6 new Permission("resource"));
7 resource = create(name);
8 }
9 public Resource getResource() {

10 AccessController.checkPermission(
11 new Permission("resource"));
12 return resource;
13 }
14 }
15
16 public class M {
17 L l = ...;
18 public void defaultResource() {
19 String name = "default";
20 l.createResource(name);
21 }
22 }

Figure 1 A resource is guarded by permission checks.

Class Permissions
L {AllPermission}
M {AllPermission}
A {Permission("resource")}
B ∅
C ∅

Table 1 Granted permissions.

The class A is not fully trusted, as a typical application using the library, but it is granted
the resource permission. The class B is not trusted, thus should never create nor use any
resource. However, B can do both things indirectly via the authorized class A.

The stack inspection performed by security checks can find only the currently active
callers; therefore it cannot inspect callers that have exited the stack before the check or will
enter the stack after the check. In Figure 2, the tainted string "secret" from the class B
may be used by the authorized class A to create a resource with that name. This is because,
when L.createResource is called (Line 6 Figure 2) in A , the unauthorized call b.make has
already exited the stack, so the security check in L.createResource sees only the authorized
caller A.main and grants access. Similarly, the confidential resource created in L.create

may be undesirably leaked and used by the unauthorized class B. This is because, when
L.getResource is called (Line 8 Figure 2) in A, the security check in L.createResource sees
only the authorized caller A.main and grants access. After the security check, the resource
may flow to unauthorized code without security check as shown on Line 9 in Figure 2.

Thus the stack inspection model cannot detect unwanted information propagation. Fur-
thermore, the model is overly restrictive, and prevents certain operations that are secure.
In Figure 3, the unauthorized class C calls on M.defaultResource, which would throw a
security exception because L.createResource has a security check. However, this code is
safe because the default resource is created with a library-provided string, regardless of user

CVIT 2016

23:4 Secure Information Flow by Access Control

1 public class A {
2 public static void main(String[] args){
3 L l = · · ·;
4 B b = · · ·;
5 String name = b.make();
6 l.createResource(name);
7 · · ·
8 Resource r = l.getResource();
9 b.use(r);

10 }
11 }
12
13 public class B {
14 public String make() {
15 return "secret";
16 }
17 public void use(Resource res) { · · · }
18 }
19

Figure 2 Unauthorized code may send/receive information to/from security-sensitive operation.

1 public class C {
2 public static void main(String[] args) {
3 M m = · · ·;
4 m.defaultResource();
5 }
6 }

Figure 3 A secure program that is rejected.

input (unauthorized code cannot influence the choice of resource to be created). To get
around this restriction, library programmers can place the calls to L.createResource inside
a privileged block, which is a special code section used for privilege escalation. In general,
privileged blocks should be avoided as much as practical, because they break the usual access
control and may lead to security vulnerabilities [18].

These examples illustrate the difficulty of specifying the security intent for a general class
of interacting trusted and untrusted code. Library code is often privileged to communicate
with both untrusted code and security-sensitive code, but access control needs to be carefully
designed to disallow unwanted information flow between application code and security-
sensitive code. Relying solely on the programmer could cause errors that are potentially
exploitable [18].

1.2 Secure Information Flow by Access Control
Informally, Java/CLR’s stack-based access control model aims to prevent untrusted code
from causing harm. However, it is surprisingly hard to state a useful theorem that captures
this intent for a general class of trusted and untrusted code [12]. We approach this problem
by identifying the functional security requirements of applications relying on such an access
control mechanism and then developing a security model to capture these requirements.

First, as seen in the example, the access control mechanism is often used with the
intent of enforcing confidentiality and integrity policies to prevent unwanted information
flow between untrusted and security-sensitive code. Second, users, rather than developers,
provide finer-grained security control over the components of programs to determine their

Omitted for submission 23:5

capabilities to propagate information, by explicit authorization in the form of permission.
Third, information flow should be controlled by an intransitive policy to avoid unwanted
transitive information propagation between program components. In the example, information
flow is not allowed between the application code and security-sensitive code even though
they can both communicate with the library code. Fourth, it is desirable to allow mutable
or cyclic information flow between code with different privileges. For example, untrusted
code granted a specific permission may send and receive information from security-sensitive
code that requires the permission. Finally, the stack-based access control mechanism relies
on programmer disciplines to provide necessary access control checks to protect sensitive
operations, which can be both error-prone and excessive. It is advantageous for the security
guarantee to be automatically provided by the compiler.

Previous attempts explore variants that yield stronger security than stack inspection.
History-based access control [1] provides access control based on code previously executed
(and not just the code currently on the stack). It may prevent authorized code from
executing a security-sensitive operation if less trusted code was previously executed, and does
not prevent information flow to unauthorized code that has not been previously executed.
Information-based access control [24] uses a lattice-based information flow system to enforce
its integrity policy. In addition to the lack of confidentiality, it supports neither intransitive
information flow nor cyclic information flow between code at different security levels.

In lattice-based multilevel security systems, security levels form a lattice and each variable
may be associated with a security level. To ensure confidentiality, information flow from
higher-level to lower-level variables should not be allowed. On the other hand, to ensure
integrity, flows to higher-level variables should be restricted. Therefore, having both integrity
and confidentiality in the same program would preclude information flows between different
security levels. In our example, to allow information flows between the class A and class L
would require both classes have the same privileged. This is undesirable, because it would
either grant the class A with unnecessary privilege or reduce the privilege of the class L to
use other privileged code (e.g. other parts of the library). Cross product of lattices (i.e.
combining integrity and confidentiality labels) handle both integrity and confidentiality;
however they do not provide intransitive policies.

We tackle the problem by introducing a new security model that reuses Java/CLR’s
existing access control specification and extends it with explicit security requirements using
Dual-Access labels (DAL) which is formally introduced in Section 2. It provides a simple
and more general model that captures intransitivity of access control in an information flow
security model. In this model, each piece of program code is assigned a pair of security levels,
based on the observation that the security requirements on the code can be specified in terms
of both accessibility (the privilege required to access the code) and capability (the privilege
granted to the code). The level of trust and secrecy of code is determined by the security
levels representing capability and accessibility respectively—holding more permissions means
more capable (i.e., more trustworthy), and requiring more permissions means less accessible
(i.e., has more secrets).

DAL can encode untrusted code, trusted code and security-sensitive code in Java/CLR,
which are special cases of our security model, using the different access control specifications.
Untrusted code requires no permission (anyone can influence it) and holds permissions that
are granted explicitly via the policy file (it can influence code that demands only fewer
permissions). Trusted code, typically libraries, on the other hand, hold all permissions
(trusted to influence any other code). Public methods in trusted code require no permission,
because they are accessible by anyone, while security-sensitive code may require specific

CVIT 2016

23:6 Secure Information Flow by Access Control

Code Granted Permissions Required Permissions
L.create {AllPermission} {Permission("resource")}
L {AllPermission} ∅
M {AllPermission} ∅
A {Permission("resource")} ∅
B ∅ ∅
C ∅ ∅

Table 2 Granted and required permissions.

permissions because its accessibility must be held by other code in order to influence it.

Informally, our security policy requires both the source and sink of the information
propagation to respect each other’s DAL, providing both integrity and confidentiality guar-
antees between code with different pairs of security levels. To ensure confidentiality, the
capability of the sink must have sufficient privilege to meet the accessibility of the source.
To ensure integrity, the capability of the source must have sufficient privilege to meet the
accessibility of the sink.

Table 2 extends the granted permissions shown in Table 1 with a set of required permissions
in order to identify the security violations as well as to permit the execution of the safe
program in the examples described in Section 1.1. All code, except L.create, has no
particular requirement for how it is accessed. The method L.create is security sensitive
because it requires the specific resource permission Permission("resource") to be held by
anyone who can send/receive information to/from it. Like permissions in Java/CLR, DAL
may be specified in a security policy file for either classes or methods. All entities within
the same class/method will have the same DAL. Method-level DAL is more specialized and
will override the DAL on the enclosing class. DAL cannot be inherited by subclasses or
overriding methods.

By information flow analysis, the string "secret" in the class B may flow to the formal
parameter of the sensitive method L.create. By applying our access control policy, which
requires that the capability of source "secret" (an empty permission set) must be greater
than the accessibility of the sink formal parameter of L.create (a set containing the resource
permission), we can conclude that there is an insecure information flow. Similarly, the
returned value of the sensitive method L.create may flow to the untrusted class on the
formal parameter of B.use. This violation can also be identified by using our access policy
where the capability of the sink B (an empty permission set) is required to be greater than
the accessibility of the source L.create (a set containing the resource permission). On the
other hand, the class C can meet the security policy. The string "default" is defined in the
trusted class M with full privilege, therefore our access control policy would allow it to flow
to L.create.

Often, finer-grained access control is required to meet more-precise security requirements.
For example, different permissions may be used to guard the creation and release of the
resource in Figure 1. The permission checked at Line 6 may be replaced by a more specific
permission Permission("createResource"), and the permission at Line 11 may be also
replaced by a more specific permission Permission("getResource"). Such precision would
require a finer-grained access control policy that can be specified in our model as shown in
Section 2.1.

Omitted for submission 23:7

1.3 Contributions
In this paper, we introduce DAL, a new security model that extends the access control model
of Java/CLR to control information flow between code with different security requirements.
A DAL-based security policy does not need be transitive as is often assumed in existing
work; thus it is strictly more expressive than lattice-based transitive security models. It
provides more flexible information flow relations than traditional lattice-based security models,
allowing permitted information flows across different security labels and disallowing undesired
interactions without demanding transitive information flows. The separation of required
privileges (specified by code developer) and granted privileges (specified by the user of the
code according to its source; note that the developer cannot grant privileges) enables to
cleanly specify and check all security requirements of the example as identified in the second
paragraph of Section 1.2. To the best of our knowledge, no existing techniques are able to
do that.

To enforce possibly intransitive security policies statically at compile-time, we present a
generic security type system that tracks both explicit and implicit information flows, raised
from both conditionals and virtual dispatches in object-oriented programs. By using a
points-to analysis, it propagates security labels along with information flow and ensures
that specified security label on each variable is respected by all possible values flow to it,
therefore supporting intransitive security policies like DAL as well as traditional transitive
security policies. We provide a big-step operational semantics and prove the subject reduction
theorem.

Informally, the type system verifies that, for any operation (e.g. security-sensitive code or
untrusted code), all the code responsible for (i.e. may transitively influence) the operation is
sufficiently authorized by the given security policy. Formally, the type system provides a new
notion of intransitive noninterference that handles confidentiality and integrity in a unified
framework. It generalizes the standard notion of noninterference in lattice-based security
models, because it does not require transitivity. We prove the intransitive noninterference
theorem with a generalized definition of indistinguishability based on values, variables, and
history associated with information flows.

The rest of the article is organized as follows. Section 2 formalizes DAL and its security
policy. Section 3 describes the security type system that enforces the security model statically.
Section 4 provides a big-step operational semantics and the subject reduction theorem.
Section 5 presents the main result—an intransitive noninterference property for security
policies that need not to be transitive. Section 6 discusses background and related work.
Section 7 concludes the paper. Additional proofs for the properties in Section 4 and 5 are
available as supplementary material.

2 Dual-Access Labels

In this section, we develop the formal details of DAL, including the security policy and some
basic properties, before we show how to enforce it statically by a type system in Section 3.

In multilevel security [29], each program variable is assigned a security level. The security
levels form a lattice, partially ordered by ≤ with the top and bottom elements denoted by
> and ⊥ respectively. For information flow security, a security (confidentiality or integrity)
policy, is expressed in terms of the lattice.

In our new security model, each program variable is labeled with a corresponding DAL
(represented by ϕ) that defines the level of access control required for the variable. DAL is
formed by a pair of security levels in a lattice-based multilevel security model.

CVIT 2016

23:8 Secure Information Flow by Access Control

ϕ ::= A · C

The security levels A and C determine respectively the accessibility and capability of the
variable for transferring information between variables. Together they restrict how information
propagates in the system by the security policy defined by the relation B defined by [ACCESS].
Intuitively, information in variables with higher-level accessibility and lower-level capability
is more restricted than information in variables with lower-level accessibility and higher-level
capability.

[ACCESS]

A1 ≤ C2 A2 ≤ C1

A1 · C1 B A2 · C2

The term Dual-Access refers to the concept of a two-way obligation that both ends
of information flow are obliged to meet the security requirement of each other. That is,
the sender must be sufficiently privileged to send information to the receiver, as well as
the receiver must be sufficiently privileged to receive information from the sender. In the
above rule, A1 · C1 is the DAL of the source of the information while A2 · C2 is the DAL
of the receiver. Both the sender and receiver must be authorized to exchange information,
providing both confidentiality and integrity. To ensure confidentiality, the receiver is allowed
to receive information from the sender only if it has sufficient capability to satisfy the sender’s
accessibility (the security level representing the capability of the receiver C2 is greater than
or equal to the security level representing the accessibility of the sender A1). To ensure
integrity, the sender is allowed to send information to the receiver only if it has sufficient
capability to satisfy the receiver’s accessibility (the security level representing the capability
of the sender C1 is greater than or equal to the security level representing the accessibility of
the receiver A2).

In general, the security policy [ACCESS] is neither transitive nor reflexive. It is reflexive
only when the capability of DALs is alway greater than or equal to the accessibility (i.e.,
A ≤ C for all DALs). The security policy is transitive only when the accessibility of DALs
is alway greater than or equal to the capability (i.e., C ≤ A for all DALs). Traditional
lattice-based security policies are a special case in our security model when the accessibility of
a variable is always the same as its capability (i.e., A = C for all DALs, meaning accessibility
and capability of variables are not distinguished), implying both transitivity and reflexivity.
However, since reflexivity is often needed in practice (e.g. assignments between variables
with the same label should be allowed), we will generally use the relation D (i.e., the reflexive
closure of B) to constraint information flow.

Although the DALs do not form a lattice under B, intuitively, accessibility of a higher
security level implies more secret code, thus restricting access to its variables, while accessib-
ility of lower security level implies less secret code. On the other hand, capability of higher
security level implies more privilege, enabling the code to access other code. Therefore, DALs
can be ordered by a transitive, reflexive subtyping relation v, which is not used to govern
assignment but by allowing covariance on accessibility and contravariance on capability.

[SUBTYPING]

A1 ≤ A2 C2 ≤ C1

A1 · C1 v A2 · C2

This subtyping relation preserves the access control policy and is used in the subsumption
rules in the static semantics (see Table 5).

Omitted for submission 23:9

I Lemma 1 (Subtyping Preserves Access). For any labels ϕ1, ϕ2, ϕ3 and ϕ4:

ϕ1 D ϕ2
ϕ3 v ϕ1
ϕ4 v ϕ2

 =⇒ ϕ3 D ϕ4

Proof. The proof is straightforward by [SUBTYPING] and [ACCESS].
The union operation t combines two DALs by the join (least upper bound) of the security

levels of their accessibility and the meet (greatest lower bound) of the security levels of their
capability. Note that, this union operation is the join of DALs with regard to the ordering v.

[UNION]

A1 · C1 t A2 · C2 = A1∨A2 · C1∧C2

As all information transfers are governed by a potentially intransitive policy the history of
information transfer must be tracked. This is done by taking the union of labels of variables
the information has flowed through. For example, assume we have two independent secure
assignments y = x and z = y (implying the DAL of x can access the DAL of y, we can write
label(x)B label(y), and similarly label(y)B label(z)). Their composition y = x; z = y may not
necessarily be secure because information can flow from x to z, requiring label(x) B label(z)
that is not derivable from the given assumptions (because B may not be transitive). Our
security model identifies this violation by propagating labels along with information flows.
After the assignment y = x, the label of the value stored in y captures label(x). When
z = y is evaluated, the label of the value read from y would be the union of both labels:
label(x) t label(y). Then the access control policy enforces (label(x) t label(y)) B label(z).

2.1 Extension for Antisymmetric Security Policy
The security policy we have described so far ([ACCESS]) is symmetric, which is useful in
many applications where authorized code needs to read from and write to security-sensitive
data/code. However, in practice there are also cases where applications should only be
allowed to either read from or write to certain security-sensitive data. For instance, in Java,
reading and writing system properties may require different permissions; applications with
privileges to read system properties may not be allowed to write them. An antisymmetric
security policy is required to express such security requirements. Antisymmetric security
policy can be obtained by using an extended Dual-Access Label or xDAL for short and
represented by

ϕ ::= I · F · C

In DAL, a single security level is used to represent the accessibility of a variable, controlling
both delivery and reception of information from/to the variable. In xDAL, accessibility (A)
is split into two parts: I sets up the integral security requirement and controls reception
(write) of information, while F sets up confidential requirements and controls delivery (read)
of information. The security policy can be refined by using xDAL.

[EXT-ACCESS]

F1 ≤ C2 I2 ≤ C1

I1 · F1 · C1 B I2 · F2 · C2

This security policy is antisymmetric and restricts only the confidential accessibility of the
sender and the integral accessibility of the receiver. It is strictly more flexible than the

CVIT 2016

23:10 Secure Information Flow by Access Control

security policy for DAL because it removes the requirements on confidentiality of the receiver
and integrity of sender.

The subtyping relation for xDAL is unsurprising, where both confidential accessibility
and integral accessibility are covariant.

[EXT-SUBTYPING]

I1 ≤ I2 F1 ≤ F2 C2 ≤ C1

I1 · F1 · C1 v I2 · F2 · C2

Similarly, two xDALs can be combined by the joins of their confidential accessibility and
integral accessibility, respectively.

[EXT-UNION]

I1 · F1 · C1 t I2 · F2 · C2 = I1∨I2 · F1∨F2 · C1∧C2

3 Type System

In this section, we show how our security model of DAL can be analyzed statically. We
present a generic security type system to enforce any information flow policy on security
labels that can provide B, v, t relations as defined in Section 2. Therefore, it can support
intransitive security policies (where B provides an intransitive relation) like DAL and xDAL,
as well as traditional lattice-based transitive security policies (where B provides a transitive
relation). The main result of the type system is a new notion of intransitive noninterference
property, to be discussed in Section 5.

To formalize the type system, we choose a core language similar to [12, 24], but with
the addition of class inheritance and dynamic dispatch to more closely model conventional
object-oriented languages. Our security model restricts how information is transferred among
program variables, and does not place any restriction on the calling chain (though such
access control can also be enforced statically using the same security labels). Our language
does not have runtime access control such as permission checks, since it does not add to the
information flow security properties being developed.

Security type systems for enforcing transitive security policies have enjoyed simpler type
checking, by exploiting the transitive type relations. Security labels are associated with
data types and are checked in the same way as data types. To support intransitive security
policies, in addition to type checking, we also need to track the full history of information
flow by propagating security labels along assignments. This propagation of security labels is
similar to the propagation of points-to sets in points-to analysis .

Points-to analysis is a static program analysis technique to approximate the set of objects
(abstracted by their allocation sites) that may be pointed or referenced by program variables
[30]. Points-to sets are computed by propagating points-to information along assignments
until reaching a stable state (fixed-point), using a fixed-point algorithm. Based on this
observation, we associate our security labels with points-to sets and propagate them together
with points-to sets, thus our analysis can be easily implemented in a standard points-to
analysis. Moreover, it is well known that the use of points-to information can substantially
improve the accuracy of static analyses. We formulate our type system as an inter-procedural,
field-sensitive points-to analysis (thus both the accuracy and efficiency are determined by
the points-to analysis).

Omitted for submission 23:11

3.1 Syntax
The syntax of the core language is given in Figure 4. For simplicity, expressions are assigned
to local variables before use (like three-address code). Class types are standard thus are
not explicitly represented in our language and typing rules; we assume class type soundness
(memory safety) of input programs. We assume methods are not overloaded (i.e., they are
distinguished only by their names not by their signatures).

C ::= class c [extends c] {f ; M}
M ::= m(x) {s}
s ::= x=newo c | x=e | x.f=x

| x.m(x) | if x then s else s | s; s
e ::= x | x.f

Figure 4 Abstract syntax for the core language.

Class, field, variable names are unique in their respective defining scopes. The special
variable this is a read-only variable that refers to the receiver object in method bodies. For
computing points-to sets, object creation is labeled with its allocation site (i.e. the program
counter of the new object instruction). Note that, the if test branches on null test value.

Security requirements are typically specified in separate policy files, so we do not explicitly
include labels in the language syntax. Instead, a simple function is used to look up the
specified security labels for variables and fields, e.g. label(x) or label(f). We assume fully
qualified field/variable names (i.e., by defining class and method names) are used for lookup.
In the case of DAL/xDAL where security labels may be specified on code (either class or
method), label(x) refers to the security label on the method that defines variable x while
label(f) refers to the security label on the class that defines field f . New objects are always
assigned to a local variable before use, therefore they do not need labels.

3.2 Static Semantics
The type system enforces security policies by propagating security labels along with in-
formation flows between program variables, and ensuring they cannot violate the specified
security labels on variables. In order to deal with intransitive security policies, the history of
information propagation is tracked by union of labels of variables the information has flown
through.

We formalize the static semantics of our type system in Figure 5 as a set of inference
rules. The expression typing is defined by

A ` e : τ ϕ

where τ is the points-to set of the expression e (the set of allocation sites which the expression
e may be evaluated to at runtime), and ϕ is the security label of information that may
explicitly propagate to e via reading variables/fields. The statement typing is defined by

A ` s : ϕ

where ϕ tracks the security label of information that may implicitly influence the execution
of the statement s through the program control flow (in our language, it is the label of either
the conditional variable or the base variable of an invocation).

Explicit information flow is tracked by propagating labels between variables and fields
via direct assignments, while implicit information flow is tracked by propagating labels from

CVIT 2016

23:12 Secure Information Flow by Access Control

[VAR]
Γ(x) = τ ϕ

Γ Σ ` x : τ ϕ

[LOAD]

Γ(x) = τ0 ϕ0 ∀o ∈ τ0 ·
{

Σ(o)(f) = τ1 ϕ1

τ1 ⊆ τ ϕ1 v ϕ
Γ Σ ` x.f : τ ϕtϕ0

[ASSIGN]
Γ(x) = τ ϕ Γ Σ ` e : τ ϕ

Γ Σ ` x=e : ϕ

[NEW]
Γ(x) = τ ϕ o ∈ τ
Γ Σ ` x=newo c : ϕ

[STORE]

Γ(x) = τ0 ϕ0 Γ(y) = τ1 ϕ1 ∀o ∈ τ0 ·
{

Σ(o)(f) = τ2 ϕ2

τ1 ⊆ τ2 ϕtϕ0tϕ1 v ϕ2

Γ Σ ` x.f=y : ϕ

[CALL]
Γ(x) = τ0 ϕ0 Γ Σ ` y : τ1 ϕ1

∀o ∈ τ0 ·
{

method(type(o),m) = m(z){s}
{this 7→ (τ0 ϕ0), z 7→ (τ1 ϕ1)} Σ ` s : ϕtϕ0

Γ Σ ` x.m(y) : ϕ

[IF]
A ` x : τ0 ϕ0 A ` s1 : ϕtϕ0 A ` s2 : ϕtϕ0

A ` if x then s1 else s2 : ϕ

[SEQ]
A ` s1 : ϕ A ` s2 : ϕ

A ` s1;s2 : ϕ

[SUB-EXP]
A ` e : τ1 ϕ1 τ1 ⊆ τ ϕ1 v ϕ

A ` e : τ ϕ

[SUB-STM]
A ` s : ϕ1 ϕ v ϕ1

A ` s : ϕ

Figure 5 Static semantics.

parent statements to their sub-statements (i.e. branches or method definitions selected
by dynamic dispatch). Two subsumption rules [SUB-EXP] and [SUB-STM] are provided for
expressions and statements respectively. For expressions, it is conservative to enlarge the
points-to set and label of explicit flows because expressions are read-only (implying our
points-to analysis is subset-based like [30]).

On the other hand, as for statements, it is conservative to reduce the label of implicit
flows because statements are write-only (executed for only side effects). For example, let
us consider an assignment statement x=y typed with an implicit flow label ϕ. Because the
update on x is influenced by the implicit flow (in addition to the explicit flow from y), the
security label of x must be able to capture such implicit flow by requiring ϕ v label(x).
Therefore, ϕ may be substituted with its subtype without altering this requirement.

All expressions and statements are typed in the environment A, an abstract state to
approximate runtime states:

A ::= Γ Σ

The abstract stack Γ tracks local typing environment on the current call frame, mapping
local variables to labeled points-to sets—a pair of points-to set and label. For example,
Γ(x) = τ ϕ means the variable x may contain an object created at one of the allocation sites
in τ and has the security label ϕ which is the union of all security labels of information may
propagate to x.

The abstract heap Σ tracks global typing environment on the shared heap, mapping
allocation sites and fields to labeled points-to sets, e.g. Σ(o)(f) = τ ϕ. Field-sensitivity of
analysis is enabled by distinguishing the points-to sets of each field (see [LOAD] and [STORE]

Omitted for submission 23:13

rules). Γ and Σ together represent the points-to graph used in points-to analyses. Although our
type system is flow-insensitive, it can be used to analyze static single assignment(SSA)-based
intermediate representations where flow-sensitivity of data flow is implicitly provided.

Like a points-to analysis, our static semantics define constrains on points-to sets and
security labels which are to be solved by a fixed-point computation [30]. The typing rules
do not explicitly enforce a security policy, instead they track information propagation in an
abstract state which is required to be well-formed. The [ABSTRACT STATE] rule describes the
conditions satisfied by a well-formed abstract state where each variable/field is well-typed by
its security label according to a given security policy.

[ABSTRACT STATE]

∀x · Γ(x) = τ ϕ =⇒ ϕD label(x) label(x) v ϕ
∀o,f · Σ(o)(f) = τ ϕ =⇒ ϕD label(f) label(f) v ϕ

` Γ Σ

The security label of the value in the variable/field must satisfy (be able to access) the
specified security label of the variable/field for a given security policy. For example, the
DAL-specific security policy is enforced by constraints on the DAL labels that any abstract
state needs to satisfy in order to be well-formed. Any runtime state, to be discussed in
Section 4, of a well-typed program will also be well-formed.

The expression rules [VAR] and [LOAD], in addition to looking up the labeled points-to set
from the abstract stack and heap respectively, track explicit information flow by including
the security label of the source variable/field (where the value is read) in the combined label
of the expression. Since field selection depends on the value of the receiver, its label also
includes the label of the receiver.

The assignment rules [ASSIGN], [STORE] and [NEW] ensure the points-to set and label of
assigned expressions are captured in the points-to set and label of the respective variable/field
in the abstract state. In addition, the label of implicit flow of the assignments must also be
subsumed by the label of respective variable/field in the abstract state (by [SUB-STM]). In
[NEW], the allocation site of the new object is captured and the label of new object is not
significant (e.g. may be considered as ⊥·> in DAL).

The [CALL] rule looks up all possible method targets based on the points-to set of the
receiver variable x and analyses the method definitions in the new abstract stack constructed
from the labeled points-to sets of the actual method parameters. Note that we use the
expression typing rule on actual method parameters, instead of looking them up from the
original stack, to allow them to be covered by the subsumption rule.

For notational simplicity, type(o) represents the class type of the object created at the
allocation site o. We assume a standard method lookup definition (indicated bymethod(c,m))
which searches for method definition, starting from the given class to its super classes.

[METHOD-DEFINE]

class c ... {...m(x) {s}...}
method(c,m) = m(x) {s}

[METHOD-INHERIT]

class c extends c0 {f ; M} (m(_) {_}) /∈M
method(c,m) = method(c0,m)

Note that our type analysis is context-sensitive, because each method invocation is analyzed
independently in a new abstract stack. Cheaper context-insensitive analysis can also be
supported by simply using a shared abstract stack for all invocations, effectively merging
all points-to sets and security labels of the same local variable used in different method
invocations.

Since dynamic dispatches allow implicit information flow through the selection of methods
based on the class type of the receiver object, [CALL] propagates the combined label of the

CVIT 2016

23:14 Secure Information Flow by Access Control

parent statement ϕ and the label of the receiver object ϕ0 to the typing of the body of all
methods that may be selected at runtime. Similarly, in addition to propagating the security
label of implicit flows from parent statements, [IF] also include the label of the conditional
variable to the analysis of both branches.

4 Dynamic Semantics

This section presents dynamic semantics and subject reduction theorem of the type system to
show the points-to information and security labels are preserved over evaluation. The security
property of the type system, the intransitive noninterference theorem, is to be discussed in
detail in Section 5.

The security labels are not needed at runtime, since security policies are enforced statically
by the type system. However, in order to prove the soundness and security properties of
the type system, we need to connect static semantics to a form of dynamic semantics that
retains security labels at runtime. The dynamic semantics is formalized using the big-step
style operational semantics, where labels are tracked during evaluation. Like static semantics,
explicit information flow is tracked by propagating labels between variables and fields via
direct assignments, while implicit information flow is tracked by propagating labels from
parent statements to their sub-statements.

4.1 Operational Semantics
The big-step operational semantics for the core language is given in Figure 6, using additional
notation to represent runtime values and states:

e ::= . . . | v
v ::= lo | null
E ::= S H

The value v is the result of evaluating an expression, may be either null or a heap location l
labeled with its allocation site o (omitted when not used). The execution state E consists
of a concrete stack S and a concrete heap H. The stack S maps local variables to labeled
values—a pair of value and label. For example, S(x) = v ϕ means the variable x contains
the value v and its label ϕ (combined from all variables/fields that may have influenced the
value). Similarly, the heap H maps locations and fields to labeled values, e.g. H(l)(f) = v ϕ.

Statements are evaluated for their side effects on input state in the form of

s ϕ E1 ⇓ E2

The label ϕ tracks implicit information flow that may influence the evaluation of statement s
from the input state E1 to the output state E2 (see [E-TRUE/FALSE] and [E-CALL]). A program
is a statement evaluated in the initial configuration s ϕ ∅ ∅ where s is the body of the main
method, both the stack and heap are empty, and ϕ is the initial label with least restriction
(e.g. ⊥·> for DAL and ⊥·⊥·> for xDAL).

Expressions are evaluated to labeled values in the form of

e E ⇓ v ϕ

This evaluation has no side effects, and is not affected by implicit information flows and does
not change the input state.

Expression evaluations [E-VAR] and [E-LOAD] are similar to their static counterparts, looking
up the labeled values from the stack and heap respectively and tracking explicit information

Omitted for submission 23:15

[E-VAR]
S(x) = v ϕ

x S H ⇓ v ϕ

[E-LOAD]
S(x) = l ϕ0 H(l)(f) = v ϕ

x.f S H ⇓ v ϕtϕ0

[E-ASSIGN]
e S H ⇓ v ϕ0

x=e ϕ S H ⇓ S[x 7→ (v ϕtϕ0tlabel(x))] H

[E-NEW]
x /∈ dom(S) lo /∈ dom(H) fields(c) = f

(x=newo c) ϕ S H ⇓ S, x 7→ (lo ϕtlabel(x)) H, lo 7→ (f 7→ (null label(f)))
[E-STORE]

S(x) = l ϕ0 y S H ⇓ v ϕ1

x.f=y ϕ S H ⇓ S H[l 7→ H(l)[f 7→ (v ϕtϕ0tϕ1tlabel(f))]]

[E-CALL]
x S H ⇓ lo ϕ0 y S H ⇓ v ϕ1 method(type(o),m) = m(z){s}
S0 = {this 7→ (lo ϕ0), z 7→ (v ϕ1tlabel(z))} s ϕtϕ0 S0 H ⇓ S1 H1

x.m(y) ϕ S H ⇓ S H1

[E-SEQ]
s1 ϕ E ⇓ E1 s2 ϕ E1 ⇓ E2

s1; s2 ϕ E ⇓ E2

[E-TRUE]
x E ⇓ l ϕ0 s1 ϕtϕ0 E ⇓ E1

(if x then s1 else s2) ϕ E ⇓ E1

[E-FALSE]
x E ⇓ null ϕ0 s2 ϕtϕ0 E ⇓ E2

(if x then s1 else s2) ϕ E ⇓ E2

Figure 6 Big-step operational semantics.

flow by including the label of the source variable/field. All other rules are statement
evaluations. [E-ASSIGN] and [E-STORE] update the stack and heap respectively (the notation
H[x 7→...] denotes l is updated in H) with an evaluated expression and its combined label
including the label ϕ of implicit information flows passed to the statement. In both [E-LOAD]

and [E-STORE], the security label of the receiver object is explicit included.

Object creation in [E-NEW] extends the stack and heap with newly allocated variable and
object (labeled with its allocation site). The notation H, l 7→... denotes extension of H. All
fields are initially set to null with the label of the respective field. Note that the choice of
fresh location allocated to new object is arbitrary in [E-NEW]. This allocation behavior is
typically accommodated using standard renaming of locations over indistinguishable states.
But for simplicity, like in [24], we also assume a deterministic allocator where fresh locations
are allocated in order.

Method invocation in [E-CALL] dynamically looks up the target method to be called using
the class name on the location. Since dynamic dispatches allow implicit information flow
through the selection of methods based on the class type of the receiver object, the rule
[E-CALL] propagates the combined label of the parent statement ϕ and the label of the location
ϕ0 to the evaluation of the body of the selected method. Similarly, the rules [E-TRUE] and
[E-FALSE] allow implicit information flow through the conditional variable, where the label of
the conditional variable is also propagated to the evaluation of the branches. The rule [E-SEQ]

evaluates a composition of two statements in order: the latter is evaluated in the output
state of the former.

CVIT 2016

23:16 Secure Information Flow by Access Control

4.2 Subject Reduction
The [CONCRETE STATE] rule defines a concrete state to be well-formed if the labels of values
in the variables/fields respect the security police.

[CONCRETE STATE]

∀x · S(x) = v ϕ =⇒ ϕD label(x) label(x) v ϕ
∀l,f · H(l)(f) = v ϕ =⇒ ϕD label(f) label(f) v ϕ

` S H

The correspondence between well-formed concrete state and abstract state is identified
in [CORRESPONDENCE]. Informally, for every variable/field, the runtime value in the concrete
state must be allocated within the corresponding points-to set in the abstract state, and
its runtime label must also be subsumed by the corresponding static label. Thus, for every
x in S, x must be defined in Γ such that Γ(x) overapproximates S(x). The condition on
objects/fields is similar.

[CORRESPONDENCE]

` Γ Σ ` S H

∀x · S(x) = v ϕ0 =⇒


Γ(x) = τ ϕ

{v} ⊆ τ
ϕ0 v ϕ

∀lo,f · H(lo)(f) = v ϕ0 =⇒


Σ(o)(f) = τ ϕ

{v} ⊆ τ
ϕ0 v ϕ

Γ Σ ` S H

Subset relation between points-to sets is extended to accommodate runtime values:

[LOCATION]

{lo} ⊆ {o}
[NULL]

{null} ⊆ τ

In order to prove noninterference by static analysis, we need the standard preserva-
tion theorem for subject reduction. We present only preservation for statements, because
preservation for expressions is trivial—they only look up values from well-formed stack or
heap.

I Theorem 1 (Preservation). For any static state A, dynamic states E1, E2, label ϕ and
statement s:

A ` E1
A ` s : ϕ

s ϕ E1 ⇓ E2

 =⇒ A ` E2

Proof. The proof is by structural induction on the derivation of Γ Σ ` s : ϕ. We present
some interesting cases here.

Case [ASSIGN] Suppose the statement s is x = e. Consider the case when e is y.f . From
[ASSIGN], for some τ , we have

Γ(x) = τ ϕ and (1)
Γ Σ ` y.f : τ ϕ.

Omitted for submission 23:17

Let Γ(y) = τ0 ϕ0. From [LOAD] and (1), for every o ∈ τ0 with Σ(o)(f) = τ1 ϕ1, we have:
τ1 ⊆ τ, (2)

ϕ1 v ϕ′, where (3)
ϕ = ϕ′ t ϕ0. (4)

Let S1(y) = lo β and H1(lo)(f) = v α. From the premise, we have:
{o} ⊆ τ0,

{v} ⊆ τ1, where Σ(o)(f) = τ1 ϕ1, (5)
β v ϕ0 and (6)

α v ϕ1. (7)
From ` Γ Σ of the premise and from (1), we have:

ϕD label(x), (8)
label(x) v ϕ. (9)

From the operational semantics we have H2 = H1 and S2 is the same as S1 except for x,
i.e., S2(x) = v (ϕ t α t β t label(x)). To prove Γ Σ ` S2 H2, we need to show:

{v} ⊆ τ, (10)
(ϕ t α t β t label(x)) v ϕ and (11)

` S2 H2. (12)
From (5) and (2), we have (10). From (7), (3), (4) and from transitivity of v we have
α v ϕ. From (6), (4) and from transitivity of v we have β v ϕ. Then from (9), we
have (11). From the premise we have label(x) v ϕ. Hence we have (11). We now have
ϕ t α t β t label(x) = ϕ. Then from (8) and (9), we have (12). Thus Γ Σ ` S2 H2.
Similar arguments hold good for the case when s is x = y.

Case [STORE] Suppose the statement s is x.f = y. From the premise and from [STORE], we
have Γ(x) = τ0 ϕ0 such that for every o ∈ τ0, we have:

Σ(o)(f) = τ2 ϕ2, (13)
Γ(y) = τ1 ϕ1,

τ1 ⊆ τ2, (14)
ϕ t ϕ0 t ϕ1 v ϕ2. (15)

Let S1(y) = v α and S1(x) = lo β. From the premise we have:
{v} ⊆ τ1, (16)
α v ϕ1, (17)
{o} ⊆ τ0,

β v ϕ0. (18)
From the operational semantics we have S2 = S1 and H2 is the same as H1 except for
the field f of lo, i.e., H2(lo)(f) = v (ϕt β tαt label(f)), where . To prove Γ Σ ` S2 H2,
we need to show:

{v} ⊆ τ2, (19)
(ϕ t β t α t label(f)) v ϕ2 and (20)

` S2 H2. (21)
From ` Γ Σ of the premise and (13), we have

ϕ2 D label(f), (22)
label(f) v ϕ2. (23)

From (16) and (14) we have (19). From From (22) and (23), we have (21). Hence
Γ Σ ` S2 H2.

CVIT 2016

23:18 Secure Information Flow by Access Control

5 Intransitive Noninterference

In this section we define the security guarantees provided by our model, including the
generalization of classical definitions of indistinguishability and noninterference. With a
standard notion of noninterference [13], a program is modeled as a machine with inputs and
outputs classified by security levels. The noninterference property for a confidentiality policy
guarantees any sequence of lower-level inputs will produce the same lower-level outputs,
regardless of what the higher-level inputs are. Intuitively, this ensures that an attacker (at
lower-level) is not able to distinguish two computations from their outputs if they vary only
in their secret (higher-level) inputs. Conversely, the noninterference property for an integrity
policy guarantees any sequence of higher-level inputs will produce the same higher-level
outputs, regardless of what the lower-level inputs are. This ensures that a system (at
higher-level) is not able to distinguish two computations from their outputs if they vary only
in their untrusted (lower-level) inputs.

Most of the existing literature assumes that the base policy for the information flow
is transitive. Thus relaxing such a transitive policy requires ad-hoc downgrading actions,
and there are various downgrading or declassification mechanisms as surveyed in [28]. The
implementation of downgrading in object oriented programming languages is often application
specific and cumbersome, such as the priviledged actions in the Java security model. The
information flow policy of DAL is more general and flexible, which may be used to specify
more precise requirement than what can be defined as a transitive noninterference policy. For
instance, we may allow information to flow from a sensitive database to an API library, and
public information to flow from the library to an application, but sensitive information is not
allowed to flow from the database to the application through the library. This intransitive
policy may be naturally specified in the DAL model without introducing any ad-hoc structures.
On the other hand, using DAL as a framework for base policies is orthogonal to downgrading,
i.e., one may add specific downgrading behaviours on top of DAL.

Before we present our noninterference property, we provide a number of auxiliary defini-
tions used by the theorem. [INDISTINGUISHABILITY] identifies two states as indistinguishable
for a specified label ϕ associated with a variable or a field. This can be intuitively thought of
as consequences of a direct assignment. [STRONG INDISTINGUISHABILITY] identifies two states
as indistinguishable if all variables or fields that may influence (hence the use of .) a given
label must be the same in both states. The separation of the two rules are necessary to prove
our noninterference theorem.

[INDISTINGUISHABILITY]

∀x · label(x) = ϕ =⇒ S1(x) = S2(x)
∀l,f · label(f) = ϕ =⇒ H1(l)(f) = H2(l)(f)

S1 H1
ϕ
≈ S2 H2

[STRONG INDISTINGUISHABILITY]

∀x · label(x) D ϕ =⇒ S1(x) = S2(x)
∀l,f · label(f) D ϕ =⇒ H1(l)(f) = H2(l)(f)

S1 H1
.ϕ
≈ S2 H2

I Theorem 2 (Noninterference). For any labels ϕ0, ϕ, statement s, static state A and dynamic
states E1, E2:

Omitted for submission 23:19

E1
.ϕ
≈ E2

A ` E1
A ` E2
A ` s : ϕ0

s ϕ0 E1 ⇓ E3
s ϕ0 E2 ⇓ E4


=⇒ E3

ϕ
≈ E4

Theorem 2 describes our intransitive noninterference theorem for a possibly intransit-
ive security policy. Intuitively, Theorem 2 states that given a well-typed statement s, if
executing s with a label ϕ0 on two input states that are well-formed and indistinguishable
on variables/fields having the same or a greater label than ϕ, it will result in output states
that are indistinguishable under the same ϕ. This is because the variables/fields covered
by ϕ can be influenced by only variables/fields having the same or a greater label but not
by any other parts of the program. Note that the effect of executing the statement s in the
context with the label ϕ0 is captured in the states represented by E3 and E4, which need to
be related by ϕ-indistinguishability.

Our notion of noninterference is generic and may accommodate other security policies.
This is because the relation B in [STRONG INDISTINGUISHABILITY] can be possibly substituted
with other information flow relation over different types of security labels.

Furthermore, this noninterference provides a unified guarantee of confidentiality and
integrity. When we consider the label ϕ to be the system, integrity is given in the sense that
the attacker (unauthorized source) cannot influence (send information to) the system. At the
same time, we can also consider the label ϕ to represent the attacker, then confidentiality is
given in the sense that the attacker (unauthorized sink) cannot be influenced by (receive
information from) the system. Hence, ϕ in Theorem 2 captures both confidentiality and
integrity requirements.

The proof of this theorem follows directly from Lemma 2, 3 and 4—Lemma 3 weakens
strong indistinguishability of two input states; then Lemma 2 preserves indistinguishability
based on dynamic labels from input states to output states over subject reduction; finally
Lemma 4 weakens indistinguishability based on dynamic labels into indistinguishability on
static labels of two output states.

Lemma 2 supports sequential composability by using a weakened version of indistin-
guishability provided by the definition [INDISTINGUISHABILITY BY DYNAMIC LABEL], which can
be preserved over statement evaluation. It considers two states as indistinguishable if relevant
variables/fields and all values that may influence variables in the given label must be the
same in both states.

[INDISTINGUISHABILITY BY DYNAMIC LABEL]

∀x · S1(x) = _ ϕ1
ϕ1 D ϕ

}
=⇒ S1(x) = S2(x)

∀x · S2(x) = _ ϕ2
ϕ2 D ϕ

}
=⇒ S1(x) = S2(x)

∀l,f · H1(l)(f) = _ ϕ1
ϕ1 D ϕ

}
=⇒ H1(l)(f) = H2(l)(f)

∀l,f · H2(l)(f) = _ ϕ2
ϕ2 D ϕ

}
=⇒ H1(l)(f) = H2(l)(f)

S1 H1
.ϕ∼ S2 H2

I Lemma 2 (Noninterference by Dynamic Label). For any labels ϕ0, ϕ, statement s, static
state A and dynamic states E1, E2:

CVIT 2016

23:20 Secure Information Flow by Access Control

E1
.ϕ∼ E2

A ` E1
A ` E2
A ` s : ϕ0

s ϕ0 E1 ⇓ E3
s ϕ0 E2 ⇓ E4


=⇒ E3

.ϕ∼ E4

Proof. The proof is by structural induction on the derivation of s ϕ0 S1 H1 ⇓ S3 H3. We
present some interesting cases here.

Case [E-STORE] Suppose the statement is x.f = y. From the operational semantics, we know
that only the heap is changed. This means that S3 = S1 and S4 = S2. Let S1(x) = l1 α1,
S2(x) = l2 α2, S1(y) = v1 β1 and S2(y) = v2 β2. From operational semantics, we have
H3 and H4 to be the same as H1 and H2 respectively, except that H3(l1)(f) = v1 ϕ1 and
H4(l2)(f) = v2 ϕ2 where ϕ1 = (ϕ0tα1tβ1t label(f)) and ϕ2 = (ϕ0tα2tβ2t label(f)).
Suppose ϕ1 t ϕ2 D ϕ. From Lemma 1, we have α1 D ϕ, α2 D ϕ, β1 D ϕ and β2 D ϕ. Then
from the premise we have v1 = v2, β1 = β2, l1 = l2 and α1 = α2. Hence H3 = H4. Thus
S3 H3

.ϕ∼ S4 H4.
Case [E-TRUE] Suppose the statement is if x then s1 else s2. Let S1(x) = l1 α1 and S2(x) =

l2 α2.
Suppose α1 t α2 D ϕ. From the premise, we have l1 = l2 and α1 = α2. Consider the case
when l1 6= null (same as l2 6= null). The case for l1 = null (same as l2 = null) follows on
the same lines. Then from operational semantics we have:

s1 ϕ0 t α1 E1 ⇓ E3 and (24)
s1 ϕ0 t α2 E2 ⇓ E4. (25)

Let Γ(x) = τ γ. From the premise and the static semantics we have A ` s1 : ϕ0 t γ,
where α1 v γ and α2 v γ. Applying [SUB-STM], we have:

A ` s1 : ϕ0 t α1 and (26)
A ` s1 : ϕ0 t α2. (27)

Now since α1 = α2, applying induction hypothesis on (24), (25) and (32) and using the
premise, we have E3

.ϕ∼ E4.
Suppose α1 t α2 6Dϕ. Then from Lemma 1 we have α1 6Dϕ and α2 6D. This implies that:

ϕ0 t α1 6Dϕ, (28)
ϕ0 t α2 6Dϕ. (29)

Consider the case when l1 6= null and l2 = null. The other cases follow on the same lines.
We have:

s1 ϕ0 t α1 E1 ⇓ E3 and (30)
s2 ϕ0 t α2 E2 ⇓ E4. (31)

Let Γ(x) = τ γ. From the premise and the static semantics we have A ` s1 : ϕ0 t γ and
A ` s2 : ϕ0 t γ, where α1 v γ and α2 v γ. Applying [SUB-STM], we have:

A ` s1 : ϕ0 t α1 and (32)
A ` s2 : ϕ0 t α2. (33)

Applying Lemma 5 on (32), (30), (28) and on (33), (31), (29) (and using the premise)
we have:

E1
.ϕ∼ E3, (34)

E2
.ϕ∼ E4. (35)

From the premise, (34), (35), we finally have E3
.ϕ∼ E4.

Omitted for submission 23:21

Case [E-CALL] Suppose the statement s is x.m(y). From the operational semantics, we know
that S3 = S1 and S4 = S2. Let S1(x) = lo1

1 α1, S2(x) = lo2
2 α2, S1(y) = v1 β1,

S2(y) = v2 β2, Γ(x) = τx ϕx and Γ(y) = τy ϕy. From (100) and (101), we have
{o1, o2} ⊆ τx and α1 v ϕx, α2 v ϕx, β1 v ϕy and β2 v ϕy.
Let S0

1 = {this 7→ (lo1
1 α1), z 7→ (v1 β1 t label(z))}. Let S0

2 = {this 7→ (lo2
2 α2), z 7→

(v2 β2 t label(z))}. Let
method(type(o1),m) = m(z){s1},
method(type(o2),m) = m(z){s2}.

From operational semantics, we have:
s1 (ϕ0 t α1) S0

1 H1 ⇓ S0
3 H3 and (36)

s2 (ϕ0 t α2) S0
2 H2 ⇓ S0

4 H4. (37)
Let Γ0 = {this 7→ (τx ϕx), z 7→ (τy ϕy)}. From [CALL] we have Γ0 Σ ` si : ϕ0 t ϕx,
1 ≤ i ≤ 2 and [SUB-STM] of static semantics, we have:

Γ0 Σ ` s1 : ϕ0 t α1, (38)
Γ0 Σ ` s2 : ϕ0 t α2. (39)

From the premise, we have:
Γ0 Σ ` S0

1 H1, (40)
Γ0 Σ ` S0

2 H2, (41)
S0

1 H1
.ϕ∼ S0

2 H2. (42)

Suppose α1 t α2 D ϕ. From the premise, we have that lo1
1 = lo2

2 , α1 = α2. This means
that the same method is invoked and s1 = s2. Then applying induction hypothesis on
(42), (40), (41), (38), (36), (37), we have S0

3 H3
.ϕ∼ S0

4 H4. Because the stack is not
changed by the statement x.m(y), we have S3 H3

.ϕ∼ S4 H4.

Suppose α1 t α2 6Dϕ. Then we have α1 6Dϕ and α2 6Dϕ. From Lemma 1 we have:
ϕ0 t α1 6Dϕ, (43)
ϕ0 t α2 6Dϕ. (44)

Then applying Lemma 5 on (38), (40), (36), (43) and (39), (41), (37), (44) we have:
S0

1 H1
.ϕ∼ S0

3 H3, (45)
S0

2 H2
.ϕ∼ S0

4 H4. (46)
Then from (42), (45), (46), we have S0

3 H3
.ϕ∼ S0

4 H4. Because the stack is not changed
by the statement x.m(y), we have S3 H3

.ϕ∼ S4 H4. Hence proved.

From the dynamic semantics, the labels on values relate to the reading of values ([E-

VAR] and [E-LOAD]) while the labels on variables/fields relate to both writing and reading
into a variable/field ([E-ASSIGN] and [E-STORE] in addition to [E-VAR] and [E-LOAD]). [STRONG

INDISTINGUISHABILITY] constrains the labels on variables that always cover the values that
may be read from them, therefore implying the indistinguishability in [INDISTINGUISHABILITY

BY DYNAMIC LABEL].
I Lemma 3 (Weakening Strong Indistinguishability). For any dynamic states E1, E2 and label
ϕ:

E1
.ϕ
≈ E2
` E1
` E2

 =⇒ E1
.ϕ∼ E2

I Lemma 4 (Weakening Indistinguishability by Dynamic Label). For any dynamic states E1, E2
and label ϕ:

CVIT 2016

23:22 Secure Information Flow by Access Control

E1
.ϕ∼ E2
` E1
` E2

 =⇒ E1
ϕ
≈ E2

Lemma 5 characterizes the part of the concrete state that is indistinguishable.
I Lemma 5 (Side Effect). For any statement s, labels ϕs, ϕ, static state A and dynamic
states E1, E2:

A ` s : ϕs

A ` E1
s ϕs E1 ⇓ E2

ϕs 6Dϕ

 =⇒ E1
.ϕ∼ E2

Proof. The proof is by structural induction on the derivation of s ϕs S1 H1 ⇓ S2 H2. We
present some interesting cases here.

Case [E-NEW] Suppose the statement s is x = newoc. From the operational semantics, we have
S1 the same as S2, except for a new variable x 6∈ dom(S1), i.e., S2(x) = lo (ϕs t label(x))
for some lo 6∈ dom(H1), and H2 = H1, l

o 7→ (f 7→ (null label(f))). from the definition of
[INDISTINGUISHABILITY BY DYNAMIC LABEL] and since x 6∈ dom(S1) and lo 6∈ dom(H1), we
vacuously have S1 H1

.ϕ∼ S2 H2.
Case [E-SEQ] Suppose the statement s is s1; s2. From the operational semantics, we have:

s1 ϕs E1 ⇓ E′
1 and s2 ϕs E

′
1 ⇓ E2. From the premise, we have A ` s1 : ϕs and

A ` s2 : ϕs. Applying induction hypothesis, we have E1
.ϕ∼ E′

1 and E′
1

.ϕ∼ E2. Hence
E1

.ϕ∼ E2.

6 Related Work

Information flow security has been an active research topic since the 1970s [8, 9]. The general
notion of information flow based on noninterference is introduced in [13]. Information flow
has been considered in the context of programming languages since the 1990s by Volpano et
al. [32]. A survey for early development on language-based information flow security can be
found in [27]. A classification of extensions such as secure downgrading and declassification
is discussed in [28].

In this section we review the literature related to our work in two categories: security
models and extensions to Java/CLR’s access control mechanism, and other language-based
security models with various notions for downgrading or intransitive information flow. Various
notions of intransitive noninterference have been used in literature to refer to extended
transitive noninterference theorems that accommodate various downgrading policies [25].
Downgrading techniques are orthogonal to the work presented in this paper. Although our
security model does not use any downgrading policies, it is possible to adopt such polices to
support runtime updates on security labels and information flow relations.

6.1 Extensions to Java/CLR’s Access Control Model
The stack inspection model has been formalized in [12] which does not provide a security
guarantee. History-based access control model [1] is proposed to prevent undesired influence
from authorized code to security-sensitive code. When a security-sensitive code is accessed,
all the code previously executed (and not just the code currently on the stack) must be
sufficiently authorized to access that resource, regardless of the fact that some of that code

Omitted for submission 23:23

may not be responsible for the resource access— potentially rejecting many good programs.
Moreover, it does not prevent undesired release of sensitive information to unauthorized
code that has not be executed (thus not tracked in the history). Our type system tracks the
history of information flows instead of calls, and guards against both undesired influence and
release.

Information-based access control (IBAC) [24] presents an access control policy that
is stronger than stack inspection but does not demand the stringent requirements of the
history-based model. However, IBAC considers only integrity of specified tainted sources.
They also do not present any static analysis that provides guarantees for the policy. The
separation of accessibility and capability is fundamental to our security model in order to
enforce both integrity and confidentiality requirements.

A type system to address the issue of integrity and confidentiality in the context of stack
inspection has been developed [3]. The type system preserves both confidentiality and integrity
in a Java-like language with defined access rules and permission checks. Noninterference is
proved with respect to confinement and indistinguishability in a transitive H-L policy. In
effect, they use permission checks to allow safe downgrading in the classical information flow
security models where the security level of data is given. In contrast, our security lattice can
provide different confidentiality and integrity guarantees with DAL and thus is more closely
aligned with Java’s access control model.

6.2 Other Language-based Security Models
Jif [6, 21], which follows a decentralized label model [22], is one of the first language imple-
mentations to enforce information flow security in object-oriented programming languages.
At high-level, Jif provides a transitive information flow framework via multiple ownership of
labeled information. The exceptions to this transitive policy are introduced via programmatic
constructs of declassification and downgrading. The essential contrasting feature of our
security model is the expressive power of its policies. By relaxing the restriction of transitiv-
ity, we can handle the where dimension [28] in downgrading without special programming
constructs. Note that each Jif label denotes a set of policies. Since our goal is to support
Java/CLR’s access control model where permissions are specified on code blocks, our policy
can be considered as a restriction of Jif where labels specify a single policy.

CapPCF [10] from Dimoulas et al. is an extension of Plotkin’s PCF with capabilities as
declarative policies for access control and integrity. They apply higher-order contracts for
dynamic enforcement and a security type system for static guarantee. However, they do
not discuss intransitive policies and also do not have a uniform treatment of integrity and
confidentiality. Drossopoulou and Noble [11] develop a specification language to formally
express security properties using capabilities separate to the program implementations. This
language could be used to address confidentiality and integrity but it relies on the specifier
to encode these requirements as part of the specification.

Disjunction Category (DC) labels [31] is a label format that classifies data sensitivities
in information flow control systems, with privileges that enable downgrading specified as
declassification (for confidentiality policies) and endorsement (for integrity policies). [33]
extends the DC-label system with bounded privileges and robust privileges. Boundedness
specifies predefined upper-bound and lower-bound for downgrading, and robustness disallows
downgrading if data integrity is violated. Though the notion of downgrading (of confidential
information) is not explicitly specified in our policy, the effects of boundedness and robustness
can be encoded in our dual labeled model. For instance, the passage of confidential information
has to restricted by the integrity requirements. Like our approach, their DC-labels combine

CVIT 2016

23:24 Secure Information Flow by Access Control

both confidentiality and integrity, in the way of 〈C1, I1〉 v 〈C2, I2〉 if C1 vC C2 and I1 vI I2.
However, their policy relation (can-flow-to relation) is transitive and forms a standard security
lattice.

A type system to specify robust declassification [23] considers when a trusted entity con-
trols what can be downgraded. Our approach defines a not necessarily transitive information
flow system where access control permissions are assigned to code fragments. Following
the classification developed by Sabelfeld and Sands [28], our approach uses the “where”
specification while the robust declassification approach uses the “who” specification.

Austin and Flanagan [2] have a permissive dynamic information that is a weakened
noninterference policy under the H-L two security level setting. In that policy, an assignment
of an L value under the guarded of H needs not be rejected immediately—the rejection
is postponed until that L value is actually used. This policy has been extended in [4] to
a general lattice. On one hand, like our approach, they guarantee termination-insensitive
noninterference with a proof. However, since our approach is based on DAL, the policy we
apply is not necessarily transitive, thus it is more general than a lattice-based information
flow policy.

Paragon [5] is a language to express a variety of information policies, although the focus is
on declassification, for a given Java program. It is expressed as modifiers for methods/fields
and as predicates (also called locks). Locks can be opened (i.e., set to true) or closed (i.e., set
to false). One can also expect that a lock should be open whenever a method is called. Such
policies are enforced in phases, including static type checking and policy constraint solving.

Rushby [26] considers intransitive policies and develops a noninterference theorem in
that context. The system Rushby worked on is state based, which accepts user inputs and
produces observable outputs. Therefore, the notion of noninterference is input-output based,
and moreover, the intransitive feature in [26] is expressed as channel control, which has been
classified as a type of (where-based) downgrading [28]. For instance, if H BD and D B L

but H 6BL, then H’s behaviour is allowed to interfere with L only if D is involved (i.e., D
actively participates as a downgrader). If adapted in our setting, sensitive information is
allowed to be released only via certain intermediate classes/methods, which is intuitively
weaker than what our current model can enforce.

Information flow analysis for Java has also been considered in [16, 15, 19]. They focus
on the analysis techniques for scalability and precision, and generally do not take the Java
security model and permissions into account. In contrast, we focus on security models for
programming languages. Our type system is designed to demonstrate how to enforce the
security model statically. Although it uses a context-insensitive and flow-insensitive points-to
analysis, it is possible to exploit various types of sensitivity to achieve desired scalability and
precision.

Ownership types [7] and its variants support instance-level information hiding by providing
a statically enforceable object encapsulation model based on an ownership relation. They
restrict object accessibility to protect encapsulated objects from being exposed to external
contexts, yielding a fine-grained object-based access control model [20]. Although they
provide a sense of confidentiality where runtime objects are considered as security levels that
are ordered by their ownership relation, these type systems do not consider information flow
security in general.

Omitted for submission 23:25

7 Conclusion

The stack-based access control model in Java and CLR is often used with the intent of
preventing unwanted information flow between untrusted code and security-sensitive code.
However, access control is inherently weak such that violations caused by unauthorized
information flow are not necessarily detected. We have presented a security model based on
DAL to directly capture the security intent on information flow, which tracks information flow
between code by reusing access control specification on them. Significantly, our information
flow security model retains the required intransitivity in applications that rely on the access
control model. We develop a generic type system to enforce the security model and provide
a new notion of intransitive noninterference theorem. The intransitive noninterference
generalizes the standard notion of transitive noninterference, and may support a wider range
of security labels which may not necessarily form a lattice. This provides both confidentiality
and integrity guarantees while allowing cyclic information flows among code with different
security labels. The proof of the noninterference theorem relies on a generalization of the
usual definition of indistinguishability, which considers both values and variables/fields to
account for reading from and writing to the variables/fields.

References

1 Martin Abadi and Cedric Fournet. Access control based on execution history. In Proceedings
of the 10th Annual Network and Distributed System Security Symposium, pages 107–121,
2003.

2 Thomas H. Austin and Cormac Flanagan. Permissive dynamic information flow analysis. In
Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, PLAS ’10, pages 3:1–3:12. ACM, 2010.

3 Anindya Banerjee and David A. Naumann. Stack-based access control and secure inform-
ation flow. Journal of Functional Programming, 15(2):131–177, March 2005.

4 Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. Generalizing
permissive-upgrade in dynamic information flow analysis. In Proceedings of the Ninth
Workshop on Programming Languages and Analysis for Security (PLAS), pages 15:15–15:24.
ACM, 2014.

5 Niklas Broberg, Bart van Delft, and David Sands. Paragon for practical programming with
information-flow control. In Asian Symposium on Programming Languages and Systems
(APLAS), number 8301 in LNCS, pages 217–232. Springer, 2013.

6 Stephen Chong, Andrew C. Myers, K. Vikram, and Lantian Zheng. Jif reference manual.
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html, 2009.

7 David G. Clarke, John Potter, and James Noble. Ownership types for flexible alias protec-
tion. In OOPSLA, pages 48–64. ACM, 1998.

8 Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–
243, 1976.

9 Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, 1977.

10 Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. Declarative policies
for capability control. In Proceedings of the 27th IEEE Computer Security Foundations
Symposium, pages 3–17. IEEE, 2014.

11 Sophia Drossopoulou and James Noble. How to break the bank: Semantics of capability
policies. In Integrated Formal Methods (IFM), volume 8739 of LNCS, pages 18–35. Springer,
2014.

CVIT 2016

http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

23:26 Secure Information Flow by Access Control

12 Cédric Fournet and Andrew D. Gordon. Stack inspection: Theory and variants. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 307–318, 2002.

13 Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

14 Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Going beyond
the sandbox: An overview of the new security architecture in the Java Development Kit 1.2.
In 1st USENIX Symposium on Internet Technologies and Systems, USITS’97, Monterey,
California, USA, December 8-11, 1997, 1997.

15 Jürgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for information flow control
in Java programs - A practical guide. In Software Engineering (Workshops), volume 215 of
LNI, pages 123–138. GI, 2013.

16 Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs. Int. J. Inf. Sec.,
8(6):399–422, 2009.

17 Norman Hardy. The confused deputy (or why capabilities might have been invented).
Operating Systems Review, 22(4):36–38, 1988.

18 Secure coding guidelines for Java SE. http://www.oracle.com/technetwork/java/
seccodeguide-139067.html, 2015. Document version 5.1.

19 Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini. Flowtwist: efficient context-
sensitive inside-out taint analysis for large codebases. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22),
Hong Kong, China, November 16 - 22, 2014, pages 98–108, 2014.

20 Yi Lu and John Potter. On ownership and accessibility. In the 20th European Conference
on Object-Oriented Programming, pages 99–123, 2006.

21 Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Symposium
on Principles of Programming Languages, pages 228–241, 1999.

22 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

23 Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification
and qualified robustness. Journal of Computer Security, 14(2):157–196, 2006.

24 Marco Pistoia, Anindya Banerjee, and David A. Naumann. Beyond stack inspection: A
unified access-control and information-flow security model. In IEEE Symposium on Security
and Privacy, pages 149–163. IEEE Computer Society, 2007.

25 A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In CSFW,
pages 228–238, 1999.

26 John Rushby. Noninterference, transitivity, and channel-control security policies. Technical
report, SRI International: Computer Science Laboratory, 1992.

27 A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1), 2003.

28 Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles. Journal
of Computer Security, 17(5):517–548, 2007.

29 Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, November
1993.

30 Yannis Smaragdakis and George Balatsouras. Pointer analysis. Foundations and Trends in
Programming Languages, 2(1):1–69, April 2015.

31 Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunction category
labels. In Information Security Technology for Applications - 16th Nordic Conference on
Secure IT Systems, pages 223–239, 2011.

http:// www.oracle.com/technetwork/java/seccodeguide-139067.html
http:// www.oracle.com/technetwork/java/seccodeguide-139067.html

Omitted for submission 23:27

32 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, 1996.

33 Lucas Waye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo. It’s my priv-
ilege: Controlling downgrading in DC-labels. In Security and Trust Management (STM),
volume 9331 of LNCS, pages 203–219. Springer, 2015.

A Proofs for Properties in Section 4

We give the proof of Theorm 1. From the premise, we have:

Γ Σ ` s : ϕ (47)
s ϕ S H ⇓ S1 H1 (48)

Γ Σ ` S H (49)

Proof. The proof is by structural induction on the derivation of Γ Σ ` s : ϕ. The rules
[ASSIGN], [STORE] and [NEW] form the base cases. Rules [CALL], [IF] and [SEQ] form the inductive
cases.

Case [ASSIGN] Suppose the statement s is x = e. Consider the case when e is y.f . From
[ASSIGN], for some τ , we have

Γ(x) = τ ϕ and (50)
Γ Σ ` y.f : τ ϕ.

Let Γ(y) = τ0 ϕ0. From [LOAD] and (50), for every o ∈ τ0 with Σ(o)(f) = τ1 ϕ1, we have:
τ1 ⊆ τ, (51)

ϕ1 v ϕ′, where (52)
ϕ = ϕ′ t ϕ0. (53)

Let S(y) = lo β and H(lo)(f) = v α. From (49), we have:
{o} ⊆ τ0,

{v} ⊆ τ1, where Σ(o)(f) = τ1 ϕ1, (54)
β v ϕ0 and (55)

α v ϕ1. (56)
From ` Γ Σ of (49) and from (50), we have:

ϕD label(x), (57)
label(x) v ϕ. (58)

From the operational semantics we have H1 = H and S1 is the same as S except for x,
i.e., S1(x) = v (ϕ t α t β t label(x)). To prove Γ Σ ` S1 H1, we need to show:

{v} ⊆ τ, (59)
(ϕ t α t β t label(x)) v ϕ and (60)

` S1 H1. (61)
From (54) and (51), we have (59). From (56), (52), (53) and from transitivity of v we
have α v ϕ. From (55), (53) and from transitivity of v we have β v ϕ. Then from (58)
we have (60). We now have ϕ t α t β t label(x) = ϕ. Then from (57) and (58), we have
(61). Thus Γ Σ ` S1 H1.

Similar arguments hold good for the case when s is x = y.

CVIT 2016

23:28 Secure Information Flow by Access Control

Case [STORE] Suppose the statement s is x.f = y. From [STORE] and (47), we have Γ(x) =
τ0 ϕ0 such that for every o ∈ τ0, we have:

Σ(o)(f) = τ2 ϕ2, (62)
Γ(y) = τ1 ϕ1,

τ1 ⊆ τ2, (63)
ϕ t ϕ0 t ϕ1 v ϕ2, (64)

Let S(y) = v α and S(x) = lo β. From the (49) we have:
{v} ⊆ τ1, (65)
α v ϕ1, (66)
{o} ⊆ τ0,

β v ϕ0. (67)
From the operational semantics we have S1 = S and H1 is the same as H except for the
field f of lo, i.e., H1(lo)(f) = v (ϕt β t α t label(f)), where . To prove Γ Σ ` S1 H1, we
need to show:

{v} ⊆ τ2, (68)
(ϕ t β t α t label(f)) v ϕ2 and (69)

` S1 H1. (70)
From ` Γ Σ of (49) and (62), we have

ϕ2 D label(f), (71)
label(f) v ϕ2. (72)

From (65) and (63) we have (68). From (64), (67), (66), (72) and from transitivity of v
we have (69). From (71) and (72), we have (70). Hence Γ Σ ` S1 H1.

Case [NEW] Suppose the statement s is x = newoc. From the operational semantics we have
x 6∈ dom(S), lo 6∈ dom(H), S1(x) = lo ϕ and H1(lo) = (f 7→ (null label(f))). From the
rule [NEW] and (47), we have Γ(x) = τ ϕ with o ∈ τ . We have {lo} ⊆ {o}. For a field f , let
Σ(o)(f) = τ ′ α. Then from ` Γ Σ of (49), we have ϕD label(x), label(x) v ϕ, αD label(f)
and label(f) v α. We also have {lo} ⊆ {o} ⊆ τ and null ⊆ τ ′. Thus Γ Σ ` S1 H1.

Case [CALL] Suppose the statement s is x.m(y). From (47) and [CALL], we have:
Γ Σ ` x : τ0 ϕ0 and

Γ Σ ` y : τ1 ϕ1

such that for every o ∈ τ0,

Γ0 Σ ` s1 : ϕ t ϕ0, (73)

where Γ0 = {this 7→ (τ0 ϕ0), z 7→ (τ1 ϕ1)}, and
method(type(o),m) = m(z){s1}. From (49) we have

Γ0 Σ ` S0 H (74)

where S0 = {this 7→ (lo α0), z 7→ (v α1)} such that S(x) = lo α0, S(y) = v α1, α0 v ϕ0,
α1 v ϕ1 and

s1 ϕ t α0 S0 H ⇓ S1 H1. (75)

From [SUBST], we have

Γ0 Σ ` s1 : ϕ t α0. (76)

Omitted for submission 23:29

Applying induction hypothesis on (74), (75), (76), we have

Γ0 Σ ` S1 H1. (77)

This means that (Γ0 ∪ Γ) Σ ` (S1 ∪ S) H1. Hence Γ Σ ` S H1.
Case [IF] Suppose the statement s is if x then s1 else s2. From (47) and [IF] we have:

Γ Σ ` s1 : ϕ t ϕ0, (78)
Γ Σ ` s2 : ϕ t ϕ0 and (79)

Γ Σ ` x : τ0 ϕ0

There are two sub-cases: S(x) = l α0 and S(x) = null α1. We only deal with the sub-case
S(x) = l α0. The other sub-case runs on similar lines. From (49) we have {l} ⊆ τ0 and
α0 v ϕ0. Then from [SUBST] and (78) we have

Γ Σ ` s1 : ϕ t α0. (80)

From the operational semantics, we have

s1 (ϕ t α0) S H ⇓ S1 H1. (81)

Applying induction hypothesis on (49), (80), (81), we have Γ Σ ` S1 H1.
Case [SEQ] Suppose the statement s is s1; s2. Then from (47) and [SEQ] we have Γ Σ ` s1 : ϕ

and Γ Σ ` s2 : ϕ. From the operational semantics we have s1 ϕ S H ⇓ S2 H2 and
s2 ϕ S2 H2 ⇓ S1 H1. Then from (49) and induction hypothesis we have Γ Σ ` S2 H2
and Γ Σ ` S1 H1. Hence proved.

The preservation theorem ensures that output state from a well-typed statement with
a well-formed input state is also well-formed, which is necessary for the noninterference
theorem given in the next section.

B Proofs for Properties in Section 5

B.1 Proof of Lemma 5
From the premise, we have:

Γ Σ ` s : ϕs (82)
Γ Σ ` S1 H1 (83)

s ϕs S1 H1 ⇓ S2 H2 (84)
ϕs 6Dϕ (85)

The proof is by structural induction on the derivation of s ϕs S1 H1 ⇓ S2 H2. The
rules [E-ASSIGN], [E-STORE] and [E-NEW] form the base cases. Rules [E-CALL], [E-TRUE], [E-FALSE]

and [E-SEQ] form the inductive cases.

Case [E-ASSIGN] Suppose the statement s is x = e. Consider the case when e is y.f . Let
S1(y) = l α and H1(l)(f) = v β. From operational semantics we have H1 = H2 and S1 is
the same as S2 except for x, i.e., S2(x) = v2 ϕ2 where ϕ2 = ϕs t α t β t label(x). From
Lemma 1 and (85) we have

ϕ2 6Dϕ. (86)

CVIT 2016

23:30 Secure Information Flow by Access Control

Let S1(x) = v1 ϕ1. Again from Lemma 1 and (86) we have ϕ1 t ϕ2 6Dϕ. Then by the
definition of [INDISTINGUISHABILITY BY DYNAMIC LABEL], there is no obligation to be met
by S1(x) and S2(x). Hence S1 H1

.ϕ∼ S2 H2.
The case for x = y runs on similar lines.

Case [E-STORE] Suppose the statement s is x.f = y. Let S1(x) = l α and S(y) = v β. From
operational semantics we have S1 = S2 and H1 is the same as H2 except for the value
of field f at location l, i.e., H2(l)(f) = v2 ϕ2, where ϕ2 = ϕs t α t β t label(f). From
Lemma 1 and (85) we have

ϕ2 6Dϕ. (87)

Let H1(l)(f) = v1 ϕ1. Again from Lemma 1 and (87) we have ϕ1 t ϕ2 6Dϕ. Then by the
definition of [INDISTINGUISHABILITY BY DYNAMIC LABEL], there is no obligation to be met
by H1(l)(f) and H2(l)(f). Hence S1 H1

.ϕ∼ S2 H2.
Case [E-NEW] Suppose the statement s is x = newoc. From the operational semantics, we have

S1 the same as S2, except for a new variable x 6∈ dom(S1), i.e., S2(x) = lo (ϕs t label(x))
for some lo 6∈ dom(H1), and H2 = H1, l

o 7→ (f 7→ (null label(f))). From the definition of
[INDISTINGUISHABILITY BY DYNAMIC LABEL] and since x 6∈ dom(S1) and lo 6∈ dom(H1), we
vacuously have S1 H1

.ϕ∼ S2 H2.
Case [E-SEQ] Suppose the statement s is s1; s2. From the operational semantics, we have:

s1 ϕs E1 ⇓ E′
1 and (88)

s2 ϕs E
′
1 ⇓ E2. (89)

Applying static semantics on (82), we have:
A ` s1 : ϕs and (90)

A ` s2 : ϕs. (91)
Then applying induction hypothesis on (90), (83), (88), (85) and (91), (83), (89), (85),
we have:

E1
.ϕ∼ E′

1,

E′
1

.ϕ∼ E2.

Hence E1
.ϕ∼ E2.

Case [E-TRUE] Suppose the statement s is if x then s1 else s2. Let S1(x) = l α where l 6= null.
The arguments when l = null are on the same lines. From the operational semantics we
have:

s1 ϕs t α E1 ⇓ E2. (92)

Let Γ(x) = τ0 ϕ0. From ` Γ Σ of (83), we have α v ϕ0. From static semantics of [IF]

and [SUB-STM], we have:

A ` s1 : ϕs t α. (93)

From Lemma 1, we have:

ϕs t α 6Bϕ. (94)

Now by applying induction hypothesis on (93), (83), (92), (94), we have E1
.ϕ∼ E2.

Case [E-FALSE] Similar to the case of [E-TRUE].
Case [E-CALL] Suppose the statement s is x.m(y). Let S1(x) = lo α, S(y) = v β and

method(type(o),m) = m(z){s1}. From the operational semantics we have:

s1 ϕs t α S0 H1 ⇓ S′
0 H2 (95)

Omitted for submission 23:31

where S0 = {this 7→ lo α, z 7→ v β}. Let Γ(x) = τ0 ϕ0 and Γ(y) = τ1 ϕ1. We have
{lo} ⊆ τ0, α v ϕ0, {v} ⊆ τ1 and β v ϕ1. Let Γ0 = {this 7→ τ0 ϕ0, z 7→ τ1 ϕ1}. Then we
have:

Γ0 Σ ` S0 H1. (96)

From [CALL] and [SUB-STM] of static semantics, we have:

Γ0 Σ ` s1 : ϕs t α. (97)

Applying Lemma 1 on (85), we have:

ϕs t α 6Bϕ. (98)

Now by applying induction hypothesis on (97), (96), (95) and (98), we have S0 H1
.ϕ∼

S′
0 H2. Hence we have S1 H1

.ϕ∼ S2 H2. Thus proved.

B.2 Proof for Lemma 2
The proof is by structural induction on the derivation of s ϕ0 S1 H1 ⇓ S3 H3. The rules
[E-ASSIGN], [E-STORE] and [E-NEW] form the base cases. Rules [E-CALL], [E-TRUE], [E-FALSE] and
[E-SEQ] form the inductive cases.

From the premise, we have:

S1 H1
.ϕ∼ S2 H2 (99)

Γ Σ ` S1 H1 (100)
Γ Σ ` S2 H2 (101)
Γ Σ ` s : ϕ0 (102)

s ϕ0 S1 H1 ⇓ S3 H3 (103)
s ϕ0 S2 H2 ⇓ S4 H4 (104)

Case [E-ASSIGN] Suppose the statement s is x = y.f . From the operational semantics, we know
that only the stack is modified. This means that we have H3 = H1 and H4 = H2. S1 and
S2 are the same as S3 and S4 respectively, except for the value of x. Let S1(y) = l1 α1,
S2(y) = l2 α2 and H1(l1)(f) = v1 β1, H2(l2)(f) = v2 β2. From the operational semantics
we have S3(x) = v1 ϕ1 and S4(x) = v2 ϕ2 where ϕ1 = (ϕ0 t α1 t β1 t label(x)) and
ϕ2 = (ϕ0 t α2 t β2 t label(x)).
Suppose ϕ1 t ϕ2 D ϕ. From Lemma 1, we have α1 D ϕ, α2 D ϕ, β1 D ϕ and β2 D ϕ. Then
by applying (99) we have v1 = v2, β1 = β2, l1 = l2 and α1 = α2. Hence S3(x) = S4(x).
Thus S3 H3

.ϕ∼ S4 H4.
The arguments for x = y run on similar lines.

Case [E-STORE] Suppose the statement is x.f = y. From the operational semantics, we know
that only the heap is changed. This means that S3 = S1 and S4 = S2. Let S1(x) = l1 α1,
S2(x) = l2 α2, S1(y) = v1 β1 and S2(y) = v2 β2. From operational semantics, we have
H3 and H4 to be the same as H1 and H2 respectively, except that H3(l1)(f) = v1 ϕ1 and
H4(l2)(f) = v2 ϕ2 where ϕ1 = (ϕ0tα1tβ1t label(f)) and ϕ2 = (ϕ0tα2tβ2t label(f)).
Suppose ϕ1 t ϕ2 D ϕ. From Lemma 1, we have α1 D ϕ, α2 D ϕ, β1 D ϕ and β2 D ϕ. Then
by applying (99) we have v1 = v2, β1 = β2, l1 = l2 and α1 = α2. Hence H3 = H4. Thus
S3 H3

.ϕ∼ S4 H4.

CVIT 2016

23:32 Secure Information Flow by Access Control

Case [E-NEW] Suppose the statement s is x = newo c. From the operational semantics, we
know that H3 and H4 are the same as H1 and H2 respectively, except for a new introduced
location. From [E-NEW], a value of the form (null label(f)) are assigned to every field f of
the added location in H3 and H4. Also S1 and S2 are the same as S3 and S4 respectively,
except for a new introduced variable x. From [E-NEW] S3(x) = l (ϕ0 t label(x)) and
S4 = l′ (ϕ0 t label(x)). Owing to the equivalence due to renaming of locations, we have
S3(x) = S4(x) and H3(l)(f) = H4(l′)(f) for every field f . Thus S3 H3

.ϕ∼ S4 H4.
Case [E-SEQ] Suppose the statement s is s1; s2. From (103), (104) and the operational

semantics we have:
s1 ϕ0 E1 ⇓ E′

1, (105)
s2 ϕ0 E

′
1 ⇓ E3, (106)

s1 ϕ0 E2 ⇓ E′
2 and (107)

s2 ϕ0 E
′
2 ⇓ E4. (108)

From static semantics we have:
A ` s1 : ϕ0 and (109)

A ` s2 : ϕ0. (110)
Applying induction hypothesis on (99), (100), (101), (109), (105) and (107), we have:

E′
1

.ϕ∼ E′
2. (111)

Applying Theorem 1 on (100), (109), (105), and on (101), (110), (106) we have:
A ` E′

1 and (112)
A ` E′

2. (113)
Now applying induction hypothesis on (111), (112), (113), (110), (106) and (108), we
have E3

.ϕ∼ E4. Hence proved.
Case [E-TRUE] Suppose the statement is if x then s1 else s2. Let S1(x) = l1 α1 and S2(x) =

l2 α2.
Suppose α1 t α2 D ϕ. From (99), we have l1 = l2 and α1 = α2. Consider the case when
l1 6= null (same as l2 6= null). The case for l1 = null (same as l2 = null) follows on the
same lines. Then from operational semantics we have:

s1 ϕ0 t α1 E1 ⇓ E3 and (114)
s1 ϕ0 t α2 E2 ⇓ E4. (115)

Let Γ(x) = τ γ. From (100), (101) and the static semantics we have A ` s1 : ϕ0 t γ,
where α1 v γ and α2 v γ. Applying [SUB-STM], we have:

A ` s1 : ϕ0 t α1 and (116)
A ` s1 : ϕ0 t α2. (117)

Now since α1 = α2, applying induction hypothesis on (99), (100), (101), (114), (115) and
(122), we have E3

.ϕ∼ E4.
Suppose α1 t α2 6Dϕ. Then from Lemma 1 we have α1 6Dϕ and α2 6D. This implies that:

ϕ0 t α1 6Dϕ, (118)
ϕ0 t α2 6Dϕ. (119)

Consider the case when l1 6= null and l2 = null. The other cases follow on the same lines.
We have:

s1 ϕ0 t α1 E1 ⇓ E3 and (120)
s2 ϕ0 t α2 E2 ⇓ E4. (121)

Omitted for submission 23:33

Let Γ(x) = τ γ. From (100), (101) and the static semantics we have A ` s1 : ϕ0 t γ and
A ` s2 : ϕ0 t γ, where α1 v γ and α2 v γ. Applying [SUB-STM], we have:

A ` s1 : ϕ0 t α1 and (122)
A ` s2 : ϕ0 t α2. (123)

Applying Lemma 5 on (122), (100), (120), (118) and on (123), (101), (121), (119) we
have:

E1
.ϕ∼ E3, (124)

E2
.ϕ∼ E4. (125)

From (99), (124), (125), we finally have E3
.ϕ∼ E4.

Case [E-FALSE] Similar to the case of [E-TRUE].
Case [E-CALL] Suppose the statement s is x.m(y). From the operational semantics, we know

that S3 = S1 and S4 = S2. Let S1(x) = lo1
1 α1, S2(x) = lo2

2 α2, S1(y) = v1 β1,
S2(y) = v2 β2, Γ(x) = τx ϕx and Γ(y) = τy ϕy. From (100) and (101), we have
{o1, o2} ⊆ τx and α1 v ϕx, α2 v ϕx, β1 v ϕy and β2 v ϕy.
Let S0

1 = {this 7→ (lo1
1 α1), z 7→ (v1 β1 t label(z))}. Let S0

2 = {this 7→ (lo2
2 α2), z 7→

(v2 β2 t label(z))}. Let

method(type(o1),m) = m(z){s1},

method(type(o2),m) = m(z){s2}.

From operational semantics, we have:
s1 (ϕ0 t α1) S0

1 H1 ⇓ S0
3 H3 and (126)

s2 (ϕ0 t α2) S0
2 H2 ⇓ S0

4 H4. (127)
Let Γ0 = {this 7→ (τx ϕx), z 7→ (τy ϕy)}. From [CALL] we have Γ0 Σ ` si : ϕ0 t ϕx,
1 ≤ i ≤ 2 and from [SUB-STM] of static semantics, we have:

Γ0 Σ ` s1 : ϕ0 t α1, (128)
Γ0 Σ ` s2 : ϕ0 t α2. (129)

From (100) and (101), we have:
Γ0 Σ ` S0

1 H1, (130)
Γ0 Σ ` S0

2 H2. (131)
From (99), we have:

S0
1 H1

.ϕ∼ S0
2 H2. (132)

Suppose α1 t α2 D ϕ. Applying (99), we have that lo1
1 = lo2

2 , α1 = α2. This means that

the same method is invoked and s1 = s2. Then applying induction hypothesis on (132),
(130), (131), (128), (126), (127), we have S0

3 H3
.ϕ∼ S0

4 H4. Because the stack is not
changed by the statement x.m(y), we have S3 H3

.ϕ∼ S4 H4.

Suppose α1 t α2 6Dϕ. Then we have α1 6Dϕ and α2 6Dϕ. From Lemma 1 we have:
ϕ0 t α1 6Dϕ, (133)
ϕ0 t α2 6Dϕ. (134)

Then applying Lemma 5 on (128), (130), (126), (133) and (129), (131), (127), (134) we
have:

S0
1 H1

.ϕ∼ S0
3 H3, (135)

S0
2 H2

.ϕ∼ S0
4 H4. (136)

Then from (132), (135), (136), we have S0
3 H3

.ϕ∼ S0
4 H4. Because the stack is not

changed by the statement x.m(y), we have S3 H3
.ϕ∼ S4 H4. Hence proved.

CVIT 2016

23:34 Secure Information Flow by Access Control

B.3 Proof of Lemma 3
From the premise, we have:

S1 H1
.ϕ
≈ S2 H2 (137)
` S1 H1 (138)
` S2 H2 (139)

We only prove for the case of stack variables. The case of fields follows on the same lines.
Let S1(x) = v1 α1 and S2 = v2 α2. Suppose α1 t Dϕ. From (138) and (139), we have
label(x) v α1 t α2. Then from Lemma 1, we have that label(x) D ϕ. Now from (137), we
have that S1(x) = S2(x). Hence S1 H1

.ϕ∼ S2 H2.

B.4 Proof of Lemma 4
From the premise, we have:

S1 H1
.ϕ∼ S2 H2 (140)
` S1 H1 (141)
` S2 H2 (142)

We only prove for the case of stack variables. The case of fields follows on the same lines.
Let S1(x) = v1 α1 and S2 = v2 α2. Ssuppose label(x) = ϕ. From (141) and (142), we have
α1 D label(x) and α2 D label(x). This implies that α1 t α2 D ϕ. Then from (140), we have
S1(x) = S2(x). Hence S1 H1

ϕ
≈ S2 H2.

	Introduction
	Access Control Model in Java/CLR
	Secure Information Flow by Access Control
	Contributions

	Dual-Access Labels
	Extension for Antisymmetric Security Policy

	Type System
	Syntax
	Static Semantics

	Dynamic Semantics
	Operational Semantics
	Subject Reduction

	Intransitive Noninterference
	Related Work
	Extensions to Java/CLR's Access Control Model
	Other Language-based Security Models

	Conclusion
	Proofs for Properties in Section 4
	Proofs for Properties in Section 5
	Proof of Lemma 5
	Proof for Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

