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Abstract
In this work, we demonstrate that augment-001
ing a dataset with examples that are far from002
the initial training set can lead to significant003
improvements in test set accuracy. We draw004
on the similarity of deep neural networks and005
nearest neighbor models. Like a nearest neigh-006
bor classifier, we show that, for any test exam-007
ple, augmentation with a single, nearby train-008
ing example of the same label–followed by009
retraining–is often sufficient for a BERT-based010
model to correctly classify the test example.011
In light of this result, we devise FRANN, an012
algorithm that attempts to cover the embed-013
ding space defined by the trained model with014
training examples. Empirically, we show that015
FRANN, and its variant FRANNK, construct016
augmented datasets that lead to models with017
higher test set accuracy than either uncertainty018
sampling or a random augmentation baseline.019

1 Introduction020

Despite super-human performance on benchmark021

datasets, state-of-the-art natural language process-022

ing models are far from true language understand-023

ing. Their brittleness has been demonstrated in024

many ways: simple rules can be utilized to cre-025

ate examples that cause trained models to fail, and026

methods that exploit model confidence can be used027

to generate nonsensical adversaries (Ribeiro et al.,028

2018; Alzantot et al., 2018; Jia and Liang, 2017).029

Modern techniques, coupled with manual effort,030

have even been used to generate examples on which031

production models fail (Ribeiro et al., 2020).032

These issues are even more pronounced in cases033

when training data is scarce. Small training sets are034

common when developing domain-specific models,035

e.g., when building business-grade conversational036

systems (Coucke et al., 2018). In these cases, devel-037

opers must construct their own training sets, which038

is costly and may introduce undesirable artifacts.039

A family of approaches for combating brittle-040

ness, especially in scarce-data regimes, is data aug-041

mentation. A data augmentation algorithm is a 042

mechanism for adding additional examples to the 043

training set. The hope is that a model trained on the 044

augmented data will be less prone to failure than a 045

model trained on the original set. Algorithms for 046

data augmentation in NLP have enjoyed success, 047

but they are often specific to particular types of 048

model failures and may require significant manual 049

effort (Min et al., 2020; Li et al., 2020; McCoy 050

et al., 2019; Kaushik et al., 2020). 051

Our goal is to develop a characterization of the 052

examples, which upon augmentation, are likely to 053

significantly improve test set accuracy. Drawing 054

on the similarity between deep neural models and 055

nearest neighbor models (Cohen et al., 2019), we 056

study a BERT-based classifier, the examples on 057

which it fails, and the nearest neighbors of those 058

failures in a held-out set of examples. Similar to 059

a 1-nearest neighbor classifier, we show that aug- 060

menting a training set with a single nearest neigh- 061

bor of a failed test example has a significant impact 062

on the correct classification of the failure: in 70% 063

of experiments, augmentation with a single nearest 064

neighbor, followed by retraining, leads to correct 065

classification of the failure by a BERT-based clas- 066

sifier. 067

Bolstered by this result, we introduce FRANN, 068

a data augmentation policy that attempts to “cover" 069

the relevant regions of embedding space with train- 070

ing examples, so that nearest neighbor classifica- 071

tion is effective. Specifically, FRANN operates by 072

iteratively augmenting a training set with the most 073

different example—measured by Euclidean dis- 074

tance in the model’s embedding space—from the 075

existing training examples. We compare FRANN, 076

and its variant, FRANNK, to uncertainty sampling 077

(active learning) and random augmentation from a 078

held-out set (Settles, 2012). Our experiments show 079

that augmentation with these far-away examples 080

leads to larger gains in test set accuracy than the 081

competing methods. 082
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2 Background083

In this work, we study methods for data augmenta-084

tion. In particular, we are concerned with scenarios085

in which the amount of labeled data is small. To086

ground our study, we focus on intent classification087

because it is a key step in building domain-specific088

conversational agents (Coucke et al., 2018). In089

practice, building such models are plagued by hav-090

ing very little training data1. At a high-level, in091

intent classification, the input is a natural language092

clause—called an utterance—and the goal is to093

predict its label.094

We experiment with two datasets: Bank-095

ing77 (Casanueva et al., 2020a) and CLINC (Lar-096

son et al., 2019). Banking77 includes 10,003 train-097

ing utterances and 3080 test utterances unevenly098

distributed among 77 classes. CLINC includes099

1500 in scope training utterances and 4500 test100

utterances evenly distributed among 150 classes.101

Like previous work, we ignore CLINC’s out of102

scope utterances (Lee et al., 2021). For both103

datasets, we follow previous work and downsample104

the training data to a maximum of 10 utterances105

per class to mimic real-world intent classification106

settings (Anaby-Tavor et al., 2020; Larson et al.,107

2019; Casanueva et al., 2020b). The excluded train-108

ing utterances are referred to as the held out train109

set, and we use them for augmentation.110

3 Experiments111

Recall that our goal is to characterize the examples112

which, when added to a dataset, yield the largest113

improvements in test set accuracy. In developing114

this characterization, we are inspired by the sim-115

ilarity between deep neural classifiers and latent116

space 1-nearest neighbor classifiers. In this section,117

we examine this similarity in the context of data118

augmentation.We begin by defining notation.119

Notation. Let D = {(xi, yi)}Ni=1 be a dataset120

of pairs of points, x ∈ X , and their labels y ∈121

{1, · · · ,K}, and let f : X → {1, · · · ,K} be a122

classification model. In our experiments we distin-123

guish between train, test, and a held-out dataset us-124

ing subscripts, e.g., Dtrain. For some dataset D, let125

D+ and D− be the set of point-label pairs that are126

classified correctly and incorrectly by the model,127

respectively, i.e., D+ = {(x, y) ∈ D|f(x) = y}128

and where y is the ground-truth label for the point129

1A handful of industry practitioners building such system
confirm this claim.

x. Finally, let D[y′] = {(x, y) ∈ D|y = y′}, i.e., 130

all examples in D with label y′. Throughout our 131

experiments we represent each example, x, as its 132

encoding in a trained model’s final, pre-softmax 133

layer. We measure distance between the embedded 134

examples using Euclidean distance. 135

3.1 Augmentation with a single example. 136

Consider a 1-nearest neighbor classifier and a mis- 137

classified point-label pair, (x, y) ∈ D−test. In order 138

to correctly classify x, a new data point-label pair, 139

(x?, y) must be added to the training set such that, 140

(x?, y) = argmin
(x′,y′)∈D′

train

d(x′, x) 141

where d(·, ·) represents Euclidean distance, and 142

D′train is the original training set augmented with 143

a single example, (x?, y). In words, x? must be 144

closer to x than any other point in the training set, 145

and it must have label y. 146

We hypothesize that deep neural networks ex- 147

hibit similar behavior with respect to data augmen- 148

tation. Namely, that augmenting a dataset with a 149

misclassified point’s nearest neighbor (with respect 150

to the model’s embedding space), and training a 151

new model on the augmented dataset, will yield a 152

corrected prediction. Note that after augmentation, 153

the training set only has one additional point. 154

To test this hypothesis, we fine-tune a (Hugging- 155

Face) BERT-base-uncased model (Devlin et al., 156

2018; Wolf et al., 2020) with an additional se- 157

quence classification layer on the (downsampled) 158

CLINC training data (Section 2).We use the trained 159

model to predict the labels of points in the test 160

set, Dtest. For each misclassifed point-label pair 161

(x, y) ∈ D−test, we search for the nearest neighbor 162

of x among the points in the held out training set 163

of class y, i.e., 164

(z?, y) = argmin
(z,y)∈Dheldout[y]

d(z, x). 165

If z? is closer to x than any point in the training 166

set, we create a new dataset, D′train = Dtrain ∪ 167

{(z?, y)}. We refer to this method of selecting 168

examples for augmentation as KNN. Moreover, 169

if such an augmentation can be made, we train 170

a (new) model on the augmented dataset and check 171

whether the new model correctly classifies x, i.e., 172

f ′(x) = y. We repeat this process for all test points 173

incorrectly classified by the initial model. 174
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Result. Despite being trained on only 10% of175

the training examples, the initial fine-tuned model176

achieves 89% in-scope accuracy. The process177

described above (KNN) yields 297 augmented178

datasets. In 212 out of 297 experiments (71.4%),179

adding the nearest neighbor of the incorrectly clas-180

sified test point, x, and re-training, yields a new181

model that correctly classifies x. This result demon-182

strates the potential impact of a single augmented183

example (especially in low-data regimes) and pro-184

vides evidence of the similarity between our origi-185

nal model and a 1-nearest neighbor classifier in its186

learned latent space, even after re-training.187

3.2 Augmenting with Multiple Examples188

In our next experiment, we test whether the same189

phenomenon holds as the number of examples190

added to the training set grows. Since training191

alters the representations of all examples, this may192

break many of the nearest-neighbor relationships193

that exist before augmentation and re-training.194

We conduct the following experiment with195

CLINC. We select a batch of misclassified exam-196

ples from the test set, and for each example, we add197

a single held-out example to the training set using198

KNN (as above, Section 3.1). Thus, the number of199

examples added to the train set is exactly equal to200

the number of examples in the batch. The selected201

examples from the held-out set are all added to the202

train set simultaneously. Afterward, we train a new203

model on the augmented train set and calculate the204

fraction of test points from the batch that are cor-205

rectly classified by the new model. We compare206

the examples selected by KNN with a policy that,207

for each test example of label y in the batch, se-208

lects a single example uniformly at random from209

Dheldout[y], i.e., the examples in the held-out set210

of label y. The result is visualized for batches of211

size {10, 30, 50, · · · , 290} in Figure 1. The chart212

shows that augmentation via KNN yields models213

that correctly classify ∼80% of previously misclas-214

sified target examples, regardless of the number215

examples added to the training set. This is consis-216

tently ∼2x better than selecting random examples217

of the same classes as the target test examples. We218

observe a similar trend when this experiment is re-219

peated on the Banking data (Figure 3, Appendix).220

3.3 Augmentation Policies221

The experiments above show that augmenting a222

training set with the nearest neighbor of a failing223

test example (i.e., KNN) often leads to correct clas-224
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Figure 1: Fraction Correct - CLINC. The fraction of
incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training.

sification of that test example after retraining. How- 225

ever, KNN requires: 1. knowledge of failing test 226

points, and 2. held-out, labeled data, neither of 227

which is likely to be available. On the other hand, 228

recent work shows that augmentation via retrieval 229

from an unlabeled corpus can be effective for im- 230

proving test accuracy (Du et al., 2020). Thus, in our 231

final experiment, we study a variation of KNN for 232

settings in which an unlabeled corpus is available. 233

We propose FRANN, The FaRthest Nearest 234

Neighbor algorithm, that attempts to "cover" the 235

latent space with examples. Intuitively, by cover- 236

ing the space, it is more likely for each test point 237

to have a nearby neighbor in the training set. By 238

the experiments above, this is likely to increase 239

test set accuracy. To cover the space, FRANN se- 240

lects unlabeled examples, greedily, in decreasing 241

order of distance to their nearest neighbor in the 242

training set. We also test two variants: FRANNK 243

and FRAALL, which greedily select unlabeled ex- 244

amples in descending order of average distance to 245

their closest k neighbors, and to all training exam- 246

ples, respectively. We compare our algorithms to 247

an uncertainty sampling (ENTROPY), i.e., greedily 248

selecting unlabeled examples in descending order 249

of entropy in the trained model’s corresponding 250

softmax distribution (Settles, 2012). As a baseline, 251

we also consider an algorithm that randomly selects 252

unlabeled examples (RANDOM). In practice, the 253

augmented unlabeled examples can be automati- 254

cally labeled by a separate model (Du et al., 2020) 255

or by hand. For simplicity, we use the ground-truth 256

labels. We report test set accuracy as the number 257

of augmented examples increases. 258
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Figure 2: Test Set Accuracy - Banking. Test set accu-
racy as a function of the number of augmented exam-
ples for Banking dataset.

Figure 2 visualizes the result for the Bank-259

ing dataset. The plot shows that FRANN and260

FRANNK are top performers, achieving the high-261

est accuracy when 500 examples are used for262

augmentation. The gap between FRANN and263

FRANNK and the rest of the policies increases264

with batch size. Interestingly, FRAALL performs265

worst for many batch sizes. Similar results for266

CLINC appear in the appendix (Figure 4).267

3.4 Discussion268

Our experiments underscore the value of augment-269

ing a dataset with points that are far from the exist-270

ing training examples. This is opposite of recent ap-271

proaches, which augment a dataset with examples272

that are similar to the training set (Anaby-Tavor273

et al., 2020; Du et al., 2020). Understandably, aug-274

menting with similar examples is safe; i.e., nearby275

examples are more likely to be in-domain and rel-276

evant. However, our work suggests that such a277

conservative approach is likely excluding examples278

that could significantly improve accuracy. There-279

fore, we conjecture that augmenting a dataset with280

both nearby and far-away points is likely to yield281

the largest improvements in test set accuracy.282

Limitations. We raise a handful of limitations of283

our results. First, we only test a single model (fine-284

tune BERT-base uncased) on a single task (intent285

classification). Given the similarities between neu-286

ral and nearest neighbor models, we are optimistic287

about similar results holding for other tasks. Next,288

to mimic real-world scenarios, the training sets we289

use are small. Improvements from augmentation290

are likely more modest for larger training sets. Fi-291

nally, we note that all of the examples we use for 292

augmentation are (approximately) drawn from the 293

test distribution. In practice, this would not be the 294

case for a large unlabeled corpus. Despite this, we 295

argue that our experiments are interesting in their 296

own right, and demonstrate the value of far-away 297

examples in data augmentation. 298

4 Related Work 299

Some studies of data augmentation in NLP in- 300

troduce syntactic and semantic perturbations of 301

training examples, which when used during aug- 302

mentation, improves model robustness (Min et al., 303

2020; Li et al., 2020; McCoy et al., 2019). Related 304

work demonstrates that augmenting a training set 305

with counterfactual examples improves classifier 306

performance, especially on counterfactual test ex- 307

amples (Kaushik et al., 2020). Neural language 308

models have also been used to create new training 309

examples by replacing tokens in original training 310

instances (Kobayashi, 2018). Unlike these works, 311

our method of augmentation specifically considers 312

the model’s encoding of the training set. 313

One closely related exploration studies nearest 314

neighbors of misclassified test examples with re- 315

spect to the train set (Rajani et al., 2020). Unlike 316

our study, they focus on analyzing model predic- 317

tions and finding labeling errors. They test the 318

effect of excluding groups nearest neighbors from 319

training, while we focus on augmentation. More- 320

over, we present new augmentation policies. 321

Many recent studies demonstrate the effective- 322

ness of utilizing nearest neighbors for various neu- 323

ral prediction tasks. For example, in sequence label- 324

ing, the nearest neighbors of a test sequence can be 325

leveraged to accurately label the sequence (Wise- 326

man and Stratos, 2019). A similar phenomenon 327

was demonstrated in language modeling (Khan- 328

delwal et al., 2020). Like our work, in both of 329

these cases, nearest neighbors are computed using 330

distance in the learned latent space of a language 331

model. However, both of these works focus on test 332

time prediction using nearest neighbors rather than 333

data augmentation. Other work with similar flavor 334

includes neural machine translation, language gen- 335

eration, and text classification approaches that ex- 336

plicitly retrieve training examples at test time (Gu 337

et al., 2018; Zhang et al., 2018; Weston et al., 2018; 338

Wallace et al., 2018). Related work studies influ- 339

ence functions and their role in interpretability in 340

NLP (Koh and Liang, 2017; Han et al., 2020). 341
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Figure 3: Fraction Correct - Banking. The fraction
of incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training for
Banking dataset.

Appendix532

A Augmenting with Multiple Examples533

We follow the same methodology as presented in534

Section 3.2—augmenting with multiple examples535

in increasing batch sizes—but experiment with536

the Banking dataset. The result is visualized for537

batches of size {10, 30, 50, · · · , 490} in Figure 3.538

Similar to on CLINC, the chart shows that aug-539

mentation via KNN leads to models that correctly540

classify∼80% of previously misclassified target ex-541

amples, regardless of the number examples added542

to the training set. This is consistently better than543

selecting random examples of the same classes as544

the target test examples.545

B Other Augmentation Policies546

In Section 3.3, we proposed 3 augmentation547

policies—FRANN, FRANNK and FRAALL—548

and compared them with uncertainty sampling549

(ENTROPY) and a RANDOM baseline. We perform550

the same for the CLINC dataset and visualize the551

result in Figure 4. The plot shows that FRANNK552

achieves the highest maximum held-out test ac-553

curacy (when 250 zpoints are augmented to the554

training set). After all 290 augmentations are made555

FRANNK and FRANN achieve similarly high ac-556

curacy, followed closely by ENTROPY. We hy-557

pothesize that our approach outperforms ENTROPY558

because deep-neural networks are notorious for559

having uncalibrated confidences (Guo et al., 2017;560

Feng et al., 2018). All policies outperform RAN-561

DOM augmentation. Together, the results reinforce562
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Figure 4: Test Set Accuracy - CLINC. The test set
accuracy as a function of the number of augmentation
points for data augmentation policies.

the similarity between our BERT-based sequence 563

classifier and a 1-nearest neighbor classier with 564

respect to data augmentation, and suggest that aug- 565

mentation with examples that are far away from the 566

training examples helps improve test set accuracy 567

more than the other methods. 568
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