
GraalVM and Oracle Database Multilingual
Engine: languages and compilers in the Wild

And a Sneak Peek into other stuff happening at Oracle Labs Zurich

Dr. Lucas Braun
Consulting Technical Program Manager
Oracle Labs Zurich

December 20th 2023

Lucas Braun

• Consulting Technical Program Manager @ Oracle Labs
• BSc, MSc and PhD in Computer Science from ETH
• Started at Oracle Labs in 2017
• Working on Oracle Database Multilingual Engine (MLE)

2 Copyright © 2023, Oracle and/or its affiliates

lucas-braun-277102153 @lucasbraun87

https://www.linkedin.com/in/lucas-braun-277102153/
https://twitter.com/lucasbraun87

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates3

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates4

GraalVM magic in one tweet

5 Copyright © 2023, Oracle and/or its affiliates

Why GraalVM ?

6 Copyright © 2023, Oracle and/or its affiliates

High Performance

Optimize application
performance with GraalVM
compiler

Fast Startup

Compile your application AOT
and start instantly

Open Source

See what’s inside, track
features progress, contribute

Polyglot

Mix & match languages with
seamless interop

GraalVM: Multi-Lingual, Embeddable Virtual Machine

7

Multi-Lingual

Embeddable

Twitter gets between
12% (CE) and 24% (EE)

improvement by
running on Graal. This
directly translates to

cost savings!

Copyright © 2023, Oracle and/or its affiliates

Production-Ready

8 Copyright © 2023, Oracle and/or its affiliates

GraalVM Architecture

9 Copyright © 2023, Oracle and/or its affiliates

Java HotSpot VM

GraalVM JIT Compiler

Truffle Languages

Language Implementation API (Truffle Framework)JVM Languages

Clojure

LLVM Langs

GraalVM is Open-source and Free to use

10 Copyright © 2023, Oracle and/or its affiliates

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates11

GraalVM Architecture

12 Copyright © 2023, Oracle and/or its affiliates

Java HotSpot VM

GraalVM JIT Compiler

Truffle Languages

Language Implementation API (Truffle Framework)JVM Languages

Clojure

LLVM Langs

GraalVM compiler

§ Java JIT Compiler implemented itself in Java

§ Highly Modular Design

§ Novel Optimizations

§ Foundation for more than 60 publications at premier venues (PLDI, CGO, OOPSLA, …)

§ Strong open source development and community

Copyright © 2023, Oracle and/or its affiliates13

GraalVM compiler

§ Highly Optimizing

§ Based on Deoptimization & Speculation

§ Various Optimizations
Peephole (Several Levels)
Constant Folding
Inlining

Partial Escape Analysis
Lock Elimination
Duplication
Loop
Unrolling/Unswitching/Peeling/LICM/…
Null Check Elimination

Constant InstanceOf Checks
SafeVector Elimination
Compressed Vectorers
Biased Locking
Speculative Optimizations

Only compile executed code
Only compile executed exception paths
Class Hierarchy Analysis
….

14 Copyright © 2023, Oracle and/or its affiliates

Escape Analysis

§ Compiler analysis used in optimizations
Objects are always allocated
Objects “escape” the current scope if they leave the compiler’s field of view (i.e., the current
compilation unit)

Escaping means
Used as a parameter
Written to static field
Return value
Thrown
….

Copyright © 2023, Oracle and/or its affiliates15

Escape Analysis Example
static class Example {

 int x;
 public Example(int x) { this.x = x; }
 }
 static Object SideEffect;
 static final Example Cached = new Example(12);
 public Example foo(int x) {
 Example e = new Example(x);
 if (e.x % 2 == 0) {
 System.out.println("Foo");
 } else {
 System.out.println(e);
 }
 if (e.x % 3 == 0) {
 SideEffect = e;
 }
 if (e.x == 17) {
 return e;
 }
 return Cached;
 }

Escape

Escape

Escape

Allocation

Copyright © 2023, Oracle and/or its affiliates16

Escape Analysis

§ What to do with this knowledge

Object Allocations are expensive
Want to avoid them if possible

Scalar Replacement

Replace the usage of an object with its fields

Copyright © 2023, Oracle and/or its affiliates17

Scalar Replacement

static class Vector {
 int x, y;
 public Vector(int x, int y) {
 this.x = x;
 this.y = y;
 }
 Vector add(Vector p) {
 return new Vector(this.x + p.x, this.y +
p.y);
 }
 int abssq() {
 return x * x + y * y;
 }
}

static int vectorUsage(int x1, int y1, int x2, int y2)
{
 Vector p1 = new Vector(x1, y1);
 Vector p2 = new Vector(x2, y2);
 return p1.add(p2).abssq();
}

static int vectorUsageInlined(int x1, int y1, int x2,
int y2) {
 Vector p1 = new Vector(x1, y1);
 Vector p2 = new Vector(x2, y2);
 Vector tmp = new Vector(p1.x + p2.x, p1.y + p2.y);
 return tmp.x * tmp.x + tmp.y * tmp.y;
}

static int vectorUsageScalar(int x1, int y1, int x2,
int y2) {
 int x = x1 + x2;
 int y = y1 + y2;
 return x * x + y * y;
}

Replace with Scalar
Values

Inline add & abssq

Copyright © 2023, Oracle and/or its affiliates18

Escape Analysis & Scalar Replacement

§ Multiple Possible Levels
Object does not escape compilation unit

Object allocations are removed & fields are replaced with their stack allocated values (typically
reside in registers in the compiled code)

Object does not escape thread
Lock Removal: If no other thread can see the object, we can remove locking

Object escapes
No Optimization possible (but optimized allocation à TLABs [1])

Copyright © 2023, Oracle and/or its affiliates19

[1] TLABs: thread local allocation buffers

https://stackoverflow.com/questions/43747221/what-is-a-tlab-thread-local-allocation-buffer

Traditional Escape Analysis

§ Traditional escape analysis is done on an entire compilation unit
If an object escapes anywhere in the scope, scalar replacement is prohibited

20 Copyright © 2023, Oracle and/or its affiliates

public Example fooSimple(int x) {
 Example e = new Example(x);
 if (e.x % 2 == 0) {
 System.out.println("Foo");
 return Cached;
 } else {
 return e;
 }
} e escapes

e does not escape But escaping e in false
branch disables EA and
scalar replacement on the
entire method

What if ?

§ What if the code at runtime hardly requires the allocation?

21 Copyright © 2023, Oracle and/or its affiliates

public Example fooSimple(int x) {
 Example e = new Example(x);
 if (e.x % 2 == 0) {
 System.out.println("Foo");
 return Cached;
 } else {
 return e;
 }
} e escapes

e does not escape

What if the probability
for the true successor is
99% ? à We would
allocate although we
only need the new e in
1% of the cases

Partial Escape Analysis

§ What if the code at runtime hardly requires the allocation?

22 Copyright © 2023, Oracle and/or its affiliates

public Example fooSimple(int x) {
 Example e = new Example(x);
 if (e.x % 2 == 0) {
 System.out.println("Foo");
 return Cached;
 } else {
 return e;
 }
} e escapes

e does not escape

public Example fooSimple_PEA(int x) {
 if (x % 2 == 0) {
 System.out.println("Foo");
 return Cached;
 } else {
 return new Example(x);
 }
} e still escapes but the

allocation is only done
in 1% of the cases

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates23

GraalVM Architecture

24 Copyright © 2023, Oracle and/or its affiliates

Java HotSpot VM

GraalVM JIT Compiler

Truffle Languages

Language Implementation API (Truffle Framework)JVM Languages

Clojure

LLVM Langs

Truffle Language Implementation Framework

From the Truffle Homepage:
“The Truffle language implementation framework (henceforth “Truffle”) is an open source library for
building tools and programming languages implementations as interpreters for self-modifying
Abstract Syntax Trees. Together with the open source GraalVM compiler, Truffle represents a
significant step forward in programming language implementation technology in the current era of
dynamic languages.”

• Programming language implementers only need to implement an interpreter.
• If interpreter runs on a default JVM, language execution is correct, but slow (always interpreted).
• If interpreter runs GraalVM, GraalVM handles compilation and performance.

25 Copyright © 2023, Oracle and/or its affiliates

https://github.com/oracle/graal/blob/master/truffle/docs/README.md
https://github.com/oracle/graal/tree/master/compiler

AST Interpreters

AST = Abstract Syntax Tree
• The tree produced by a parser of a high-level language compiler

Every node can be executed
• For our purposes, we implement nodes as a class hierarchy
• Abstract execute method defined in Node base class
• Execute overwritten in every subclass

Children of an AST node produce input operand values
• Example: AddNode to perform addition has two children: left and right

- AddNode.execute first calls left.execute and right.execute to compute the operand values
- Then peforms the addition and returns the result

• Example: IfNode has three children: condition, thenBranch, elseBranch
- IfNode.execute first calls condition.execute to compute the condition value
- Based on the condition value, it either calls thenBranch.execute or elseBranch.execute (but never both of them)

Textbook summary
• Execution in an AST interpreter is slow (virtual call for every executed node)
• But, easy to write and reason about; portable

26 Copyright © 2023, Oracle and/or its affiliates

Partial Evaluation Example

27 Copyright © 2023, Oracle and/or its affiliates

abstract class Expression extends Node {
 abstract int execute(int[] arguments);
}

class Add extends Expression {
 @Child Expression left;
 @Child Expression right;

 Add(Expression left, Expression right) {
 this.left = left;
 this.right = right;

}

 int execute(int[] args) {
 return left.execute(args) + right.execute(args);

}
}

class Arg extends Expression {
 final int index;

 Arg(int index) { this.index = index; }

 int execute(int[] args) {
 return args[index];

}
}

int interpret(Expression expression, int[] args) {
 return expression.execute(args);
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

Partial Evaluation Example (2)

28 Copyright © 2023, Oracle and/or its affiliates

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

partiallyEvaluate(interpret, sample)

int interpret(Expression expression, int[] args) {
 return expression.execute(args);
}

Partial Evaluation Example (3)

29 Copyright © 2023, Oracle and/or its affiliates

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

int interpretSample(int[] args) {
 return sample.left.execute(args)
 + sample.right.execute(args);
}

int interpretSample(int[] args) {
 return args[sample.left.left.index]
 + args[sample.left.right.index]
 + args[sample.right.index];
}

int interpretSample(int[] args) {
 return args[0]
 + args[1]
 + args[2];
}

int interpretSample(int[] args) {
 return sample.left.left.execute(args)
 + sample.left.right.execute(args)
 + args[sample.right.index];
}

Truffle DSL for Specialization

30 Copyright © 2023, Oracle and/or its affiliates

@NodeChildren({@NodeChild("leftNode"), @NodeChild("rightNode")})
public abstract class SLBinaryNode extends SLExpressionNode { }

public abstract class SLAddNode extends SLBinaryNode {

 @Specialization(rewriteOn = ArithmeticException.class)
 protected final long add(long left, long right) {
 return ExactMath.addExact(left, right);
 }

 @Specialization
 protected final BigInteger add(BigInteger left, BigInteger right) {
 return left.add(right);
 }

 @Specialization(guards = "isString(left, right)")
 protected final String add(Object left, Object right) {
 return left.toString() + right.toString();
 }

 protected final boolean isString(Object a, Object b) {
 return a instanceof String || b instanceof String;
 }
}

For all other specializations, guards are
implicit based on method signature

The order of the @Specialization
methods is important: the first matching
specialization is selected

Truffle annotation processor converts this into a giant if-then-else

Compilation

Branch and Class profiles collect statistics
Automatic partial evaluation of AST

• Automatically triggered by function execution count
• Typically happening in a background thread
• Eventually compiled to Machine Code and stored in Code Cache
• Ready to be executed from Code Cache on next execution

Compilation assumes that the AST is stable
• All @Child and @Children fields treated like final fields
• If-then-else branches replaced by the concrete specialized method based on branch profiles
• Abstract classes replaced by concrete classes

31 Copyright © 2023, Oracle and/or its affiliates

Speculate and Optimize …

32 Copyright © 2023, Oracle and/or its affiliates

U

U U

U

U I

I I

G

G I

I I

G

G

Node Specialization
for Profiling Feedback

AST Interpreter
Specialized Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

Arg[0] Arg[1]

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

Arg[2]

Add

Add

I

I I

G

G I

I I

G

G

Transfer back
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Specialization to
Update Profiling Feedback

Recompilation using
Partial Evaluation

… and Transfer to Interpreter and Reoptimize!

33 Copyright © 2023, Oracle and/or its affiliates

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

In Summary

GraalVM
• GraalVM is a multilingual JIT compiler and runtime
• GraalVM allows writing your own language with the Truffle API
• GraalVM achieves high performance execution by speculative (and other) optimizations

Any questions?

34 Copyright © 2023, Oracle and/or its affiliates

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates35

36 Copyright © 2023, Oracle and/or its affiliates

MLE Vision

37 Copyright © 2023, Oracle and/or its affiliates

Multilingual Engine

MLE Vision

Oracle Database Multilingual Engine: GraalVM in the Database

• Started as an Oracle Labs research project some time in 2013.
• Was released on December 8, 2020 as part of the Oracle Database 21c in the Oracle Cloud [1].
• First release features dynamic JavaScript execution through DBMS_MLE [2].
• Oracle 23c adds support for code management, function calls, debugging [3].

39 Copyright © 2023, Oracle and/or its affiliates

[1] Oracle Database Always-Free Tier, check it out on oracle.com/free
[2] docs.oracle.com/en/database/oracle/oracle-database/21/arpls/dbms_mle.html#GUID-3F5B47A5-2C73-4317-ACD7-
E93AE8B8E301
[3] https://www.youtube.com/watch?v=jvosCJb-bA8&list=PLcFwxJMrxygCzLt6Ct-9fJjWWAfvIyBRM&index=22

https://www.oracle.com/free/
https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/dbms_mle.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/dbms_mle.html
https://www.youtube.com/watch?v=jvosCJb-bA8&list=PLcFwxJMrxygCzLt6Ct-9fJjWWAfvIyBRM&index=22

MLE Architecture

• blocks file access
• blocks network I/O
• controls memory

allocation and threading

provides fast startup and
low memory footprint

runs newest ECMAScript

Copyright © 2023, Oracle and/or its affiliates40

MLE Architecture

Copyright © 2023, Oracle and/or its affiliates41

MLE leverages Truffle for Optimizing Across Boundaries

42 Copyright © 2023, Oracle and/or its affiliates

MLE Architecture

Copyright © 2023, Oracle and/or its affiliates43

MLE Context Management

encapsulates application
and runtime state (e.g.
global variables)

Copyright © 2023, Oracle and/or its affiliates44

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates49

Demo 1: JavaScript in APEX

51 Copyright © 2023, Oracle and/or its affiliates

Using Server-Side Scripting in APEX

Using DBMS_MLE standalone

DECLARE
ctx dbms_mle.context_handle_t;
user_code varchar2(1024) := q'~

let bindings = require("mle-js-bindings");
let input = bindings.importValue("P1_INPUT");
bindings.exportValue("P2_OUTPUT", input + 7);

~';
BEGIN

ctx := dbms_mle.create_context();

dbms_mle.export_to_mle(ctx, 'P1_INPUT', P1_INPUT);
dbms_mle.eval(ctx, 'JAVASCRIPT', user_code);
dbms_mle.import_from_mle(ctx, 'P2_OUTPUT', P2_OUTPUT);

dbms_mle.drop_context(ctx);
END;
/

Using DBMS_MLE through APEX

apex.env.P2_OUTPUT = (apex.env.P1_INPUT / 1) + 7;

52 Copyright © 2023, Oracle and/or its affiliates

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates53

MLE Roadmap and Future Work

New MLE features in Oracle 23c
• code management (modules & envs)
• function calls
• debugging
• support the JSON SQL type and SODA APIs
• performance improvements

• compilation in background threads
• share read-only heap across sessions

Roadmap and Future Work
• support for more modules (and WASM)

• mage manipulation modules
• PDF generation modules

• further boost performance of MLE execution
• support more data types (vectors!)
• more languages… J

54 Copyright © 2023, Oracle and/or its affiliates

Demo 2: Using JavaScript from Open-Source

55 Copyright © 2023, Oracle and/or its affiliates

Getting Started – Tutorial and Blog Posts

56 Copyright © 2023, Oracle and/or its affiliates

21c 23c

Using the Oracle Cloud for free

Everybody
Oracle Cloud Always-Free Tier: oracle.com/cloud/free/

Universities and Schools
Oracle Academy: academy.oracle.com

57 Copyright © 2023, Oracle and/or its affiliates

https://www.oracle.com/cloud/free/
https://academy.oracle.com/

In Summary

GraalVM
• GraalVM is a multilingual JIT compiler and runtime
• GraalVM allows writing your own language with the Truffle API
• GraalVM achieves high performance execution by speculative (and other) optimizations

Multilingual Engine
• GraalVM in Oracle Database
• Employs Truffle languages, language interop, native image AOT compilation
• Enables Low-Code rapid application development with JavaScript
• Allows adopting open-source code in Oracle Database

58 Copyright © 2023, Oracle and/or its affiliates

Agenda

1 GraalVM

• GraalVM Compiler & (Partial) Escape Analysis

• Truffle Framework & Speculative Optimizations

2 Oracle Database Multilingual Engine (MLE)

• GraalVM in the Database: MLE Vision and Architecture

• Demo: APEX + MLE = Low-Code + JavaScript = AWESOME DEVELOPMENT

• MLE Roadmap and Future Work

3 A Quick Intro into Oracle Labs + Internships

Copyright © 2023, Oracle and/or its affiliates59

Oracle Labs’ Four Approaches to a Balanced Research Portfolio

Copyright © 2023, Oracle and/or its affiliates60

Exploratory Research
• Pursue new ideas within

domains relevant to
Oracle

Directed Research
• In collaboration with

product teams
• Difficult, future-looking

problems
• Driven by product

requirements

Multilingual
EngineConsulting

• Provide unique expertise
• Small engagement across

product organizations

Product Incubation
• Grow new products from

Oracle Labs research

A global research team

Copyright © 2023, Oracle and/or its affiliates61

Hundreds of researchers worldwide
Zurich: The biggest location with two floors at the Prime Tower (and growing!)

The geographic spread allows Oracle Labs to take advantage of a tremendous pool of scientific and
engineering talent and enables Labs researchers to collaborate with colleagues from a wide range
of industries and universities.

Oracle Labs locations
• Zurich, Switzerland
• Prague & Brno, Czech Republic
• Casablanca, Morocco
• Linz, Austria
• Redwood Shores, California, USA

• Austin, Texas, USA
• Belgrade, Serbia
• Brisbane, Australia
• … and more!

Selection of projects with involvement of the Zurich Lab

Copyright © 2023, Oracle and/or its affiliates62

• Parallel Graph AnalytiX (PGX) – High-performance graph toolkit (single machine, distributed, in DB)
• Data Studio (DS) – Notebook technology for visualizing graphs and more
• GraalVM – A universal, polyglot VM environment
• MultiLingual Engine (MLE) – Bringing modern languages into the Oracle DB
• Oracle Labs Apps (Apps) – designing, building and operating apps using the principles of modern

app development
• Application Dependency Management (ADM) and App Platform – develop an app platform built

around Oracle's opinionated view of how cloud-native apps should be architected

Several other topics across the other offices
• ML / AI applications, code analysis and security, concurrent programming, …

If you are interested in Computer or Data Science, we have a great topic for you!

Check them out on labs.oracle.com/pls/apex/labs/r/labs/internships and reach out
to labs-hiring_ww@oracle.com.

https://labs.oracle.com/pls/apex/labs/r/labs/internships
mailto:labs-hiring_ww@oracle.com

Copyright © 2023, Oracle and/or its affiliates63

I initially joined Oracle Labs for a short internship where I was working
on a distributed graph processing engine. I designed and
implemented major components for the system in collaboration with
well established Oracle Labs members and got the opportunity to learn
from very skilled people. While I did enjoy the task, the highlight for
me were the people. They were very welcoming and helpful from the
beginning to the end of the internship. I ended up extending my
internship and accepting a full time offer afterwards.

Irfan Bunjaku
ETH student, 6-month intern + MSc thesis with Oracle Labs
in 2022

What former interns say…

Internships at Oracle Labs Zurich*

Copyright © 2023, Oracle and/or its affiliates64

Regular internships or MSc theses

Typical duration of 3 to 12 months

Competitive salary

Apply on
labs.oracle.com/pls/apex/labs/r/labs/internships
and/or contact us via labs-hiring_ww@oracle.com!

https://labs.oracle.com/pls/apex/labs/r/labs/internships
mailto:labs-hiring_ww@oracle.com

In Summary

GraalVM
• GraalVM is a multilingual JIT compiler and runtime
• GraalVM allows writing your own language with the Truffle API
• GraalVM achieves high performance execution by speculative (and other) optimizations

Multilingual Engine
• GraalVM in Oracle Database
• Employs Truffle languages, language interop, native image AOT compilation
• Enables Low-Code rapid application development with JavaScript
• Allows adopting open-source code in Oracle Database

Oracle Labs and Internships
• If you are interested in Computer or Data Science, we have a great topic for you!

65 Copyright © 2023, Oracle and/or its affiliates

Thank you

Have a look at out our internship topics in the
VIS Job Emails – we’d love to get your
application.

Questions?

66 Copyright © 2023, Oracle and/or its affiliates

Multilingual
EngineGraalVM

Compiler

Free Cloud &
Oracle

AcademyJobs
at Oracle

