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Abstract

We study validation set construction via data
augmentation in true few-shot intent classifi-
cation. Empirically, we demonstrate that with
scarce data, model selection via a moderate
number of generated examples consistently
leads to higher test set accuracy than either
model selection via a small number of held out
training examples, or selection of the model
with the lowest training loss. For each of
these methods of model selection—including
validation sets built from task-agnostic data
augmentation—validation accuracy provides
a significant overestimate of test set accuracy.
To support better estimates and effective model
selection, we propose PANGEA, a generative
method for domain-specific augmentation that
is trained once on out-of-domain data, and then
employed for augmentation for any domain-
specific dataset. In experiments with 6 datasets
that have been subsampled to both 5 and 10
examples per class, we show that PANGEA is
better than or competitive with other methods in
terms of model selection while also facilitating
higher fidelity estimates of test set accuracy.

1 Introduction

Model selection is a key step in machine learning
(ML) workflows. In typical model development,
training is initiated with many hyperparameter con-
figurations, which results in many distinct models.
The performance of a model is highly sensitive to
these hyperparameters (Dodge et al., 2020). For
example, when prompting large language models,
some orderings of a given set of samples leads to
state-of-the-art results while other orderings of the
same samples lead to results that resemble random
guessing (Lu et al., 2022).

In few-shot learning, i.e., learning with only a
handful of training examples, effective model se-
lection is more critical and challenging than in set-
tings with larger data sets. In modern ML, model
selection is typically performed by evaluating each

model on a validation set and choosing the model
that performs best, according to some metric of
interest. Model selection in true few-shot settings
is challenging because in these settings there is
no validation set (Perez et al., 2021; Bragg et al.,
2021). While it is possible to hold out a portion of
training data for use as a validation set, in few-shot
settings this is problematic for two reasons. First,
holding out data when examples are scarce can
dramatically worsen training. Second, since the
number of held out examples is necessarily small,
the examples chosen for validation constitute a high
variance estimator of model performance, and thus
can lead to poor model selection. While there are
methods of model selection that do not require val-
idation sets, such as cross-validation and minimum
description length (Rissanen, 1978), recent work
demonstrates that neither are dependable selectors
of high-performing deep models in few-shot set-
tings (Perez et al., 2021). Were a validation set
available, previous work shows that it can be used
to consistently select high-performing models.

Given the importance of model selection in few-
shot learning, and the benefit of having a moder-
ately sized validation set, we propose to construct
validation sets via data augmentation. We first
study Easy Data Augmentation (EDA), a simple
method of data augmentation that generates new
instances by perturbing existing examples (Wei
and Zou, 2019). Since examples generated by
EDA are similar to the training examples, they are
likely to provide good estimates of model perfor-
mance on in-distribution data. On the other hand,
they are likely to provide poor estimates on out-
of-distribution data. Moreover, by virtue of their
similarity to the training data, optimizing for exam-
ples generated by EDA could lead to overfitting.

To address these concerns, we design PANGEA,
the Prompt and Guide word Augmentation algo-
rithm for training generative models for true few-
shot classification settings. Critically, PANGEA



trains a text generator with domain-agnostic, pub-
licly available data; and none of the provided
domain-specific data. This is important because
it means that the generator is independent of the
number of provided training examples—which we
assume is small. After the generator is trained, it
is prompted with available domain-specific data in
order to generate in-domain examples. The genera-
tor also takes a set of guide words as input, which
provide further control over its generations. As a
result, models trained by PANGEA can create a
more diverse set of examples than methods based
on perturbation like EDA, thus reducing the chance
of overfitting. PANGEA does not rely on filtering
or feature-space interpolation, which are critical
components of previously proposed methods, but
unrealistic in true few-shot learning because they
require model training and selection before creat-
ing new examples (Anaby-Tavor et al., 2020; Zhou
et al., 2022; Kumar et al., 2019).

We experiment with 4 styles of model selection
and 6 intent classification data sets. We study in-
tent classification because it is a prevalent problem
that typically manifests in the true few-shot set-
ting (Coucke et al., 2018; Kumar et al., 2019). Our
experiments reveal that model selection with syn-
thetic data (built by EDA or PANGEA) yield better
models than selection with held out data or the
training loss. Interestingly, while EDA was shown
to provide negligible performance gains when used
for training set augmentation (Longpre et al., 2020),
our results show that it is effective when used to
create validation sets for model selection. We also
show that for validation sets built by PANGEA, val-
idation accuracy of the selected model is the most
reliable estimator of test set accuracy. For the other
methods, the selected model’s validation accuracy
overestimates test set accuracy because those val-
idation examples resemble the training data too
closely. Finally, our experiments reveal that for
PANGEA, the reliability of validation set accuracy
is preserved across all models (i.e., all hyperparam-
eter configurations)—not only the selected model.

2 PANGEA

Training a state-of-the-art model typically requires
a large amount of data. When data is scarce, one
popular approach is to generate additional data via
augmentation. Task-agnostic augmentation, like
EDA (Wei and Zou, 2019), can be leveraged, but
these methods tend to generate examples with lim-

ited diversity. As such, these methods are inef-
fective when used for training set augmentation
for state-of-the-art transformer models (Longpre
et al., 2020). Task-specific techniques have also
been proposed, however the efficacy of these meth-
ods depends on the small amount of available data.
Moreover, proposed techniques rely on filtering
and/or feature-space interpolation, both of which
imply that training and model selection have al-
ready been performed (Anaby-Tavor et al., 2020;
Zhou et al., 2022; Kumar et al., 2019). Since we
are concerned with settings in which no validation
data is available, these methods are inappropriate.

In this section, we describe PANGEA, an algo-
rithm for training a generative model for text. Gen-
erators trained with PANGEA are intended for use
in few-shot, domain-specific settings. Since we as-
sume a very limited amount of domain-specific
data, PANGEA trains a text generator on unla-
beled, out-of-domain data. After training, any avail-
able domain-specific data is used to prompt the
model to generate in-domain examples. We be-
gin with an overview of the generator. Then we
discuss PANGEA training and finally, how to use
the trained generator for domain-specific example
creation.

2.1 PANGEA-trained Generators

At a high-level, a PANGEA-trained generator is a
model that takes two strings as input and generates
a string as output. The first input, p, which we call
the prompt, is a clause that embodies the style and
content that the model’s output should exhibit. The
second input is a variable length sequence of guide
words, w (Pascual et al., 2021). Guide words are
tokens that the model is trained to include in the
output, thus providing additional control over the
generation. While the guide words appear in the
input and output of all of the generator’s training
examples, the model is not forced to include all
guide words in its generations.

2.2 Training

Consider a few-shot, k-way, text classification data
set X = { (x4, i)}V, where y € {co,c1,...,cr}
and let ¢ be a PANGEA-trained generator, g

p X w — z. In the PANGEA algorithm, the
generator, g, is trained from a set of triples Q =
{(pi, wi, zz)}f\il where g must generate z;, called
the target, from inputs p; and w;. The genera-
tor’s training data, Q, does not include any ut-
terances from X. Instead, examples in Q are
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Figure 1: Training and Generation with PANGEA. Prompt and Target question pairs are extracted from Common
Crawl (T-a). For each pair, a set of guide words is sampled from the the target (T-b). Training examples are
constructed by concatenating the prompt and guide words and mapping them to the corresponding target (T-c).
To generate new data, first, per-class token distributions are constructed from the few-shot data (G-a). Then, an
utterance from class c is sampled uniformly (G-b). Finally, guide words are sampled from the token distribution for
class c. The sampled utterance and guide words are concatenated and input to the trained generator, which produces

a new training example (G-c).

constructed from a public data source, such as
Wikipedia or Common Crawl. By virtue of its
domain-agnostic training data, a PANGEA-trained
generator is trained once and then employed for
any number of tasks.

For a training example, (p, w, z), the prompt, p,
and target, z, should be stylistically and semanti-
cally related. That way, when given a prompt in a
specific domain, the generator learns to produce an
output in the same domain. Moreover, the guide
words, w, should appear in z.

Formally, let J be a collection of utterances
(e.g., sentences in Wikipedia) and let s : J X
J — {0, 1} be a binary function that returns 1 if
its inputs are similar. An example of s is a function
that returns 1 when two utterances appear on the
same webpage. To construct an example (p, w, z),
we select two similar utterances (with respect to s).
The first we set to be p; the second, z. The guide
words, w, are (a subset of) the non-stopwords in z.

In our work, examples in Q are constructed from
questions that appear in Common Crawl. We set s

to be the function that returns 1 if two questions ap-
pear on the same web page (e.g., in the same FAQ).
To construct training examples, we randomly se-
lect two questions from the same webpage to serve
as the prompt, p, and target, 2, respectively (Fig-
ure 1, T-a). We only utilize questions (and not
answers) because the questions share some stylis-
tic characteristics with typical utterances in intent
classification. The guide words, w, are a randomly
selected 95% of the non-stop word tokens in z!
(Figure 1, T-b). We use 95% of the non-stopwords
(instead of all non-stopwords) so that the model
does not learn that the guide words represent all
non-stopwords in the desired output. In our work,
g is parameterized by T5 (Raffel et al., 2020), a
large-scale, sequence to sequence model. As such,
the inputs p; and w; are concatenated, but delim-
ited by a pipe (" | ") (Figure 1, T-c). We fine-tune
TS5 on the constructed sequence-to-sequence exam-
ples for 20k steps with a batch size of 16. Details
on question extraction from Common Crawl are

'w is ordered arbitrarily.



included in Appendix A.

2.3 Generation

To generate a new example of a class, ¢, we must
choose a prompt, p, and guide words, w. Let
Xlc] = {z; : (zj,y;) € X,y; = c} be the sub-
set of utterances in X" of class c. In practice, we
choose a prompt uniformly at random among utter-
ances of class ¢, i.e., p ~ U(X|c]) (Figure 1 G-b).
Next, we select guide words. To do so, we begin
by building a per-class token distribution. That is,
for each utterance in X [c], we filter all stop words
with spaCy (Honnibal et al., 2020), and compute
the empirical distribution of the remaining tokens
(Figure 1 G-a). To sample guide words for a class
¢, we first sample a length L from the empirical dis-
tribution of the lengths of utterances in X [c], and
then sample L guide words independently from
the per-class token distribution for c¢. The sampled
prompt and guide words are concatenated (but de-
limited by a pipe) to form an input to the generator
(Figure 1 G-¢).

3 Experiments

Recall that our goal is to devise an effective method
of model selection for true few-shot intent classifi-
cation. To this end, we study various approaches
for constructing validation sets. In this section, we
present an empirical study of model selection using
the constructed validation sets. We report and ana-
lyze test set accuracy achieved by selected models.
We also measure the error incurred by employing
validation accuracy as an estimate of test accuracy.

3.1 Setup

Datasets: Experiments are performed with the
following datasets: clinc, bank, snips, curekart,
powerplay, and mattress (Larson et al., 2019;
Casanueva et al., 2020; Coucke et al., 2018; Arora
et al., 2020). To mimic the few-shot setting, we fol-
low previous work and subsample each dataset to a
specific number of examples per class (Gao et al.,
2021). When referring to a dataset, we use the suf-
fix -k (e.g., clinc-£) to indicate that the dataset has
been subsampled to k examples per class>. Follow-
ing previous work, we omit out-of-scope utterances
(included in clinc, curekart, powerplay, and mat-
tress). Dataset statistics are reported in Table 1.

2For any class that has fewer than & examples, we select
all examples of c.

Model Selection We study true few-shot text
classification, i.e., few-shot learning in which no
validation data is provided. Given the importance
of selecting suitable hyperparameters for state-of-
the-art models, we experiment with the following
approaches for constructing a validation set:

* HOLDOUT - 20% of the training data (per class)
is held out and used for validation. This resem-
bles a typical workflow for non-few-shot settings.

* TRAIN - use the training set as the validation set.
This effectively selects the model with the lowest
training loss; overfitting is expected.

* PANGEA - use a generator trained by PANGEA
to construct 20 validations examples per class®.

e EDA - similar to the previous approach but
use task-agnostic data augmentation for genera-
tion (Wei and Zou, 2019).

e TEST - use the test set as the validation set; a
competitive yet unrealistic baseline included for
completeness.

Procedure: We begin constructing 10 unique
variants of each dataset (e.g., {clinc-5(1), ...,
clinc-5(10)}). We do this by sampling a unique
training set for each variant from the correspond-
ing full dataset. None of the variants have any
examples for validation; all variants use the same
(original) test set. For all variants, we use each of
the methods described above to construct a unique
validation set. For each variant and validation set
pair, we initiate 100 instances of training that vary
only by hyperparameter configuration. In a given
training episode (i.e., dataset variant, validation
set, and hyperparameter configuration), after each
epoch, we evaluate the model’s loss on the vali-
dation set. The model with the lowest validation
loss among all hyperparameter configurations is
selected*. We report mean and standard deviation
of test set accuracy for models selected via each
method (e.g., EDA) across all variants of the same
dataset. Since training sets differ per variant, we
expect standard deviations to be high (Dodge et al.,
2020). Thus, we report whether each method is
significantly better than HOLDOUT using a one-
sided Wilcoxon signed-rank test with significance
level of p = 0.05 (Schuurmans, 2006; Wilcoxon,
1947). We perform the experiment with two train-
ing styles: FINETUNE, in which all model param-

3This value was chosen arbitrarily.

*For TEST, we experimented with selecting models using
validation accuracy, but found that it made hyperparameter
optimization more difficult in a handful of cases.



bank clinc curekart powerplay snips mattress
classes 77 150 28 59 7 21
test examples 3080 4500 459 309 700 253

Table 1: Number of Classes and Test Examples Per Dataset.

k=5 bank clinc curekart powerplay snips mattress
HoLpOUT 0.709.01 0.840.01 0.580.06 0.510.04 0.870.02 0.590.05
TRAIN 0.73¢.02% 0.86¢.91* 0.54¢ 06 0.530.06 0.86¢.03 0.600.05
PANGEA 0.740901% 0.87g.02*% 0.62¢ 06 0.540.03* 0.89¢ 01 % 0.640.05*
EDA 0.740_01* 0.870.01* 0.580_06 0.550_03* 0.880_03 0.650_06*
TEST 0.76¢.01* 0.880.01 0.66¢.g4* 0.570.03% 0.91¢ g1 0.69¢.03*
k=10

HoLDOUT 0.81p.01 0.910.00 0.710.04 0.550.02 0.91¢.02 0.680.03
TRAIN 0.81¢.02 0.909.01 0.72¢.05 0.580.02% 0.919.02 0.67¢.04
PANGEA 0.83(]‘01* 0.910.01* 0.730.03* 0.60¢ o1 % 0.920 01 0.700.02
EDA 0.840_01* 0.920.01* 0.720_04 0.600_02* 0.920_02* 0.730_02*
TEST 0.840.01* 0.920.01* 0.770,03* 0.570_15* 0.930,01* 0.740_02*

Table 2: Test Set Accuracy, FINETUNE, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FINETUNE setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

eters are trained, and FROZEN, in which only the
last layer parameters are trained. Results for the
FROZEN setting are reported in the Appendix (Sec-
tion B.3). In all experiments, we use the Hugging-
Face roberta-base model optimized with the
AdamW optimizer (Wolf et al., 2019; Loshchilov
and Hutter, 2018).

Hyperparameters: We tune 4 hyperparameters:
learning rate, weight decay, dropout among hid-
den units, and dropout among classifier units. We
employ Optuna—a hyperparameter optimization li-
brary (Akiba et al., 2019). For each dataset variant
and validations set, we allot Optuna a budget of 100
trials (i.e., unique hyperparameter configurations)
with trial pruning turned on. All models are trained
for up to 30 epochs. Hyperparameter ranges used
during optimization are included in Appendix B.1.

3.2 Accuracy of Selected Model

Table 2 contains the mean and standard deviation
for each model selection method on all 6 datasets
for both k£ = 5 and k£ = 10 (i.e., 5 or 10 examples
per class), when training in the FINETUNE setting.
The results show that the generative methods (i.e.,
either PANGEA or EDA) achieve the highest mean
accuracy on all datasets for both £ = 5 and k£ = 10.
While some error bars overlap, high standard de-

viations are anticipated since every dataset variant
has a unique training set. Despite this variation,
improvements of PANGEA and EDA over HOLD-
OUT are statistically significant in 4 or 5 datasets
out of 6 for Kk = 5 and k = 10. Moreover, for
PANGEA on curekart-5, our statistical test yields
a value of p = 0.0654, only narrowly missing the
p = 0.05 threshold. TRAIN only achieves 1 or 2
such improvements. For EDA and PANGEA in
the £ = 5 setting, improvements in mean accuracy
over HOLDOUT range from 2% to 6% and as much
as 8% over TRAIN. For k = 10, increases are more
modest, but are as large as 5% over HOLDOUT and
6% over TRAIN. Note that in all FINETUNE exper-
iments, mean accuracy of PANGEA and EDA are
always greater than or equal to that of HOLDOUT.
These results support the notion that validations
sets constructed via PANGEA or EDA are con-
sistent, high-performing tools for model selection
in few-shot intent classification. Presentation and
discussion of results for the FROZEN setting are
included in Appendix B.3.

3.3 Estimating Test Set Accuracy

While selecting the best performing model among
a set is a crucial step of machine learning work-
flows, an accurate estimate of the selected model’s
performance on test data is a significant factor in



k=5 bank clinc curekart powerplay snips mattress
HoLDOUT 0.03g92 0.04g92 0.18p07 0.360.04 0.12¢.04 0.250.09
TRAIN 0.270.02 0.140.01 0.460.06 0-470.06 0.140.03 0.400.05
PANGEA 0.18p.02 0.200.02 0.14007 0.19¢g03 0.03pg02 0.079.05
EDA 0.24901  0.09.01 0.390.06  0.400.03 0.12p03  0.300.06
k=10

HoLDOUT 0.03g91 0.03g01 0.160.06 0.340.02 0.099.02 0.230.05
TRAIN 0.199.02 0.100.01 0.28p.05 0.420.02 0.09¢.02 0.330.04
PANGEA 0.340.01 0.280.01 0.050904 0.11g02 0.099.04 0.04¢.03
EDA 0.14901 0.03001 0.25004  0.360.02 0.08p.02 0.21g02

Table 3: Model Fidelity, FINETUNE, k = {5,10}. The mean and standard deviation of the absolute difference
between validation and test set accuracy of the selected model. Bolded text indicates the lowest mean per dataset.

determining whether the model is eligible for de-
ployment. That is, if the best performing model
in a set performs poorly, that model is unfit for de-
ployment. We underscore that test accuracy is not
necessarily indicative of a model’s ability to gener-
alize, and that other evaluations, e.g., of the model’s
likelihood to cause harm, must also be carried out
before determining if that model is appropriate for
use (Ribeiro et al., 2020).

3.3.1 Validation Accuracy of Selected Models

To this end, we measure the extent to which val-
idation accuracy is a faithful estimator of test set
accuracy for the methods discussed above. In Ta-
ble 3 we report the mean and standard deviation of
the absolute difference between validation and test
set accuracy for models selected via each method
in the FINETUNE setting for kK = 5 and k£ = 10. If
the magnitude of the difference of a model’s vali-
dation and test set accuracy is small, we say that
the model provides a high fidelity estimate of test
accuracy. The Table shows that PANGEA leads to
the highest fidelity estimates for 4 of 6 data sets
with £ = 5 and 3 out of 6 data sets for £k = 10. In
many of these cases, PANGEA improves over the
next best approach by more than 3x.

While the other methods yield higher fidelity
estimates of test accuracy for clinc and bank-10,
we note that the fidelity of these methods is highly
correlated with test set accuracy. Figure 2 plots test
accuracy vs. the mean absolute difference between
validation and test accuracy for all methods and
datasets, for the £ = 5 variants and FINETUNE
setting. Unsurprisingly, for TRAIN, the difference
between validation and test accuracy is perfectly
anti-correlated with test accuracy, i.e., when test ac-
curacy is high so is validation accuracy, but valida-
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Figure 2: Test Accuracy vs. Test Accuracy Estimation
Error, FINETUNE, £ = 5. Test set accuracy vs. the
mean absolute difference of validation and test accuracy
(i.e., error).

tion accuracy remains high even when test accuracy
is low. This is unsurprising since the trained models
consistently fit the training data, and thus valida-
tion accuracy on TRAIN is always near 100%. This
makes TRAIN unreliable with respect to fidelity—
since fidelity is entirely dependent on test set accu-
racy, which is unknown.

Both EDA and HOLDOUT exhibit similar trends.
For EDA, generations closely resemble the train-
ing data since the generations are constructed via
simple perturbations. Thus, a model that perfectly
fits the training data is likely to fit the EDA ex-
amples. For HOLDOUT, the difference between
validation and test accuracy is also somewhat anti-
correlated with test accuracy. Again, this is be-
cause the validation data is sampled directly from
the training data. For £ = 5, Because the valida-
tion set is small, fidelity has higher variance, which



FINETUNE-5 FINETUNE-10

HoLpOut 0.13324 0.11809
TRAIN 0.30141 0.23781
PANGEA 0.00367 0.08993
EDA 0.24572 0.18091

Table 4: RMSE of Validation Accuracy, FINETUNE.
The root mean square error with respect to validation ac-
curacy and test set accuracy for all methods and training
regimes. RMSE is computed from all hyperparameter
configurations, all epochs, and all datasets. Bolded text
indicates the lowest RMSE per condition. Note that
RMSE for TEST is 0.

leads to the dampened anti-correlation. We note
that the anti-correlation is more pronounced for
k = 10 because the corresponding validation sets
are twice as large and thus yield fidelity with lower
variance (the corresponding visualization appears
in Figure 5, located in Appendix B.3). We con-
clude that accuracy on validation sets constructed
by PANGEA are the most reliable approximations
of test set accuracy among all methods tested. How-
ever, even for PANGEA, the difference between
validation and test accuracy is often too high (in
many cases greater than 10%) to make for a use-
ful estimate that can be leveraged in deployment
decisions.

3.3.2 All Hyperparameter Configurations

We examine the difference between validation and
test accuracy for all hyperparameter configurations,
all datasets, and all epochs—rather than just for the
selected models. This gives a sense of how accu-
rate test set accuracy can be predicted by validation
accuracy, regardless of how hyperparameters are
chosen and how a model is selected. We report the
root mean square error (RMSE) between validation
accuracy and test set accuracy in Table 4. The Ta-
ble shows that PANGEA yields the highest fidelity
estimates of test set accuracy (i.e., lowest RMSE)
for both k = 5 and k = 10.

For a more detailed view, we visualize the cor-
relation between validation accuracy and test set
accuracy in Figure 3. Note that, while Figure 2 vi-
sualizes performance of selected models only, Fig-
ure 3 visualizes performance for all models (i.e., all
hyperparamter configurations and training epochs).
The Figure shows that for all hyperparameter con-
figurations and training epochs, accuracy on valida-
tion sets constructed by PANGEA roughly matches
test set accuracy. On the other hand, the other meth-
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Figure 3: Fidelity of Validation Accuracy, FINETUNE,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

ods only match test set accuracy when validation
accuracy is low, but consistently overestimate test
set accuracy as validation accuracy increases. We
include a similar figure for £k = 10 in Figure 4,
located in Appendix B.2.

4 Related Work

Our work is a first systematic study of validation set
construction to support model selection in true few-
shot intent classification. Prior to our work, two
other pieces have leveraged generative models to
construct validation data. In Datasets from Instruc-
tions (DINO), a pre-trained GPT2-XL is prompted
to generate labeled sentence pairs to support learn-
ing improved sentence embeddings (Schick and
Schiitze, 2021). The set of generated pairs is split
into training and validation sets. In this work, the
validation set is used to determine when to (early)
stop training, but it is unclear whether it is also used
to select among a range of hyperparameter configu-
rations. In our study, we use constructed validation
sets to select 4 important hyperparameters, in addi-
tion to early stopping. The tasks we focus on are
domain-specific, whereas DINO is aimed and learn-
ing better general-purpose sentence embeddings—
where it may be easier to generate relevant data for
validation.

The second piece studies prompt order for "in-
context learning" (Brown et al., 2020), i.e., when
the model is given a handful of examples of a task
at inference time but no weights are updated. The
authors find that the order of the examples in the
prompt used for in-context learning can signifi-



cantly affect results (fluctuations between state-of-
the-art and random chance performance were ob-
served) (Lu et al., 2022). To alleviate this high
sensitivity in true few-shot settings, the authors
generate an unlabeled validation set with a large
pre-trained language model and use the set to se-
lect prompt orders via a proposed entropy-based
method. Unlike their study, we focus on the FINE-
TUNE and FROZEN cases rather than in-context
learning, because they are more practical in terms
of hardware costs and thus more prevalent (Gao
et al., 2021). Moreover, we select specific values
of continuous hyperparamters rather than the best
among small set of prompt-permutations. Finally,
we point out that the proposed approach for prompt-
order selection cannot be directly used to estimate
test set accuracy (as we study in Section 3.3).

A central component of our work is our pro-
posed PANGEA algorithm. Like our approach, pre-
vious work makes use of a sequence-to-sequence
model for generation, but unlike ours, that work
focuses on filling in delexicalized utterances (Hou
et al., 2018). Our use of an utterance to prompt the
generator is similar in spirit to work on Example
Extrapolation (EX2) (Lee et al., 2021). Whereas
their work focuses on uneven amounts of data per
class, we focus on true few-shot learning. Unlike
EX2, we only provide the generator with a single
utterance, rather than many. Using a single utter-
ance to prompt the generator is also similar to work
on using demonstrations (Gao et al., 2021), but in
that work, training examples are concatenated to
the input during training and inference. We also
provide the PANGEA-trained generator with guide
words, which is inspired by previous work on de-
coding (Pascual et al., 2021).

While we experiment with a handful of ap-
proaches, there is a large and growing literature
on data augmentation for NLP. We briefly touch
on some recently proposed methods, but refer in-
terested readers to a survey on the subject (Feng
et al., 2021). Most data augmentation algorithms
can be roughly categorized as either retrieval (Du
et al., 2021), perturbation (Wei and Zou, 2019),
feature (Kumar et al., 2019; Sun et al., 2020; Wei,
2021), or generation-based (Wang et al., 2021; Ku-
mar et al., 2020; He et al., 2021; Yang et al., 2020).
Some work focuses on counterfactual augmenta-
tion (Kaushik et al., 2020; Joshi and He, 2022); like-
wise, generating minimally perturbed training ex-
amples with different labels (Zhou et al., 2022). In

the literature, augmentation is generally employed
as a tool for improving test set accuracy. But a
recent studies explore augmentation for mitigat-
ing gender stereotypes (Zhao et al., 2018; Zmigrod
et al., 2019; Maudslay et al., 2019; Webster et al.,
2020). Unlike our work, virtually all previous stud-
ies focused on training set augmentation rather than
validation set construction.

5 Conclusion

In this work we study true-few shot classification,
i.e., few-shot classification where no validation set
is provided for model selection. We experiment
with constructing validation sets via data augmen-
tation, and by leveraging the provided few-shot
data. Our results reveal that the synthetic validation
sets—constructed by EDA or our proposed method,
PANGEA—consistently yield selected models with
the higher test accuracy than validation sets com-
prised of the few-shot data. Moreover, PANGEA
is the only method for which validation accuracy
provides a reliable, high fidelity estimate of test set
accuracy.

6 Limitations

In this work, we study various methods of valida-
tion set construction for the true few-shot setting.
While we show that methods of data augmentation
can be successfully utilized, our experiments only
deal with few-shot intent classification. All of our
experiments are conducted on English language
data sets. Additionally, our experiments include
subsampled data sets with either 5 or 10 examples
per class (when enough examples per class exists),
but we do not experiment with (intentionally) un-
balanced data sets. Moreover, we only experiment
with the RoBERTa model. We choose RoBERTa
because it is high-performing and ubiquitous (and
therefore admits comparison to other work), but we
acknowledge that better models exist and may pro-
vide different results. Despite these limitations, we
believe that our results are sound and likely to gen-
eralize to models aside from RoBERTa. Finally, we
do not experiment with in-context learning meth-
ods (i.e., prompting with GPT-3); but we argue that
the FROZEN and FINETUNE settings are prominent
training paradigms that are currently accessible to
many more people.
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Appendix
A Question Extraction

We extract question from Common Crawl—a large-
scale archive of crawled webpages. We use a com-
bination of 10 Common Crawl dumps from 2020
and 2021, which includes 33 billion webpages. To
detect question and answer (QA) content nested in
raw webpages, we leverage structured markup for
QA and FAQ® pages. This markup is widely used,
and facilitates the display of QA result previews
along with search results (e.g., google search).

Naive search in billions of webpages in costly.
Therefore, we first perform a fast regex-based
search that yields approximately 26 million match-
ing HTML pages. After parsing the resulting pages,
we are able to extract approximately 71 million
QA and FAQ data snippets. We then post-process
the results by removing badly formatted snippets
where questions or answers cannot be automati-
cally recovered, pruning empty question or answer
bodies, and performing language detection to iden-
tify English QA pairs. The result is 27.7 million
English pairs. We group the English questions by
page and randomly select 200k question pairs for
training such that both questions appeared on the
same page.

B Experiments

All experiments on run on 2 NVIDIA Ampere
(A100) GPUs.

B.1 Hyperparameter Ranges

For hyperparameter optimization, we use Op-
tuna (Akiba et al., 2019). Optuna allows a practi-
tioner to identify the hyperparameters over which
to conduct the search, as well as the allowable
ranges. In our experiments, Optuna tunes the fol-
lowing 4 parameters with the following ranges:

1. learning rate, [0.00001, 0.1];

2. weight decay, [0.0,0.1];

3. dropout among hidden units, i.e.,
hidden_dropout_prob, [0.0,0.5];
and

4. dropout among classification head units, i.e.,

classifier_dropout, [0.0,1.0].

Shttps://developers.google.com/search/
docs/advanced/structured-data/gapage

*https://developers.google.com/search/
docs/advanced/structured-data/fagpage
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Figure 4: Fidelity of Validation Accuracy, FINETUNE,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and
for all datasets.

Optuna performs 100 trials (each trial may be
pruned if the corresponding hyperparameters are
deemed unlikely to yield a high performing
model. New configurations are sampled using
the TPESampler (the random seed is set to 37).
Training in a full trial lasts for 30 epochs.

B.2 Model Fidelity in the FINETUNE Setting

Figure 4 visualizes validation accuracy vs. test ac-
curacy for all methods in the FINETUNE setting
with £ = 10. Like in the case of k = 5, accuracy
on validation sets constructed by PANGEA appear
to be better correlated with test accuracy than either
TRAIN or EDA, which both consistently overes-
timate test set accuracy. In the & = 10 case, it
appears that PANGEA tends to more strongly un-
derestimate test set accuracy.

Figure 5 plots test accuracy vs. the mean abso-
lute difference between validation and test accu-
racy for all methods and datasets, for the k£ = 10
variants and FINETUNE setting. As in the case of
k = 5, for TRAIN, the difference between valida-
tion and test accuracy is perfectly anti-correlated
with test accuracy. EDA and HOLDOUT are also
strongly anti-correlated with test set accuracy. This
makes these three methods unreliable with respect
to fidelity—since fidelity is entirely dependent on
test set accuracy, which is unknown. On the other
hand, PANGEA is not anti-correlated with test ac-
curacy, but exhibits some low fidelity estimates.


https://developers.google.com/search/docs/advanced/structured-data/qapage
https://developers.google.com/search/docs/advanced/structured-data/qapage
https://developers.google.com/search/docs/advanced/structured-data/faqpage
https://developers.google.com/search/docs/advanced/structured-data/faqpage

k=5 bank clinc curekart powerplay snips mattress
HoLDOUT 0.34¢01 0.520.01 0.280.05 0.300.03 0.790.07 0.320.03
TRAIN 0.39901*% 0.60¢ 1% 0.370.04* 0.330.03% 0.820.06 0.380.03%
PANGEA 0.399.01% 0.60¢901* 0.34004% 0.320.02% 0.84p9 2% 0.38p 3%
EDA 0.390_01* 0.600.01* 0.350.04* 0.320.02 0.800'09 0.380.03*
TEST 0.39¢.01* 0.600.01* 0.32¢.04% 0.320.02 0.84¢.02% 0.380.03*
k=10

HoLDOUT 0.54¢01 0.750.01 0.48¢ 04 0.330.02 0.84¢ 04 0.38¢.02
TRAIN 0.68¢p.01*% 0.82001*% 0.540904% 0.36¢.g2* 0.88¢p.01*% 0.44002%
PANGEA 0.590.02% 0.770.01% 0.530.05* 0.36¢ g2% 0.88¢p.01*% 0.44002%
EDA 0.61()‘03* 0.810.01* 0.550.03* 0.360.02* 0.880.01* 0.460.02*
TEST 0.63¢.03* 0.790.02% 0.56¢.04* 0.380.03% 0.89¢.01* 0.470.02*

Table 5: Test Set Accuracy, FROZEN, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FROZEN setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).
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Figure 5: Test Accuracy vs. Test Accuracy Estimation
Error, FINETUNE, k£ = 10. Test set accuracy vs. the
mean absolute difference of validation and test accuracy
(i.e., error).

B.3 Model Selection in the FROZEN Setting

In this section we present the results of model se-
lection when training is carried out in the FROZEN
setting. The FROZEN case (also known as the
"linear probing" setting) is common when latency
and/or computing cost are constrained. More-
over, FROZEN training has been shown to gener-
alize better to out-of-distribution data than FINE-
TUNE training when pre-trained representations are
"good" (Kumar et al., 2021). This is relevant to the
few-shot domain where most data may be consid-
ered out-of-distribution because of the scarcity of
training data.

The results in the FROZEN setting are somewhat
different than the FINETUNE setting. We begin
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with Table 5, which contains the test set accuracy
of selected models. First, we note that accuracy
is universally lower than in the FINETUNE setting.
This is because many fewer parameters are being
trained. Additionally, there are many more statis-
tically significant improvements over HOLDOUT.
This indicates that holding out training data for val-
idation is particularly costly in the FROZEN setting.
Among the methods, we point out that PANGEA is
the only method to exhibit statistically significant
improvements for every dataset for both k = 5 and
k = 10.

The Table 5 reveals two surprising phenomena.
First, TRAIN is very competitive; with many sta-
tistically significant improvements over HOLD-
OUT and often achieving the highest mean ac-
curacy among all methods. Second, TEST does
not achieve the highest accuracy for a handful of
datasets. Upon inspection, we find that hyperpa-
rameter optimization is the cause of both phenom-
ena. Specifically, some validation sets lead to more
effective hyperparameter optimization. As an ex-
ample, consider Figure 9a. Each circle in the Figure
corresponds to the test set accuracy of a selected
model for a specific dataset variant. Recall that
a selected model is defined by a set of hyperpa-
rameters and an epoch (identified by hyperparam-
eter optimization to achieve the lowest validation
loss). Each star (*) in the Figure is the maximum
achievable test set accuracy for a model trained
with the same hyperparameters. Therefore, for a
given set of hyperparameters, if the epoch in which
the smallest validation loss is achieved is the same



FROZEN-5 FROZEN-10
HoLDOUT 0.05476 0.04637
TRAIN 0.34020 0.26431
PANGEA 0.00273 0.09728
EDA 0.23756 0.16804

Table 6: RMSE of Validation Accuracy, FROZEN.
The root mean square error with respect to validation ac-
curacy and test set accuracy for all methods and training
regimes. RMSE is computed from all hyperparameter
configurations, all epochs, and all datasets. Bolded text
indicates the lowest RMSE per condition. Note that
RMSE for TEST is 0.

as the epoch where the highest test set accuracy
is achieved, then the circle and star corresponding
to that dataset variant will have the same y-value.
Mean test set accuracy for the selected model and
mean of the maximum possible test set accuracy
are also visualized. The Figure reveals that, for
bank-10 in the FROZEN setting, the best hyper-
parameters are found when minimizing training
loss. We provide similar plots for all experimental
settings and datasets for completeness.

B.4 Fidelity in the FROZEN Setting

In Table 7 we report the mean and standard de-
viation of the absolute difference between valida-
tion and test set accuracy for models selected via
each method in the FROZEN setting for k¥ = 5 and
k = 10. The Table shows that PANGEA leads to
the highest fidelity estimates for 4 of 6 data sets
with £ = 5; for the remaining two datasets, it
achieves the second highest fidelity. When k£ = 10,
PANGEA is best in 2 out of 6 data sets. Unlike the
FINETUNE case, HOLDOUT is more competitive
when training in the FROZEN setting. Both TRAIN
and EDA provide unreliable (and low fidelity) esti-
mates since their fidelity is highly correlated with
test set accuracy (as in the FINETUNE case). The
correlation is visualized in Figure 6.

As in the FINETUNE case, we examine the dif-
ference between validation and test accuracy for
all hyperparameter configurations, all datasets, and
all epochs. We report the root mean square er-
ror (RMSE) between validation accuracy and test
set accuracy in Table 6. The Table shows that
PANGEA yields the highest fidelity estimates of
test set accuracy (i.e., lowest RMSE) for £ = 5 and
second highest when k£ = 10. Conversely, HOLD-
OUT yields the second highest fidelity estimates
for k = 5 and the highest fidelity estimates when
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Figure 6: Test Accuracy vs. Absolute Difference of
Validation and Test Accuracy, FROZEN, k = {5, 10}.

k = 10.

Finally, in Figure 7 we visualize validation ac-
curacy vs. test accuracy for selected models in the
FROZEN setting for all hyperparameter configura-
tions and training epochs. As in the FINETUNE
setting, we find that accuracy on validation sets
constructed by PANGEA and HOLDOUT are most
highly correlated with test set accuracy. For k = 5,
HoLDOUT exhibits high variance. Again, both
EDA and TRAIN overestimate test accuracy.



k=5 bank clinc curekart powerplay snips mattress
HoLDOUT 0.05g992 0.05¢04 0.18p06 0.15¢.07 0.14¢ o7 0.130.08

TRAIN 0.44¢.03 0.370.01 0.609.04 0.540.04 0.18¢.05 0.570.04
PANGEA 0.079.02 0.150.01 0.09905 0.07¢02 0.04903 0.11g504
EDA 0.21903 0.26001 0.47005  0.400.02 0.16907 0.41p.02
k=10

HoLDOUT 0.02g91 0.05902 0.07904 0.10¢06 0.090904 0.2190s
TRAIN 0.320.01 0.18p.01 0.370.03 0.450.02 0.120.01 0.48¢.03
PANGEA 0.250.01  0.28p02 0.11g05 0.02¢.02 0.11g02 0.05¢.02
EDA 0.109.02 0.100.01 0.260.03 0.380.02 0.09902 0.350.02

Table 7: Model Fidelity, FROZEN, k£ = {5,10}. The mean and standard deviation of the absolute difference
between validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per
dataset.
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Figure 7: Fidelity of Validation Accuracy, FROZEN, k = {5,10}. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and for all datasets.
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Figure 8: Maximum and Selected Accuracy, FROZEN, k£ = 5. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 9: Maximum and Selected Accuracy, FROZEN, k£ = 10. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 10: Maximum and Selected Accuracy, FINETUNE, k = 5. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 11: Maximum and Selected Accuracy, FINETUNE, £ = 10. Each circle represents the test set accuracy of
a selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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