Efficient Property Projections of Graph Queries
over Relational Data

Mikael Morales!, Vlad Ioan Haprianz, Srinivas Karthik?, Danica Porobic*
Laurent Daynész, Anastasia Ailamaki>”

1: Expedia Group 2: Oracle Labs

ABSTRACT

Specialized graph data management systems have made significant
advances in storing and analyzing graph-structured data. However,
a large fraction of the data of interest still resides in relational data-
base systems (RDBMS) due to their maturity and security reasons.
Recent studies, in view of composability, show that the execution
of graph queries over relational databases, (i.e., a graph layer on
top of RDBMS), can provide competitive performance compared to
specialized graph databases.

While using the standard property graph model for graph query-
ing, one of the main bottlenecks for efficient query processing,
under memory constraints, is property projections, i.e., to project
properties of nodes along paths matching a given pattern. This is
because graph queries produce a large number of matching paths,
resulting in a lot of requests to the data storage or a large memory
footprint, to access their properties.

In this paper, we propose a set of novel techniques exploiting
the inherent structure of the graph (aka, a graph projection cache
manager) to provide efficient property projections. The controlled
memory footprint of our solution makes it practical in multi-tenant
database deployments. The empirical results on a social graph show
that our solution reduce the number of accesses to the data storage
by more than an order of magnitude, resulting in graph queries
being up to 3.1X faster than the baseline.

1 INTRODUCTION

Graph data representing connected entities and their relationships
appear in many application domains such as social media, finance,
health, and sciences. With the constant increase in the amount of
graph data that needs to be managed and processed, graph databases
are becoming more and more popular. Graph databases offer more
intuitive and efficient ways of extracting information about the
data, through graph analytics and graph querying. This has led to a
proliferation of systems being built over the last decade, including
Neo4j [3], Amazon Neptune [1], Oracle PGX [12] and TigerGraph
[4].

However, due to the reliability, performance, security, and ma-
turity of relational databases, most of the data is still managed by
RDBMS [16]. Specifically, the usage of specialized graph engines
is not always possible, given that the data have to be exported
from RDBMS. Furthermore, exporting data not only adds multiple
overheads, such as time and memory, but also raises privacy and
security concerns. When managing sensitive data, such as banking
or medical information, many regulations need to be respected
which can prevent the usage of any external engine that does not
comply with necessary certifications. Also synchronizing the two
copies of data in face of updates would add to the overheads. This

3: EPFL 4: Oracle 5: RAW Labs

Graph Pattern Matcher

(1]
Traversal Logic ——) o o
le Batch of o 0
atch of
SELECT p.name, e.since, Graph Topology

[puid [ecid | cuid |
c.brand

FROM G MATCH q Am_m
(p: person)->[e:owns] o u
->(c:car)

WHERE p.name = ‘John’

matching paths

Graph Projection Cache Manager

Lazy Materialization Buffers

John 2003 W Materlallzed Paths

Caches

Data Storage Layer Stora e Layer Graph Ids
Person Car
- "ev ey [brand |
---- 1o g o -
I ENEE: 2 oz o

Database

Figure 1: System Architecture Overview

has led to the design of architectures for supporting graph querying
and analytics directly over relational databases [9, 11, 12, 14-16].
In this paper, we focus on graph querying [10, 17] where the
objective is to identify sub-graphs matching a given pattern (e.g.,
diamond shape). Further, we use property graph data model which
is one of the most prevalent graph models in industry (e.g., Neo4;j
[3]). From a data modelling point of view, a node represents an
entity, an edge represents a relationship between entities, and a
property represent attributes of an entity or a relationship [7].
Architecture: Figure 1 represents the overall design of our
system. When a query request is received (Arrow: 1), it goes through
the Graph Pattern Matcher component, specifically the traversal
logic, that traverses the topology (built over the relational data) to
compute all the paths (sequence of vertices and edges) matching
a path pattern on a given graph (Arrow: 2). The Graph Pattern
Matcher assumes that an optimal matching order of the path pattern
variables is given by a query optimizer. The order of a variable in
the matching order constitutes the level of the query (i.e., variable p
is at level 0 if matching order starts with p, etc). The graph topology,
capturing graph relationships, is built over the relational rows using
an additional fixed size row identifier column, i.e., Vertex id’s (Vid)
and Edge id (EiD) for each row in the relational tables. Note that the
identifier-based topology consumes much less memory as opposed
to topology containing the actual data (for example, variable length
primary keys). Also, the storage layer is loosely coupled with the

matching layer - thanks to the identifier columns - which works off
the shelf while being independent of the storage layout. In addition
to this, the fixed size vertex and edge identifiers opens opportunities
for graph topology compression and improves cache locality during
pattern matching.

Once the matching patterns are identified, for each pattern the
properties of nodes or edges along the paths are projected (Arrow:
3). For instance, when traversing a social network graph, one might
be interested in extracting the age, the photos, etc. of all the people
(nodes) who are friends with each other (pattern). Under memory
constraints, projecting the properties, hence referred to as property
projection, is challenging. This is because the properties stored in
relational data storage need to be accessed for all paths and at each
level of every path (as described in detail in Section 2.1) (Arrow:
4a/4b). For instance, one needs to do a table access on the person
table searching for p.vid =0. Similarly, for other matched id’s.

The objective of this paper is to minimize the number of accesses
to the data storage (to fetch properties) under memory constraints.

Existing systems can be classified as follows:

e Systems that do eager projections, meaning that before the
pattern matching starts they access tables to fetch prop-
erties of vertices that can potentially appear in the final
result. The properties are then carried along with the vertex
throughout the whole matching pipeline. As graph queries
can easily generate a large number of intermediate results
this approach will suffer from a huge memory footprint
[2, 14, 15].

e Systems that do lazy projections, meaning that they first
match all the paths according to the given path pattern
and then access tables to fetch the properties needed in
the final result. In order to minimize the cost of the table
access requests those systems either store the data into fast
random access in-memory storage offering a quick look-
up interface, or they materialize huge number of paths
before accessing tables in order to amortize its cost. Both
approaches are very memory intensive [11, 16].

Since existing solutions requires large amount of memory, they
do not work well in multi-user deployments where memory capac-
ity is limited. In this paper, to mitigate the above issue, we propose
a novel graph projection cache manager that does lazy projections
in small batches of paths. In order to further reduce the number
of accesses to the data storage, we use techniques such as caching,
prefetching and lazy materialization. The distinctive feature of our
solution is that all of these mechanisms are tailored to leverage the
graph topology resulting in significant performance benefits.

Specifically, the following are the contributions in this paper:

e A caching mechanism tuned to the way paths are produced
that maximizes efficient reuse of previously retrieved prop-
erties and minimize the number of accesses to the underly-
ing data storage.

o A prefetching technique that can prefetch properties of
vertices and edges that are likely to appear in the next paths
produced by the Graph Pattern Matcher. The technique
leverages the graph topology to predict the next element
(vertex or edge) that will appear in a path and prefetches
the property value for this element.

dstArray

OrOR
(]) - i

() :

Figure 2: A graph topology stored as a CSR o

AW
o[/ o]a]s]e]u]o

e Evaluation of the improvements brought by our techniques
on a social graph from Linkbench graph benchmark. The
result suggests that this solution reduces the total number
of storage accesses by up to an order of magnitude, thus,
resulting in up to 3.1X speed up in query running time.
Furthermore, the memory footprint of our solution is a
small fraction compared to the full-materialization scenario.

2 EFFICIENT PROPERTY PROJECTIONS

In this section, we describe our techniques for efficient projection
of properties for paths produced by the Graph Pattern Matcher.
Without loss of generality, we only discuss how our approach works
for projecting vertex properties. Projecting edge properties is sup-
ported using the same techniques. We use Compressed Sparse Rows
(CSR) format to represent graphs. CSR can be seen as a compact
representation of the vertex neighbourhood information, enabling
the efficient exploration of the graph topology by following in mem-
ory pointers/offsets. The Graph Pattern Matcher is in charge of
computing all the paths (sequence of vertices and edges) matching
a path pattern on a given graph. In order to speed up the processing
of paths, it leverages an in-memory representation of the graph
i.e. the CSR. The paths are generated by orderly navigation of the
graph in depth-first-search manner.

Figure 2 represent an example CSR of a graph. The neighbour-
hood information for each vertex is captured using two arrays
namely - srcArray and dstArray. For vertex index i, its neighbours

are indexed in the range [dstArray[srcArray[i]], dstArray[srcArray[i+1]]).

Note that the range value is non-inclusive at the end. For exam-
ple, neighbours of 0 are {1,2,3} which are captured in the range
[dstArray[0],dstArray[3]).

2.1 Baseline implementation

For ease of presentation, we leverage Figure 1 to present the baseline
control flow. The primary difference from our solution is that the
baseline does not go through the middle cache manager layer, rather
goes directly go data storage layer (Arrow 4A) after Step 3.
(1) Given the input query, the Graph Pattern Matcher traverses
the graph and identify the paths that match the path pattern.
(2) We fetch paths from the matcher batch by batch.
(3) Once a path is extracted, we can then fetch its properties
from the underlying tables. To do so, we identify the levels
that need to project properties. In the example in Figure 1,
the query is requesting (p.name), hence we request the
properties from the relational table bounded to the vertex

identified by person(p). A table access is performed to fetch
only the properties of a single vertex. In general, N table
accesses are executed, where N is the number of levels of
the path pattern doing projections.

(4) (4A) The table access operator fetches the requested prop-
erties from the data storage.

(5) Once the properties are retrieved, we can safely output the
projection result of the path.

Steps (2) to (5) are repeated for each path produced in Step (1).
The main bottleneck in the baseline implementation is that it
requires N«M/BATCH_SIZE table accesses in total, where M is the
number of paths matching the path pattern and BATCH_SIZE is
the number of paths produced by the Graph Pattern Matcher at once.
This makes this baseline implementation potentially inefficient.

2.2 Graph Projection Cache Manager

The baseline property projection pipeline offers multiple opportu-
nities for improving performance and avoiding redundant work.
Namely, the same vertex can often appear in paths belonging to dif-
ferent batches requiring separate table accesses to retrieve the same
property value. Since table accesses are not free, a prudent use of
the working memory would be caching the values that are fetched
by a given table access as those values are likely to be needed also
for subsequent batches. In addition to this, graph connectivity infor-
mation can be used to predict, i.e., which properties will be required
in the near future in order to be prefetched and boost the efficiency
of the cache. Since all of these techniques trade-off space for time
by using memory to store properties and avoid table accesses, it is
necessary to distribute the available memory judiciously between
the different data structures.

Motivated by these insights, we devise the following mecha-
nisms:

(1) A caching mechanism that can efficiently reuse the existing
results, and avoids the need to retrieve the same properties
multiple times. This mechanism reduces the total number of
table accesses required. In order to amortize the cost of table
accesses needed to resolve cache misses, we accumulate
them across batches and lazily resolve them when enough
are available.

(2) A data prefetching technique that leverages the informa-
tion provided by the Graph Pattern Matcher and the in-
memory graph index (CSR) to determine vertices likely to
appear in upcoming paths. Those vertices will be prefetched
to further reduce cache misses.

The next subsections will describe the design of the data struc-
tures and mechanisms presented above in detail.

2.3 Caching

The intuition behind caching is that, if a vertex i is connected
to multiple vertices then it is likely to appear in multiple paths
returned by the Graph Pattern Matcher. In other words, multiple
paths returned by the Graph Pattern Matcher belonging to different
batches will contain vertex i. Therefore, caching the properties of
vertex i can help. Highly connected vertices are expected to be
present in many graph topologies, e.g., in social graphs.

When processing a graph query, i.e. (a)->(b)->(c), each level and
each relational table involved at each level has an independent,
in-memory, cache associated with it. This cache is row-oriented
and has a fixed size. The cache data structure contains a mapping
from vertex identifiers to the properties projected at this level. The
caches are filled after getting the results from table accesses.

To illustrate how caches are allocated, using the input graph
query will generate an instantiation tree, closely following the
graph schema. Each node in the tree includes the information on
whether or not it is doing projection. If it does, it will have a pointer
to a cache data structure.

Having cache per level also facilitates using different cache size
per level, or skipping a level altogether. Caching efficiency, i.e., the
percentage of projections that can be satisfied from the cache, de-
pends on the graph connectivity and degree of overlap between the
subsequent paths. Having the versatility of a cache data structure
allows us to configure caches differently based on the topology
of the queried graph, resulting in a much more efficient usage of
memory.

2.3.1 Handling cache misses. Resolving cache misses for batch-at-
a-time system can potentially be very expensive. For example, if
only properties of a few vertices are missing in the batch, then the
whole table will be accessed unnecessarily. In order to overcome
this issue, we design a lazy materialization technique that allows
us to accumulate the cache misses across multiple batches and only
resolve them when enough are accumulated. By this, we amortize
the cost of table accesses needed to resolve the cache misses.

Materialized paths: The materialized paths data structure stores
the paths fetched from the Graph Pattern Matcher that hit the
cache entirely. If the properties of all the node levels of the path
requiring projections are already in the cache, the result can be
written out without needing any table accesses. To materialize a
path we need to store the vertex identifier (vid) of each level. As
caches are indexed by vids, we can use them to access the required
properties.

Lazy materialization buffer: The lazy materialization buffer is
used to store paths fetched from the Graph Pattern Matcher. How-
ever, the paths stored in the lazy materialization buffer may
not hit the caches at all levels.

Unlike the materialized paths data structure, the data stored
in the lazy materialization buffer contains more than just vertex
identifiers (vids). Considering that a subset of levels of these paths
could potentially have hit the cache, the lazy materialization buffer
also contain results that can store these properties.

Copying the available projected value from the cache(s) to the
materialized buffer makes it possible to decouple the management
of the cache from that of the materialization buffer. In particular,
the cache doesn’t have to interact with the materialization buffer
to decide what value to evict. The lazy materialization buffer size
is tunable based on the query path and graph topology.

2.4 Data prefetching

Our topology-aware prefetching algorithm is based on the level at
which we are prefetching the data. Let us assume, without loss of
generality, that we are executing a graph query with the following

path pattern: (a) — (b) — (c). Depending on the level, we do the
following:

e Source level (a): Our Graph Pattern Matcher guarantees
the order in which matching paths are returned, with re-
spect to the source of the paths. Using this invariant, given
a set of matching paths and a maximum value x, where x
is the source vertex with the biggest identifier of the set.
We know that for every vertex y that we will prefetch, we
should ensure that y > x. This means that the vertices
which are going to be prefetched have not yet been consid-
ered as a potential source of paths by the Graph Pattern
Matcher, but are likely to be in the near future. Thus, by
prefetching them, we will get their properties in advance
and avoid potential table access operations later.

e Otherlevels (), (c): we leverage the information given
by the graph topology. When prefetching at level i, we
can look-up the graph index for the next neighbors of the
current parent (siblings of the current vertex). Those neigh-
bors will appear in the next paths explored by the Graph
Pattern Matcher and depending on the graph pattern and
the input graph, have a high likelihood to be part of the
final paths returned by the Graph Pattern Matcher.

The amount of data to prefetch is determined as follows: 1) The
size of the cache is set to always be greater than the BATCH_SIZE.
2) Fetching missing properties from the lazy materialization buffer
will refill the cache with N properties. 3) The remaining space due
to duplicated vertices in lazy materialization buffer (the difference
between the cache size and N) is available for prefetching data.

2.5 Overview of control flow

In this section we give an end to end view of the control flow used
in our algorithm (see Figure 3). We have focused on popular OLAP
scenarios, however, extending to OLTP setting is an interesting
future work. We start by extracting paths produced by the Graph
Pattern Matcher. For every path, we do the following:

(1) Check if all the properties of the vertices in the path are
already cached. If yes, then we save it into the materialized
paths data structure.

(2) Otherwise, we save it in the lazy materialization buffer. We
also copy the properties of the vertices in the path, that are
in the caches (if any) to the result set. The goal of this step
is to delay the full materialization of these paths as much
as possible.

(3) Once any of these two data structures are full, we stop
extracting paths from the Graph Pattern Matcher and start
outputting rows.

(4) For all paths in the materialized paths data structure, we
consume them directly by fetching the properties from the
caches and output them.

(5) Then, once the lazy materialization buffer is full, we access
tables in order to fetch properties of the vertices present in
the buffer. We also use the data prefetching algorithm to
prefetch properties for the upcoming paths.

(6) When the table access results are ready, we cache them.
Then, we start consuming the paths from the lazy materi-
alization buffer by fetching the properties from the caches

Materialized paths
SELECT b.name

FROM MY_GRAPH 0

MATCH (a) = (b) T
13 . w O L 256 .
Matching pat / (3) | Repeat until one
Graph Pattern m =) ofthe data

Matcher

L \ Lazy materialization Buffer | structures i full

3 /

/ Batch size
7 /
2 /
Materialized paths

-

0 Projection output -
® 4 Get name Repeat until
L 256 ™= | property of vid | = m = | data structure

0in the cache Mike is consumed

Data storage

Lazy materialization Buffer

Table access Joe

Bach ™ withdata m Alice
size prefetching Bob

®

[T
—_ - - =

Store table @
access results | qmmm—m

in the cache

Lazy materialization Buffer

nmw

Get name Projection output Repeat until

wm) | property of vid | mmp m = | data structure
3in the cache Rose is consumed

®

oSN o W
~ BN - BN

Figure 3: Visual representation of the control flow

and outputting them. This operation will be done until the
buffer is empty.

3 EXPERIMENTAL EVALUATION

In this section, we evaluate the techniques described in the previous
section and quantify their impact on the graph query execution
time based on the number of table access saved. We use the batch-
at-a-time, described in Section 2.1, as our baseline. We also assess
the slow down in execution time of our solution compared to the
ideal scenario of full materialization.

3.1 Experimental setup

All our experiments are carried out on a machine with Intel Xeon
E5-2699 CPU with 512GB DDR4 RAM while running Linux kernel
4.1.12. We use System X as the relational backend. Recall that our
goal is to minimize the number of table access requests for accessing
the properties under memory constraints. The savings achieved,
in terms of table access, by our techniques would remain the same
independent of the underlying RDBMS (or data storage system).
Thus our evaluation is performed only on X in this work by building
the Graph Pattern Matcher and graph projection cache manager
on top it (as captured in Figure 1). Finally, to avoid noise, we report
the average values over five executions.

Datasets: We conduct experiments on a social graph using the
data from Linkbench [8] graph benchmark. We primarily use a
scale factor 10 (SF10) of this benchmark which creates a graph of

w
wn

w
o

g
wn

=
wn

10% 20% 40% 60%

Speed Up in Execution Time
= N
o o

Cache size at every level as a fraction of vertex table size

Figure 4: Relative execution time speed up compared to base-
line with caching

Hlevell MLlevel2 Level3 [Olevel4 m CachingOnly
« 1800000

& 1600000
@ 1400000

< 1200000

2 1000000

800000

600000

400000
200000 ;-

0

10% 20% 40% 60%
Cache size at every level as a percentage

Number of Tab|

Figure 5: Total number of table accesses with Prefetching.

65’645 vertices and 1’938’516 edges. In our experiments, we use
the Person and personKnowsPerson tables.

We use a PGQL query that asks for all paths of length four and
projects the age property at every level without any filters. The
query pattern does not matter in our context, as we are prefetch-
ing only at first level. Even though we are working on a rela-
tively smaller graph size, the number of paths returned for the
query is 5’782°122°733. Since our goal is efficient property pro-
jection through minimal number of table accesses, our chosen
dataset/query is large enough to evaluate the benefits of our pro-
posed techniques.

3.2 Caching

We now evaluate the efficacy of caching. We empirically fix the op-
timal batch size based on the data size. Further, we enable caching
at every level equally by defining the cache size value as a percent-
age of the total size of the properties to be projected in the vertex
table. Note that level corresponds to an order of a variable in the
matching order. Overall, as captured in Figure 4, the results show
that even while using a cache size of just 10% we get a speed up of
1.4X compared to the baseline as we are able to execute 2 times less
table accesses. The speedup factor increase further to around 3.1X
with around 10 times less table accesses, if we increase the cache
size to 60%.

Caching helps since the properties of a vertex that are projected
and cached will end up being reused as the graph is well connected.
More connected the graph is, more the reuse and hence more the
benefits of caching.

m Prefetching & Caching m Caching Only

w
«n

w
o

g
[0

=
wn

10% 20% 40% 60%
Cache size at every level as a fraction of vertex table size

Speed Up in Execution Time
= N
o o

Figure 6: Comparison of relative speed up in execution time
over baseline for with and without data prefetching,.

3.3 Data prefetching

Figure 5 shows that by aggressively prefetching unprocessed neigh-
bors, it meaningfully reduces the number of table accesses required
to fetch projected properties. Thus leading up to 2 times fewer
table accesses with prefetching than without it (i.e. caching only).
Data prefetching helps in reducing the number of table accesses at
every level, not only at the source. The more neighbors a vertex
has, the more likely it will still have unprocessed neighbors when
the lazy materialization buffer is full, thus, triggering table accesses.
Hence, our prefetching algorithm will be able to prefetch the un-
processed neighbors and ensure a cache hit at the next iterations,
leading to fewer table accesses.

It is important to see that the impact of data prefetching is more
pronounced with smaller cache sizes. This is because, as we increase
our cache size, the likelihood of having the data available in the
cache, without needing any other mechanism, increases. Thus, the
impact of data prefetching is reduced. Given that our techniques are
aimed at deployments with memory constraints, having efficient
processing with a small memory footprint is particularly important.
Figure 6 presents a comparison of the relative speedup over baseline
of graph query time with and without prefetching (i.e. caching only).
We are able to achieve up to 20% faster response times using data
prefetching compared to caching only strategy. In summary, the
total number of table accesses to the storage layer reduces by 4X to
12.7X for cache sizes ranging from 10% to 60%.

3.4 Sensitivity analysis

In this experiment, properties needed for projection are materialized
into in-memory arrays providing fast random access. This is the
scenario wherein we have enough memory to materialize the entire
relational data. We compare the performance of our techniques to
this ideal case for various cache sizes. We use a batch size of 1000
paths with caching and data prefetching enabled. We use LDBC
SF1 dataset for this evaluation for which the graph query yields
198’136°160 matching paths.

Figure 7 shows the relative slow down of the execution time
compared to the full materialization setting. We see that the slow
down ranges from 2.4X for 10% cache size configuration to as low
as 1.4X with 60% cache size. The takeaway is that our memory
saving techniques allow us to execute graph queries with projec-
tions without severely impacting the performance as compared to
full-materialization case.

2.5

Relative Slow Down in Execution Time

10% 30% 60%
Cache size at every level as a percentage of the vertex table size

Figure 7: Relative execution time slow down over full mate-
rialization

4 RELATED WORK

Constant increase in graph data has led to design of several spe-
cialized graph databases such as Neo4j [3] and TigerGraph [4].
Supporting graph queries directly over relational data has the ad-
vantage of avoiding ETL overheads, data duplication and potential
security issues. Systems using this approach can be categorized as
follows:

Graph-Core: They typically extract graphs from the relational
data and materialize it, and answer graph queries from the in-
memory graph view. Apart from the data duplication issue, another
downside is that they operate on stale data. Examples of such sys-
tems are GraphGen [18] and Oracle PGX [12].

Relational-Core: In this line of work, the graph data is stored
in relational databases. Once the graph data is persisted into a
relational database, given a graph query, a translation layer is used
to convert it into SQL equivalents for querying over relational
tables. Often this translation is non-intuitive and cumbersome, as
well as less performant than native graph querying. SQLGraph [15],
Vertexica [14] and Microsoft SQL Server Graph [2] fall into this
category.

Graph-Relational-Core: In this line of work, the boundary be-
tween the graph layer and the relational data is blurred by building
a graph topology or index over it. DB2 Graph [16] and GraphFu-
sion [11] are examples of such an approach (including our system).
The main difference between our system and GraphFusion is that
GraphFusion requires an in-memory copy of the relational data as
the graph topology has tuple pointers to the in-memory relational
tables. This allows them to have (assume) fast random access to the
underlying properties at the expense of additional memory usage,
which we overcome in this paper. Neither GraphFusion nor DB2
Graph address the problem of efficient property projection in face
of memory constraints.

In short, existing solutions requires large amount of memory,
they do not work well in multi-user deployments where memory
capacity is limited. On the other hand, property projection for graph
queries resembles tuple construction in column stores. Chapter 4
of the excellent tutorial on column store system design [5] presents
trade-offs in evaluating join operators and projecting attributes
that are not necessary for evaluation. Lazy materialization is very
advantageous in column stores as it improves hardware utilization
by increasing cache locality, amortizes decompression cost and

offers vectorization opportunities [6], however, additional book-
keeping makes early materialization preferable for queries that are
not selective. Caching and prefetching techniques are fundamental
design building blocks in database buffer manager components
[13]. We take inspiration from extensive work done in the context
of relational query processing and adapt it in the graph querying
context by focusing on leveraging the topology information such
as connectivity. We expect our solution to be beneficial in any of
the above-mentioned graph-relational composable systems.

5 CONCLUSIONS

Composing relational and graph query processing has seen a lot
of attention in recent times. In this paper, starting from a batch
processing technique as a baseline, we propose mechanisms such
as caching, prefetching and lazy materialization by utilizing the
graph structure to minimize the number of table accesses. We also
introduce a control flow that encapsulates all these techniques to
provide a memory-efficient solution. Overall, our proposed tech-
niques can reduce the number of table accesses by nearly an order
of magnitude compared to baseline, and making the graph queries
run over relational data significantly faster.

REFERENCES

[1] [n.d.]. Amazon Neptune. https://aws.amazon.com/neptune/

[2] [n.d.]. Microsoft SQL Server. https://docs.microsoft.com/en-us/sql/relational-
databases/graphs/sql-graph-overview?view=sql-server-2017

[3] [n.d.]. Neo4j. https://neodj.com/

[4] [n.d.]. Tigergraph. https://www.tigergraph.com/

[5] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Mad-
den, et al. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends® in Databases 5, 3 (2013), 197-280.

[6] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden. 2007.
Materialization Strategies in a Column-Oriented DBMS. In Proc. of IEEE ICDE.
466-475.

[7] Renzo Angles. 2018. The Property Graph Database Model. In Proc. of AMW.

[8] Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In Proc. of the ACM SIGMOD.
619-630.

[9] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The Case
Against Specialized Graph Analytics Engines. In CIDR.

[10] Alastair Green, Martin Junghanns, Max Kiefling, Tobias Lindaaker, Stefan Plan-
tikow, and Petra Selmer. 2018. openCypher: New Directions in Property Graph
Querying. In Proc. of EDBT. 520-523.

[11] Mohamed S. Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G. Aref, and

Mohammad Sadoghi. 2018. Extending In-Memory Relational Database Engines

with Native Graph Support. In Proc. of EBDT. 25-36.

Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn

Verstraaten, and Hassan Chafi. 2015. PGX.D: A Fast Distributed Graph Processing

Engine. In Proc. of the Intl. Conf. for High Performance Computing, Networking,

Storage and Analysis. 58:1-58:12.

[13] R Jauhari, Michael J Carey, and Miron Livny. 1990. Priority-hints: an algorithm

for priority-based buffer management. In VLDB Conf. 708-721.

Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande,

and Mike Stonebraker. 2014. Vertexica: your relational friend for graph analytics!

Proc. VLDB Endow. 7, 13 (2014), 1669-1672.

[15] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang
Hu, and Guo Tong Xie. 2015. Sqlgraph: An efficient relational-based property
graph store. In Proc. of ACM SIGMOD. 1887-1901.

[16] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid Pirahesh, Suijun Tong, Wen
Sun, Thomas Kolanko, Md. Shahidul Haque Apu, and Huijuan Peng. 2020. IBM
Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside IBM
Db2. In Proc. of the ACM SIGMOD. 345-359.

[17] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: A Property Graph Query Language. In Proc. of ACM GRADES

Workshop. 1-6.

Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande. 2017.

GraphGen: Adaptive Graph Processing Using Relational Databases. In Proc. of

the ACM GRADES Workshop. 9:1-9:7.

[12

[14

[18

https://aws.amazon.com/neptune/
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/ sql-graph-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/ sql-graph-overview?view=sql-server-2017
https://neo4j.com/
https://www.tigergraph.com/

	Abstract
	1 Introduction
	2 Efficient property projections
	2.1 Baseline implementation
	2.2 Graph Projection Cache Manager
	2.3 Caching
	2.4 Data prefetching
	2.5 Overview of control flow

	3 Experimental evaluation
	3.1 Experimental setup
	3.2 Caching
	3.3 Data prefetching
	3.4 Sensitivity analysis

	4 Related work
	5 Conclusions
	References

