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Abstract

Modern compilers apply a set of optimization passes aiming
to speed up the generated code. The combined effect of indi-
vidual optimizations is difficult to predict. Thus, changes to
a compiler’s code may hinder the performance of generated
code as an unintended consequence.

Performance regressions in compiled code are often re-
lated to misapplied optimizations. The regressions are hard
to investigate, considering the vast number of compilation
units and applied optimizations. A compilation unit consists
of a root method and inlined methods. Thus, a method may
be part of several compilation units and may be optimized
differently in each. Moreover, inlining decisions are not in-
variant across runs of the virtual machine (VM).

We propose to solve the problem of diagnosing perfor-
mance regressions by capturing the compiler’s optimization
decisions. We do so by representing the applied optimization
phases, optimization decisions, and inlining decisions in the
form of trees. This paper introduces an approach utilizing
tree edit distance (TED) to detect optimization differences in
a semi-automated way. We present an approach to compare
optimization decisions in differently inlined methods. We em-
ploy these techniques to pinpoint the causes of performance
problems in various benchmarks of the Graal compiler.
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1 Introduction

Compilers rely on optimizations to generate efficient ma-
chine code. Optimizations are transformations on the level
of intermediate representation (IR) [12]. Modern just-in-time
(JIT) compilers use elaborate heuristics incorporating profil-
ing feedback to determine which transformations are benefi-
cial [23, 34]. The quality of optimization decisions is a crucial
factor in determining the speed of a compiled program.

Compilers under active development, such as Graal [29],
have several changes merged every day. Well-written com-
mits contain atomic changes with clear intentions, e.g., to
add a feature or to fix a bug. However, the actual effects of the
changes may be unclear due to the interplay of individual op-
timizations and the system’s overall complexity. Therefore,
there may be additional unintended effects of each commit.
As a result, the quality of generated code may be negatively
impacted. In this paper, we refer to the quality of generated
code as compiler performance. Thus, the unintended effects
of changes pose the risk of compiler performance regres-
sions. The Graal compiler undergoes automated regression
testing [6, 14] to identify performance-affecting commits.
The computation-time costs of regression testing [1] are
significant and thus cannot be conducted for each commit.

When a performance regression is identified, it is neces-
sary to determine its cause. However, it has been observed
that the root cause is often unrelated [6] to the changed
code. There may be too many code changes to inspect, and
it is hard to predict their effects. Moreover, a regression may
not manifest itself in each invocation of the virtual machine
(VM).
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Performance problems are often related to frequently exe-
cuted code. To investigate a regression, a compiler engineer
might profile the workload [32] to identify those native meth-
ods where most execution time is spent. A native method
represents one compilation unit. A compilation unit in Graal
consists of a root method and up to hundreds of inlined
methods. The collected profiles sometimes uncover which
compilation units take longer to execute after the regression.
The cause of the regression is likely to be rooted in such a
compilation unit.

Compiler performance regressions can often be traced
down to individual optimizations. For example, the cause of a
regression might be that a potentially beneficial optimization
was not applied. Therefore, performance diagnosis consists
of inspecting the optimizations in the affected compilation
unit. However, the existing techniques to investigate the
differences in optimization decisions are limited. Typical IR
graphs contain thousands of nodes and undergo hundreds of
transformations. The options include viewing and comparing
the IR of individual compilation units [49] and miscellaneous
logs produced by the optimizer.

Another source of complexity is that compilation units do
not have a simple one-to-one mapping across VM invoca-
tions. The set of methods compiled as a compilation unit is
not invariant. The methods are selected for compilation by
non-deterministic execution counters, and inlining decisions
[34] are not deterministic either. One method may be part of
several compilation units and may be optimized differently
in each. As a result, it is often infeasible to compare how a
single method is optimized across VM invocations.

To diagnose these regressions, we propose capturing the
compilation and execution of an application. During compi-
lation, we track the optimization decisions, including the ex-
ecution flow of the optimizer, represented as an optimization
tree. Additionally, we build an inlining tree, which represents
the structure of inlined code and associated inlining deci-
sions. These two trees reflect the optimizations performed
in a compilation unit.

Inlining often enables new optimization opportunities
in a compilation unit. To represent these relationships, we
propose linking optimization decisions to inlined code. To
this end, we introduce the optimization-context tree, which
shows optimization decisions in inlining contexts.

As a dynamic step, we profile the running application to
estimate the execution time share of each compilation unit.
We refer to the data from the compilation and execution
steps collectively as an experiment.

We present profdiff, which is an approach to compare two
experiments. We can leverage profdiff to compare two exper-
iments compiled by different compiler versions, e.g., before
and after a regression. Profdiff highlights the differences be-
tween optimization decisions in hot code. We identify these
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differences by semantically comparing inlining, optimiza-
tion, and optimization-context trees using 1-degree [38] tree
edit distance (TED).

Due to inlining [34], a single method may be part of several
compilation units Conversely, several methods may be in-
lined into one compilation unit. Therefore, it is not sufficient
to compare only pairs of compilation units. We introduce
compilation fragments to compare optimization decisions in
hot methods compiled in different contexts.

We implemented the described methods for the Graal
compiler [29]. The implementation' is available in the open-
source compiler repository. The concepts presented in this
paper are applicable to any dynamic compiler that can cor-
relate the IR with source code and is organized as a system
of optimization passes.

We evaluated our tool with several engineers from the
Graal compiler team and with industry-standard benchmark
suites. We describe three workloads in which we pinpointed
several suboptimal inlining decisions. The findings were
validated by overriding the inlining decisions made by the
compiler and resulted in a speed-up of about 8% to 30%.

In summary, we present a novel approach that automati-
cally identifies optimization differences between two experi-
ments in frequently executed code. This paper contributes
the following:

e We propose capturing the dynamic execution flow of
a compiler including the performed optimization deci-
sions, the performed inlining decisions, and optimiza-
tion decisions in inlining contexts in the form of trees.

e We propose comparing optimization decisions in fre-
quently executed code by applying 1-degree TED to
compute the differences between these trees.

e We propose a technique to compare optimization de-
cisions performed in hot methods that are inlined in
different contexts.

e We present an extensive evaluation of the tool with
industry-standard benchmarks showing it can identify
performance-affecting optimization decisions.

2 Compiler Performance Tracking

There are several changes merged to the Graal compiler daily.
Compiler developers track [6] changes in metrics such as the
wall clock time to execute a representative workload [5, 35].
Workloads from benchmark suites are repeated several times
for selected compiler configurations and target platforms.
The challenges of performance tracking include handling
warm-up [3] of the JIT compiler and various sources of vari-
ance. For these reasons, performance tracking incurs a high
cost [1] in terms of machine time. Statistical methods are
employed [14] to detect performance changes in either di-
rection.

Ihttps://github.com/oracle/graal/blob/master/compiler/docs/Profdiff.md
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Detecting a regression is the first part of the problem.
Finding the cause of the regression is the task that follows.
In this section, we analyze different kinds of possible re-
gression causes. Performance tracking and regression cause
analysis share a common set of challenges. These challenges
are related to the architecture of GraalVM [30] and the
non-determinism of the environment. We present a short
overview of the architecture and explain the relevance to
performance tracking and regression cause analysis.

2.1 Performance Regressions

Consider the commits merged to a compiler. In the simplest
case, a commit may directly change the rules or heuristics
that dictate when an optimization is applied. These changes
may cause a regression such that an optimization is not ap-
plied when it should be or applied when it should not be. A
compiler engineer might investigate this by identifying the
optimization decisions that changed in a particular work-
load after the regression is detected. This is the primary use
case for the automated detection of changed optimization
decisions.

True reasons for performance changes are not always
[6] directly related to the committed code. A change to a
dynamic compiler may result in unexpected consequences.
For example, changes to one optimization phase influence
all successive phases. A manual search for indirect effects is
difficult because it might be unclear what effects to look for.
Therefore, automated optimization difference detection is a
great fit for these scenarios.

Another class of challenges is related to the non-determinism
of the VM. A performance problem may manifest itself only
in some VM invocations leading to significant performance
deviations. Thus, it is often necessary to sample several
different compilation outcomes [15]. Replay compilation
[20, 27, 28, 31, 37] helps to diagnose such workloads by re-
producing prior compiler behavior. Performance distribution
may shift as changes are merged into the compiler, which is
considered an overall performance regression.

2.2 GraalVM

To understand the factors contributing to the non-determinism
of the environment, we give a short overview of GraalVM’s
architecture. GraalVM is a configuration of the HotSpot Java
Virtual Machine (JVM) [42] that replaces the server com-
piler [33] with the Graal compiler [29]. GraalVM utilizes
tiered compilation [46] comprising an interpreter and two
just-in-time compilers. The execution of a method starts in
the interpreter. The interpreter collects profiling information
[36], such as execution counters and type profiles for indirect
calls. When the number of method invocations exceeds a
threshold, the method is typically compiled with a modest
optimization level by the client compiler [22]. The client
compiler generates instrumented code that also collects pro-
files. After the number of method invocations passes another
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threshold, the method is compiled by the top-tier Graal com-
piler [29], striving for peak performance. The reverse step
(i.e., deoptimization [18]) is also possible: execution may be
transferred from compiled code to the interpreter. Figure 1
sums up the execution transfers between the interpreter and
compiled code. Note that Figure 1 is a simplification, and the
actual compilation policy [46] is more complex.

threshold - threshold
reached profiling reached

client compiler

assumption violated (deoptimization)

profiling

interpreter

Y

Y

Graal compiler

Figure 1. Execution transfers in GraalVM.

The collected profiles guide optimization decisions [23, 34,
47] during compilation. For example, the profiles are used to
estimate the relative probability of an instruction [23]. This
is useful to assess the benefit of an optimization given its cost
(e.g., considering the code size increase). Type profiles allow
the inliner [34] to devirtualize indirect call sites. Thus, the
quality of generated code depends [47] on the quality of the
profiles. However, the profiles are sampled from a limited
time window. When the characteristics of the input data
change, the profiles become inaccurate [47]. The window
during which profiles are collected is also subject to factors
such as the timing of compilation jobs or deoptimization
[18].

Deoptimization [18] allows JIT compilers in GraalVM to
optimize speculatively. The compiled code is aggressively
optimized based on speculative assumptions. When an as-
sumption is violated, the compiled code transfers control
(deoptimizes) back to the interpreter. This is another source
of non-determinism. The VM may resume profiling after de-
optimization is triggered. Deoptimization occurs at a seem-
ingly random time. The recompiled code may be optimized
differently and exhibit different performance characteristics.

Tiered compilation leads to a warm-up phase [14] in some
applications. However, it has been shown that some work-
loads do not reach a steady state at all [3]. The JIT compiler
and the garbage collector, which run in parallel with applica-
tion code, have been linked to inconsistency during a single
VM run. The workloads are also subject to instability across
multiple invocations of the VM. Therefore, it is necessary to
invoke the VM several times and also repeat the workload
during a single VM invocation [14].

3 Profdiff

This section introduces profdiff, an approach to capture and
compare optimization decisions. We have extended the Graal
compiler [29] with an option to collect and store optimization
logs. The compiler collects an optimization tree (Section 3.1)
and an inlining tree (Section 3.2) for each compilation unit.
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We can associate optimization decisions with their inlining
contexts using the optimization-context tree described in
Section 3.3. The optimization-context tree is built from the
collected optimization and inlining trees.

Our focus is the peak performance of a workload. There-
fore, we capture logs only from the top-tier compiler, i.e.,
Graal. A top-tier compiler compiles only methods whose
execution counters exceed predefined thresholds. In JIT ter-
minology, these methods are considered hot. Our approach
is based on the observation that a suboptimal optimization
decision is likely to prolong the compilation unit’s execution
time. Additionally, the impact of suboptimal optimization is
amplified in compilation units where a significant portion
of time is spent. Thus, the transformation causing the per-
formance degradation is likely to be found in a frequently
executed compilation unit.

To identify the hottest compilation units, we profile the
executing program using proftool [32], a profiler based on
perf.? Proftool samples the execution time spent in the VM
and in the generated code. Profdiff marks a configurable
number of compilation units with the highest execution
shares as hot.

Figure 2 shows how two runs (experiments) of the same
workload are executed and compared using profdiff. We run
the same workload twice on GraalVM. The workload may
be executed with different VM or compiler versions. Profd-
iff compares the trees of hot compilation units to identify
the different optimizations applied in two runs of the same
workload. The comparison is restricted to hot compilation
units to avoid reporting likely unimportant differences.

‘ writes
GraalVM rev. 1 ‘

protes |
‘ writes.

profiler ‘

optimization
logs (1)

executes
profile (1)

‘ writes

workload profdiff ‘

L{ GraalVM rev. 2 ‘
executes ‘ writes
profiles T

profiler

reads report

optimization
logs (2)

} profile (2)
writes

Figure 2. Executing and comparing two experiments.

Figure 3 illustrates how profdiff compares two experi-
ments. Compilation units in each experiment are grouped
by their root methods. The figure displays the sampled exe-
cution shares relative to the execution share of all compiled
code. Compilation units marked as hot are highlighted in
red.

The goal is to determine what optimization decisions differ
in compilations of the same code. Several compilation units
may be rooted in the same method due to speculative as-
sumptions and consequent recompilations. Consider method

Zhttps://perf.wiki.kernel.org/
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Experiment 1 Experiment 2
Method my Method my
compare
Compilation unit c1; 50% |« > Compilation unit c1; 60%
Compilation unit c; 0%
Method my
Method my «p?'®_~| Compilation unit c,; 35%
o’

Compilation unit c5; 20% 4 Compilation unit c3; 5%

.

Compilation unit c4; 15% Compilation unit c,; 0%

Method m3

Compilation unit cs; 10%

Figure 3. Comparing hot compilation units.

Method m3

no compilations

my from Figure 3, compiled in both runs. Profdiff compares
all hot compilation units of m; in experiment 1 with those of
my in experiment 2. In long-running workloads, later compi-
lations that define the performance of the workload eclipse
the initial compilation units.

Two compilation units are compared using their inlin-
ing, optimization, or optimization-context trees. We apply
1-degree TED [38] with some pre- and postprocessing to
compare the trees. The result of the comparison is another
tree that conveys which optimizations the compilations have
in common and which optimizations are different. Section 3.4
explains this process in detail.

In the presence of inlining, comparing just pairs of com-
pilation units is insufficient. For example, suppose that ms
from Figure 3 is inlined in compilation ¢, in experiment 2.
The problem is that we are not comparing the dedicated
compilation of ms3 (compilation cs in experiment 1) with ¢;
in experiment 2. The code of method mj is in both of these
compilation units. Compilation units ¢5 and ¢; might have
optimized the code of method mj differently. Therefore, it is
desirable to compare these optimization decisions. We solve
this by creating compilation fragments, which we describe
in Section 3.5.

3.1 Capturing Optimization Decisions

Compilers use an IR to represent the semantics of the com-
piled program. The Graal compiler uses a graph-based IR
[12]. Throughout this text, we illustrate compiler transfor-
mations by listing Java code, although Graal performs these
transformations on IR graphs.

This section talks about transformations, optimizations,
and optimization phases. A transformation is an operation
that changes the IR. An optimization is a kind of transfor-
mation aiming to speed up generated code. An optimization
phase is a procedure that applies optimizations or invokes
other optimization phases.

We capture the decisions to perform optimizations (i.e.,
optimization decisions) because changes in these decisions
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are often linked to changes in code quality. Changes in opti-
mization decisions are frequent between compiler versions
or even successive VM invocations. Moreover, some of these
decisions are based on estimates or inaccurate data. Thus,
suboptimal decisions are expected and may lead to perfor-
marnce regressions.

Complex optimization phases, e.g., duplication [23] or
inlining [34], decide whether a transformation is worth ap-
plying by estimating its cost and benefit. These estimates
are prone to instability as described in Section 2. The cost
is linked to the increased code size. The benefit comprises
direct effects (e.g., removing call overhead) and enabled opti-
mization opportunities (e.g., conditional elimination). The
benefit also depends on the execution frequency of the af-
fected code, and the execution frequency is in turn estimated
from the collected profiles.

The optimization phases in Graal follow a phase plan,
which comprises a list of optimization passes that run in a
preset order. Selected phases run iteratively and apply other
phases. A phase may be applied more than once in a phase
plan. The performance of the generated program is sensitive
to which phases are applied in what order. Thus, compiler
developers may tune the phase plan between compiler re-
visions. This motivates capturing the dynamic phase plan
for each compilation. The dynamic phase plan reflects the
execution flow of the optimizer. Additionally, we associate
optimization decisions with the phases that performed them.

Optimization phases are composable, i.e., an optimization
phase may invoke another optimization phase. Consider the
example in Listing 1. The second if-statement (lines 7-9) is
duplicated to the branches of the preceding if-else statement
(lines 2—6). After that, the duplication phase applies a ded-
icated conditional elimination phase [40], which identifies
one of the duplicated conditionals to be false. Finally, a
dedicated phase performing local optimizations simplifies
the control-flow graph. The optimized code is illustrated in
Listing 2.

Listing 1. Unoptimized code. Listing 2. Optimized code.

1 int foo(int i) { int foo(int i) {
2 if (1 >0) ¢ if (i > 0) ¢
3 i+=1; i +=1;

4 } else { if (i >7) (
5 i = 0; i +=1;

6 } }

7 if (1 >7) } else {

8 i+=1; i=0;

9 } 3

10 return i; return i;
13 3

Figure 4 shows the relationship between the duplication
phase and the subsequent optimization phases. The duplica-
tion phase modifies some input graph IR;, and the result is
graph IR,. Each arrow in Figure 4 is a graph transformation
applied by a particular optimization phase. The first duplica-
tion (leftmost arrow) is directly applied by the duplication
phase. Then, the duplication phase invokes the conditional
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elimination phase, which applies a conditional elimination
(middle arrow). In the end, the duplication phase invokes the
canonicalizer phase, which performs a local IR simplification
(rightmost arrow).

duplication cond. elim. canonicalizer
phase phase phase
IRy IR, IR3 IRy4
duplication cqn(ljmopal simplification
elimination

Figure 4. Composition of optimization phases.

An applied transformation often enables new optimization
opportunities. An example of this is duplication enabling
conditional elimination, as we have shown in Listing 1 and
Listing 2. Local IR simplifications may enable additional IR
simplifications. Such self-enabling phases may be applied
iteratively until there are no more optimization opportuni-
ties. To improve interpretability, we capture the order of
the applied optimizations and also associate them with the
dynamic phase plan. The position of an optimization (phase)
in the phase plan may explain its purpose, e.g., to clean up
after duplication.

Optimization Tree. In order to preserve optimization
decisions, their order, and the phases that applied them, we
represent them as an optimization tree. The optimization tree
is an ordered tree, where each node corresponds to either a
phase or an optimization decision. The children of a phase
are the phases and optimizations that the phase applied.

We illustrate the optimization tree using a running ex-
ample, shown in Listing 3. The code reads lines from the

Listing 3. Running example: prints whether all JSON literals
are equal.

1 class Example {

2 public static void main(String[] args) {

3 int limit = o;

4 if (args.length > 0) {

5 limit = Integer.parselnt(args[0]);

6 }

7 System.out.println(literalsEqual(limit));
8 }

9 static boolean literalsEqual(int limit) {
10 Scanner scanner = new Scanner (System.in);
11 Object first = null;

12 for (int i = 0; i < limit; i++) {

13 String line = scanner.nextLine();

14 Object literal = JSONParser.parse(line);
15 if (i == 0) {

16 first = literal;

17 } else if (!literal.equals(first)) {
18 return false;

19 }

20 3}

21 return true;

22 3}

23 }
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standard input and interprets each line as a JSON literal. The
program prints true if all JSON literals are equal and false
otherwise. The first program argument determines the num-
ber of lines read. If no arguments are provided, the program
does not read any line. The example is slightly contrived to
demonstrate various optimization opportunities.

For example, it might be worth peeling [40] the loop at
line 12. Loop peeling involves pulling the first loop iteration
in front of the loop. Listing 4 illustrates the result of loop
peeling (omitting the rest of the method). The line numbers in
Listing 4 represent the lines from which the code originates.
Loop peeling opens an additional optimization opportunity:
the condition i == 0 always holds in the peeled iteration.

Listing 4. After peeling the loop at line 12 from the running
example (Listing 3).

12 int i = o;
12 if (i < limit) {

13 String line = scanner.nextLine();

14 Object literal = JSONParser.parse(line);
15 if (i == 0) {

16 first = literal;

17 } else if (!literal.equals(first)) {
18 return false;

19 }

12 i++;

12 for (; i < limit; i++) {

13 line = scanner.nextLine();

14 literal = JSONParser.parse(line);

15 if (i == 0) {

16 first = literal;

17 } else if (!literal.equals(first)) {
18 return false;

19 3}

20 }

20 3}

We store a descriptive name of the transformation for
each optimization decision. For some decisions, we store
additional key-value properties. After performing the loop
peeling shown in Listing 4, the compiler records the follow-
ing information.

LoopPeeling line 12 with {peelings: 1}

The line above illustrates the content of the logs, which
are stored in a structured format. The key-value property
peelings: 1 informs that this is the first peeling of the loop.
These properties further disambiguate the kind of performed
transformation.

Optimization decisions are associated with positions in
the source code. In Listing 4, the line numbers serve as the
positions. The positions and properties not only improve
interpretability but also establish whether profdiff considers
two optimization decisions equivalent.

We obtain the position of an optimization by using the
position of a node affected by the optimization. Compilers
usually have mechanisms to track these positions. For sim-
plicity, the positions in the example are line numbers. In
our implementation, we use the offset of the bytecode in-
struction, which is more fine-grained than line numbers. For
optimizations that affect more than one node, such as loop
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transformations, we record the position of one of the affected
nodes (e.g., the node modeling the beginning of a loop).

Listing 5 shows a snippet of an optimization tree produced
by compiling literalsEqual from the running example.
The root of the tree is the root phase. The root phase applied
the loop-peeling phase, and the loop-peeling phase peeled
the loop at line 12. After that, the loop-peeling phase invoked
the canonicalizer phase, which performs local IR simplifica-
tions. The canonicalizer phase replaced the increment of the
induction variable i + 1 with the constant 1 in the peeled
iteration. Similarly, the condition i 0 in line 15 is trivially
satisfied in the first iteration. Thus, the equals (==) node was
replaced with the constant true.

Listing 5. Optimization tree of literalsEqual from the
running example (Listing 3).

RootPhase
LoopPeelingPhase
LoopPeeling line 12 with {peelings: 13}
IncrementalCanonicalizerPhase
CanonicalReplacement line 12
with {replacedNodeClass: +,
CanonicalReplacement line 15
with {replacedNodeClass: ==,
canonicalNodeClass: LogicConstant}

canonicalNodeClass: Constant}

When only one method is compiled, the line number (or an
instruction offset) might sufficiently represent the position.
In the presence of method inlining, it is necessary to capture
the inline call stack relative to the root method. As an ex-
ample, assume we compile method main from Listing 3 and
inline the call to literalsEqual. After peeling the inlined
loop, the compiler logs the following information.

LoopPeeling line {Example.literalsEqual(int): 12,
Example.main(String[]): 7} with {peelings: 1}

The interpretation of the above example is that the loop
originates in method literalsEqual at line 12, which is
inlined in method main at line 7. If main additionally invoked
literalsEqual at a different line, different positions would
distinguish the optimizations in the inlined code.

Graal may parse a method, optimize it, and then inline it
in a different method. To ensure that the optimization de-
cisions performed in the inlined callee are preserved, we
build an optimization tree for each IR graph. Whenever a
callee is inlined, we copy the callee’s optimization tree to the
optimization tree of the caller. The callee’s tree is attached
as a subtree of the optimization phase that performed the
inlining. It is necessary to update the positions of optimiza-
tion decisions in the copied tree so that they reflect the new
context.

3.2 Capturing Inlining Decisions

In modern compilers, inlining is essential for the perfor-
mance of many programs. Inlining not only eliminates call
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overhead but also introduces new optimization opportuni-
ties. Improved inlining policies can significantly boost per-
formance [34]. Capturing inlining information is a necessity
in the context of comparing optimization decisions.

Listing 6 shows method main from the running exam-
ple (Listing 3) after duplication. The duplication creates an
opportunity to inline the call to 1iteralsEqual in the else-
block. The constant argument allows the compiler to remove
the loop in the inlined method. The loop removal is realized
as a simple local IR optimization after loop peeling (Listing 4)
because the peeled condition is false when limit equals 0.

Listing 6. After duplication in method main from the run-
ning example (Listing 3).

2 public static void main(String[] args) {

4 if (args.length > @) {

5 int limit = Integer.parselnt(args[0]);

7 System.out.println(literalsEqual(limit))
6 } else {

7 System.out.println(literalsEqual (0));

6 3}

8 3

The inlining tree is a tree of call sites. Each node is as-
sociated with a target method. The root node corresponds
to the compiled root method. The children of each node
correspond to method calls. For each node except the root,
we store the position of the instruction which invokes the
method in the parent’s method body. We assign a call-site
category to each. The category reflects the state of the call
site at the end of the compilation. For example, Listing 7
shows an inlining tree created by compiling method main
from the running example (Listing 3). Call-site categories
are displayed in parentheses (explained in detail later). The
tree shows that literalsEqual is inlined.

Listing 7. Inlining tree of method main from the running
example (Listing 3).

(root) Example.main(String[])

(direct) Integer.parseInt(String) line 5

(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

We store a list of inlining decisions for each node (omitted
in Listing 7). An inlining decision from the inliner is either
positive (the callee was inlined) or negative, and the decision
is linked to a message explaining the reasoning.

At the beginning of a compilation, we start with a tree
consisting of only the root method. The root is assigned the
special category root. Then, we create a node for each call-
site in the compiled method body. Non-inlined callsites are
leaf nodes and categorized as indirect if the call involves
dynamic dispatch or direct otherwise. Whenever a callsite
is inlined, we create the corresponding nodes for the invoca-
tions in the inlined callee’s body. Inlined calls are marked as

53

MPLR °23, October 22, 2023, Cascais, Portugal

inlined. The collected inlining tree captures the final state
at the end of the compilation.

Each non-inlined callsite is linked to a method-invocation
node in the IR. The compiler might delete such a node from
the IR, e.g., when the node is in an unreachable branch. The
callsites linked to deleted nodes are classified as deleted in
the inlining tree.

Indirect Calls. The call target of a callsite may be indirect,
i.e., the target of the call is designated at runtime. For this
reason, the call cannot be directly inlined. Thus, for each
callsite, we record whether it is direct or indirect.

Consider the program from the running example (List-
ing 3). The JSON parser returns an object representing a
literal, e.g., an Integer, String, List, or a Map. These types
override the equals method. Therefore, the call to equals
is marked as indirect in the inlining tree (Listing 7).

GraalVM [30] records the frequencies of receiver types for
indirect call sites. The receiver type determines the concrete
method to call. Profile accuracy is a possible source of subop-
timal inlining decisions. Therefore, we record receiver-type
profiles for indirect callsites, and profdiff displays them in
the inlining tree.

The compiler may inline an indirect call site through de-
virtualization. If there is only one recorded receiver type
for an invocation, the compiler can relink the call to the
recorded receiver. In JIT, this may involve speculation [13].
Relinking the call makes it effectively direct and inlinable.
Note that the inlining tree captures the state at the end of
the compilation.

Suppose the input to the JSON parser from the running
example (Listing 3) comprised only integers. The compiler
could speculatively insert a type check and inline the call to
Integer.equals. Listing 8 shows the inlining tree after the
transformation.

Listing 8. Inlining tree of method literalsEqual from the
running example (Listing 3) after type-guarded inlining.

(root) Example.literalsEqual(int)
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(inlined) Integer.equals(Object) line 17

A polymorphic call is devirtualized by replacing it with a
type switch (an if-cascade with type checks) for the receiver
type [19, 34]. Each branch of the switch leads to a direct
inlinable call and possibly to a virtual call or deoptimization
as a fallback. When these direct invocations are created,
we attach them to the inlining tree as the children of the
indirect callsite. Listing 9 shows the result of inlining some
receivers from the JSON parser example. By attaching the
new nodes as children, we convey that they were created by
devirtualization.
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Listing 9. Inlining-tree snippet for a devirtualized call site.

(devirtualized) Object.equals(Object) line 17
(inlined) Integer.equals(Object) line 17
(inlined) String.equals(Object) line 17
(inlined) List.equals(Object) line 17

3.3 Optimizations in Context

Every transformation performed by the compiler affects a set
of IR nodes. As explained in Section 3.1, we assign positions
to the captured optimization decisions. Consequently, we can
link optimization decisions to inlined code. The optimization-
context tree is the inlining tree extended with optimiza-
tion decisions. In this tree, each optimization decision is
a child node of the method whose code the optimization
transformed — this link is given by the assigned position.
The optimization tree shows optimization decisions in the
dynamic context of the compiler, whereas the optimization-
context tree shows them in the context of the application
code. Thus, both trees show the same set of optimization
decisions, except their structure conveys complementary
information.

The optimization-context tree shows what optimizations
were applied to each compiled method. Linking optimization
decisions to methods is also useful when two compilation
units (or fragments) are compared. The difference between
the two optimization-context trees shows what optimization
decisions were applied to methods compiled in both compi-
lation units. Moreover, if one of the compilation units inlines
a method that the other does not, the representation dis-
cerns what optimizations were performed in such differently
inlined code.

Profdiff builds the optimization-context tree by extending
an inlining tree with optimization decisions from an opti-
mization tree. As an illustration, the optimization-context
tree in Figure 5c is built from the trees in Figure 5a and Fig-
ure 5b. The process starts by copying the inlining tree. Then,
all optimization decisions from the optimization tree are at-
tached as leaves. The place where an optimization decision
is attached is determined by the position of the optimization
decision.

3.4 Comparing Optimization and Inlining Decisions

Consider two compilation units with optimization and in-
lining decisions. The decisions are captured as optimization,
inlining, or optimization-context trees. In this section, we
examine potential differences between two compilations re-
garding optimization and inlining decisions. In order to iden-
tify these differences, we apply a tree-matching algorithm to
compare the presented trees. We introduce the delta tree [7],
which is a tree representation of optimization and inlining
decisions that are either different or identical.

3.4.1 Comparing Optimization Trees. Recall that the
optimization tree captures the applied optimization deci-
sions, phases, and their relative order. If an optimization
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(root) Example.main(String[])

(direct) Integer.parseInt(String) line 5

(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(a) Inlining tree.

RootPhase
LoopPeelingPhase
LoopPeeling line {Example.literalsEqual(int): 12,
Example.main(String[]): 7} with {peelings: 1}
IncrementalCanonicalizerPhase
CanonicalReplacement line {Example.literalsEqual(
int): 12, Example.main(String[l): 7}
CanonicalReplacement line {Example.literalsEqual(
int): 15, Example.main(String[l): 7}

(b) Optimization tree.

(root) Example.main(String[])

(direct) Integer.parseInt(String) line 5

(inlined) Example.literalsEqual(int) line 7
LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(c) Optimization-context tree.

Figure 5. Inlining, optimization, and optimization-context
trees of method main from the running example (Listing 3).

decision does not have a matching decision in the other com-
pilation unit, the difference should be reported. Moreover,
any change in whether or when a phase is applied should
be reported as well. Optimization phases may be applied
depending on dynamic conditions. The order of optimiza-
tion phases matters because each transformation potentially
influences subsequent transformations.

To illustrate this, Figure 6a shows a possible optimization
tree of method literalsEqual from the running example
(Listing 3). Figure 6b captures a regression scenario (i.e.,
the second experiment): the order of the canonicalizer and
loop-peeling phases is reversed. Figure 6¢ represents the dif-
ferences as a delta tree [8]. The tree contains nodes from the
optimization trees, and each node is prefixed with a symbol.
The interpretation of "." is that the node was unchanged,
"-" means that the node was deleted, and "+" means that the
node was inserted.

3.4.2 ComparingInlining Trees. Two inlining trees built
by compiling the same method may have non-identical shapes.
For example, code duplication [23] multiplies the number of
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RootPhase
LoopPeelingPhase
LoopPeeling line 12
IncrementalCanonicalizerPhase
CanonicalReplacement line 12
CanonicalReplacement line 15

(a) Baseline optimization tree.

RootPhase
LoopPeelingPhase
IncrementalCanonicalizerPhase
LoopPeeling line 12

(b) Regressed optimization tree.

. RootPhase
. LoopPeelingPhase
+ IncrementalCanonicalizerPhase
. LoopPeeling line 12
- IncrementalCanonicalizerPhase
- CanonicalReplacement line 12
- CanonicalReplacement line 15

(c) Differences in the form of a delta tree.

Figure 6. Optimization tree of method literalsEqual from
the running example (Listing 3) compared with a regressed
optimization tree and their delta tree.

call sites. Moreover, when a method is inlined, inlining-tree
nodes are created for the callees of the inlinee.

Another kind of difference is different transformations
applied to the same call site. We say that two inlining-tree
nodes represent the same call site if their paths from the root
match. The path from the root to a node consists of the target
methods and call-site positions on the path.

As an example, the compiler might inline the same call in
only one of the compared compilations. The applied trans-
formation is reflected in the call-site category we described
earlier. A possible explanation for such a difference might
come from the reasoning of the inliner or the collected pro-
files. Profdiff displays this information when a difference is
detected.

To illustrate this, Figure 7a is an inlining tree obtained by
parsing method main from the running example (Listing 3).
Figure 7b lists the inlining tree of the same method after
inlining the call to literalsEqual. This inlining tree also
contains nodes for the callees of 1iteralsEqual. Figure 7c
shows the differences between the trees in the form of a delta
tree [8]. The delta tree highlights that 1iteralsEqual is a
direct call in the first tree, but the call is inlined in the second
tree. The delta tree also shows the call sites that are present
only in the second inlining tree.

3.4.3 Comparing Optimization-Context Trees. We can
compare optimization-context trees to identify different in-
lining and optimization decisions. Recall that the tree places
optimization decisions in their inlining contexts. Thus, the
comparison highlights optimization differences in each in-
lined method separately.
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(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(direct) Example.literalsEqual(int) line 7
(direct) PrintStream.println(boolean) line 7

(a) Initial inlining tree of method main.

(root) Example.main(String[])

(direct) Integer.parseInt(String) line 5

(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(b) Inlining tree with literalsEqual inlined.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
* (direct -> inlined) Example.literalsEqual(int) line 7
+ (direct) Scanner.init(InputStream) line 10
+ (direct) Scanner.nextLine() line 13
+ (direct) JSONParser.parse(String) line 14
+ (indirect) Object.equals(Object) line 17
(direct) PrintStream.println(boolean) line 7

(c) Differences in the form of a delta tree.

Figure 7. Two possible inlining trees of method main from
the running example (Listing 3) and their delta tree.

As an illustration, consider two possible compilations of
method main from the running example (Listing 3). Sup-
pose that the first compilation unit duplicates the call to
literalsEqual (shown in Listing 6). The second compi-
lation unit does not perform a duplication. Instead, it in-
lines the call to 1iteralsEqual. Listing 10 compares the
optimization-context trees of these compilation units.

Listing 10. Delta tree of two optimization-context trees.

(root) Example.main(String[])
- Duplication line 7
(direct) Integer.parseInt(String) line 5
* (direct -> inlined) Example.literalsEqual(int) line 7
+ LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
+ (indirect) Object.equals(Object) line 17
- (direct) Example.literalsEqual(int) line 7
- (direct) PrintStream.println(boolean) line
(direct) PrintStream.println(boolean) line

+ o+ o+ o+ o+ o+ 4+

~ ~

We can see a duplication (line 7) performed only in the first
compilation unit. The calls to 1iteralsEqual are matched,
and the listing explicitly states that the first compilation did
not inline but the second did. We can also see the optimiza-
tion decisions and call sites in the inlined method. The tree
clearly shows that the loop peeling was performed in dif-
ferently inlined code. Finally, the call sites created by the
duplication are present only in the first compilation unit.
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3.4.4 Tree Edit Distance (TED). We aim to semantically
compare two optimization, inlining, or optimization-context
trees in order to pinpoint the changes in compiler behavior.
Due to aggressive inlining policies [34], compilation units in
modern-day Java programs [5, 35] are often large, and thus
they undergo hundreds of transformations. For this reason,
comparing the trees using text-based tools that ignore the
tree structure is insufficient. Instead, we employ TED [4] and
define the tree operations we seek.

TED [4] solves the following problem. Let us have two
labeled ordered trees T; and T. What is the minimum cost of
operations to transform T; into T,? The allowed operations
are node deletion, node insertion, and node relabeling. The
cost of the operations is given by a cost function.

In the 1-degree variant TED [38], only subtrees (rather
than internal nodes) may be inserted or deleted. This vari-
ant matches our problem setting. The semantic differences
between the trees we enumerated in earlier sections may be
formulated as subtree operations or relabeling. We extend
the original algorithm proposed for 1-degree TED [38] to
compute a delta tree [8].

To compare two trees, we must define the cost function.
Instead of defining the function in terms of labels, we define
a function that returns whether two tree nodes are equal. If
they are not equal, we define a function that returns the cost
of "relabeling" the first node to the second. We set the cost of
inserting or deleting a subtree with n nodes to the value n.

In the optimization tree, two nodes are equal if they are
either optimization phases with the same identifier or op-
timization decisions with the same names, properties, and
positions. In the inlining tree, two nodes are equal if their
target methods, offsets, and call-site categories are equal. We
use the relabeling operations on inlining tree nodes with
matching target methods and offsets but differing call-site
categories. In all other cases, the cost of relabeling is set to
infinity. The cost function for the optimization-context tree
is obtained by merging these definitions.

1-degree TED compares two ordered trees. However, the
inlining tree is unordered, and some optimization phases
perform transformations whose relative order is insignificant.
Therefore, before computing TED, we sort all nodes in the
inlining and optimization-context trees. For the optimization
tree, we have a hand-picked list of phases whose children we
sort. The sorting criterion is based on source-level positions
(i.e., line numbers in this paper).

Profdiff can post-process the delta tree when the compiler
engineer is interested only in the differences. This is done
by iteratively removing unchanged leaf nodes from the delta
tree so that only changes and their contexts are left. If the
input trees are equivalent, the post-processed delta tree is
empty.
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3.5 Compilation Fragments

Inlining [34] enables many other optimizations by broaden-
ing the scope of the code that the compiler observes. For
example, object allocations can be placed on the stack [41]
provided the object does not escape the inlined scope. How-
ever, the same transformation might have been possible even
if the inlining decisions differed.

Suppose that we have a hot method (with a dedicated hot
compilation unit) in one of the experiments. In the other
experiment, this method is inlined in another method. We
want to compare the optimization decisions in the inlinee
versus those in the dedicated compilation unit. However,
the techniques introduced up to this point compare only
two compilation units. To solve this problem, we present
compilation fragments.

As an example, we show method literalsEqual from
the running example (Listing 3) first compiled separately
and then inlined in its caller, method main. We illustrate
what optimization decisions the compiler might perform in
each case and how we can use compilation fragments to
compare these optimizations. Listing 11 shows the dedicated
compilation unit of method literalsEqual. The compiler
peeled the method’s loop once, as illustrated in Listing 4.

Listing 11. Optimization-context tree for a dedicated com-
pilation of method literalsEqual.

(root) Example.literalsEqual(int) line 7
LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

Now, consider the compilation unit of main shown in List-
ing 12. The compiler duplicates and inlines the call to method
literalsEqual with the constant argument 0, which limits
the number of loop iterations. The compiler removes the
loop by peeling it and evaluating the condition to false.

Listing 12. Optimization-context tree after duplication, in-
lining, and deleting the loop in 1iteralsEqual.

(root) Example.main(String[])

Duplication line 7

(direct) Integer.parseInt(String) line 5

(inlined) Example.literalsEqual(int) line 7
LoopPeeling line 12 with {peelings: 13}
CanonicalReplacement line 12
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(deleted) Scanner.nextLine() line 13
(deleted) Scanner.nextLine() line 13
(deleted) JSONParser.parse(String) line 14
(deleted) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(deleted) Object.equals(Object) line 17

(direct) Example.literalsEqual(int) line 7

(direct) PrintStream.println(boolean) line 7

(direct) PrintStream.println(boolean) line 7
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We construct a compilation fragment from Listing 12 to
compare the inlined method with the dedicated compilation
unit. The compilation fragment is obtained by copying the
subtree rooted in the inlined 1iteralsEqual node. The sub-
tree forms an optimization-context tree. As a result, we can
compare the tree from Listing 11 with the just-constructed
compilation fragment.

Listing 13. Delta tree of the dedicated compilation unit from
Listing 11 and a fragment from Listing 12.

. (root) Example.literalsEqual(int)

. LoopPeeling line 12 with {peelings: 1}

+ CanonicalReplacement line 12

. CanonicalReplacement line 12

. CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 1@
(direct -> deleted) Scanner.nextLine() line 13
(direct -> deleted) Scanner.nextLine() line 13
(direct -> deleted) JSONParser.parse(String) line 14
(direct -> deleted) JSONParser.parse(String) line 14
. (deleted) Object.equals(Object) line 17
* (indirect -> deleted) Object.equals(Object) line 17

B

The delta tree in Listing 13 compares the dedicated com-
pilation unit with the compilation fragment. The tree high-
lights the replacement of the loop condition with a constant.
Thanks to the constant argument, the transformation was
performed only in the fragment from Listing 12. We can see
that all call sites inside the loop body were deleted in the
compilation fragment.

Creating Fragments for Inlinees. Every inlinee is a po-
tential compilation fragment. Creating fragments for all inli-
nees is infeasible. This section proposes a simple condition
that determines when profdiff should create compilation
fragments. We prove that, under certain assumptions, this
condition is sufficient to compare all pairs of relevant method
compilations.

Recall that profdiff marks frequently executed compilation
units as hot. We say that a method is hot if there exists a hot
compilation unit of that method in either experiment. We
propose to leverage the hotness information to designate
for which inlinees we should create fragments. Thus, the
assumption is that a method is important only if the program
spends a significant fraction of time executing it.

We suggest the following algorithm to create compilation
fragments. For each hot compilation unit, we iterate over all
nodes in its inlining tree that are marked as inlined. If the
target method of this call site is hot, we create a compilation
fragment rooted in this node. Then, compilation fragments
whose root method is m shall be compared with all dedicated
compilation units of method m in the other experiment. In
summary, we compare all pairs of hot compilation units and
all pairs of fragments and compilation units.

To show why this is sufficient, we must define what pairs
of method compilations should be compared. A method com-
pilation of method m is either a compilation unit rooted in
m or a compilation unit that inlined m. Now, consider a pro-
gram’s global call tree. The call tree is a tree that is rooted in
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the entry point of a program. For each method invocation in
the source code, we insert a child node representing the con-
crete invoked method to the node that calls the method. For
indirect invocations, we insert nodes for all possible targets.
For simplicity, assume that our workloads are deterministic.

A compilation unit contains method compilations, i.e., the
compiled root method and the inlined methods. We can rep-
resent its method compilations as a call tree. The compilation
unit’s call tree is a subgraph of the global call tree. We say
that a compilation unit covers some part of the global call
tree. Note that a compilation unit may cover several parts of
the call tree.

Let us have a call-tree node m, which represents some
method. Let ¢; be any hot compilation unit from experiment
1 that covers m, and let ¢; be any hot compilation unit from
experiment 2 that covers m. Their root methods are m; and
mg, respectively. We will use m, my, and m; to refer to the
nodes or methods they represent interchangeably. Both ¢,
and c, contain the code of method m. Therefore, it is desirable
to compare the optimization decisions in method m. The
situation is depicted in Figure 8: there are two copies of the
global call tree, and the subtrees covered by ¢; and c; are
highlighted using dashes.

call tree
in experiment 2

call tree
in experiment 1

my

o m,
m
fragment of ¢, compilation
rooted in m, unit
my

e compared
° ' directly
[ J
Figure 8. Method m and two compilations units, ¢; and cj,
that cover m. A compilation fragment is created from c; so
that the optimization decisions in m are comparable.

We claim that using the rules we defined above, the opti-
mization decisions in m will always be compared. We prove
the claim by enumerating all possible cases. If m; = m,, the
hot compilation units ¢y, ¢, are compared directly. If m; # ma,
it holds that either ¢; contains m, or ¢, contains my. This is
because both call trees contain m. We assume w.l.o.g. that ¢;
contains m;, as depicted in Figure 8. We know that m; is a
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hot method and m;, which is inlined in the compilation unit
of my, is also hot. Therefore, a compilation fragment rooted
in my is created from c;. The compilation fragment will be
compared with c;.

4 Case Studies

This section presents several case studies where we applied
profdiff. We focused on workloads from the Renaissance
benchmark suite [35] because it is used to track the per-
formance metrics of the Graal compiler. Graal compiler de-
velopers reported six workloads that exhibit performance
fluctuations between VM invocations. Such workloads are
non-deterministically faster or slower on each invocation,
which is considered a bug. These issues have been open for
more than a year at the time of our investigation. During
that time, the performance distributions of some of these
workloads shifted toward the slower state, leading to an
overall regression. We may execute Graal with different Java
Development Kit (JDK) versions, i.e., different library and
VM revisions. The performance distribution of a workload
might vary between JDK versions.

Profdiff is a good fit for such fluctuating workloads. First,
we execute the VM with the workload several times to sample
various compilation outcomes. Second, we cluster the runs
into slow and fast based on the collected performance metrics.
Then, we inspect several pairs of the runs using profdiff.
Some variability regarding optimization decisions between
hot compilations is expected. However, the goal is to identify
which optimization and inlining differences are consistent
between the slow and fast runs. These decisions are likely
responsible for the performance gap. Finally, if possible, we
override these decisions using compiler options and measure
if this leads to a performance improvement.

We present three out of six fluctuating workloads from
the Renassaince benchmark suite [35] where we could pin-
point and confirm a problem. We confirmed the findings by
overriding the optimization decisions of the compiler, which
led to stable improvements of 8% to 30%. In another work-
load, we identified the likely cause but could not override
the suspected decisions to confirm the findings. We reported
all these problems to the Graal team so that they may be
fixed in a future release of the compiler.

4.1 Gauss Mix

The workload gauss-mix from Renaissance [35] fluctuated
with slow and fast states approximately 30% apart. Over time,
the workload got stuck in a slower state. We repeated the
benchmark 30 times, and we found a single run that was
about 30% faster than the rest. Profdiff uncovered that in
the fast run, the compiler inlined several hot methods into a
single compilation unit. In contrast, the slower runs spent
time in several dedicated compilation units.
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Profdiff created compilation fragments from the compila-
tion unit in the fast run and compared them with the dedi-
cated compilation units from the slower runs. Some of these
dedicated compilation units did not inline more than the
respective compilation fragments. We found that the sum of
time fractions spent in such compilation units was higher
than the time spent in the single compilation unit from the
fast run. This is a clue that the compiler should always inline
these calls into a single compilation unit.

We verified the findings by forcing the compiler to inline
the identified methods using a command-line option. Simply
forcing the compiler to inline these methods appeared insuf-
ficient because the compiler would halt compilation due to
excessive graph size. Therefore, using another command-line
option, we also forbade the compiler from inlining the root
method of the single compilation unit in the fast run. This
led to a consistent speed-up of about 30%.

4.2 Scala K-Means

The workload scala-kmeans from Renaissance [35] exhib-
ited fluctuations on both JDK 11 and JDK 17. It regressed to
a slower state in a later compiler version with JDK 17. We
repeated the workload 30 times on JDK 11 and found four
runs that were about 8% faster than the rest. Using profdiff,
we identified five methods that were consistently inlined in
the fast runs but not inlined in the slow runs.

We verified the findings by forcing the compiler to inline
the identified methods using a command-line option. Force-
inlining the particular method was sufficient to achieve the
fast state consistently. Although we performed the experi-
ments on JDK 11, we confirmed that overriding the inlining
decision also speeds up the workload on JDK 17, where we
achieve a speed-up of about 8%.

4.3 Scala Doku

The workload scala-doku from Renaissance [35] fluctuates
between VM runs, with a possible speed-up of about 30%
relative to the slow runs. We repeated the workload 30 times
and found an apparent inlining difference between the fast
and slow runs. The fast runs always inlined two methods
related to iterators, but the slow runs never inlined them.
Both calls were indirect through the iterator interface.

A likely reason for the different inlining decisions is the
type profiles at the indirect call sites. The type profiles guide
the decisions related to devirtualization. The profiles for the
indirect call sites shown by profdiff differed significantly.
The estimated probability of the method that should have
been inlined was about 35% in one of the fast runs but only
about 2% in a slow run, which did not inline the method.
Thus, the workload’s performance is likely linked to these
inlining decisions, and their instability is, in turn, related
to the type profiles. We confirmed the findings by forcing
the compiler to inline the two target methods of the indirect
call. We achieved this by extending the compiler with a new
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option to force the devirtualization of selected calls. This led
to a consistent speed-up of about 30%.

5 Related Work

The goal of performance bug detection in compilers is to dis-
cover poorly performing compilations. We give an overview
of existing methods in Section 5.1. Performance diagnosis in
general [16] aims to analyze and fix already discovered per-
formance bugs. We talk about these methods in Section 5.2.
Our work can be categorized as performance diagnosis in
compilers. In contrast to performance diagnosis in general
software, we focus on the performance of the compiled pro-
gram rather than the compiler’s performance. To the best of
our knowledge, this is the first work that diagnoses compiler
performance by capturing and comparing its behavior.

Replay compilation [15, 20, 27, 28, 31, 37] facilitates per-
formance debugging by making it possible to reproduce
prior compiler behavior. This is done by recording non-
deterministic runtime information, such as profiles, during
a VM invocation. The recorded information is reusable in
another VM invocation to produce equivalent compilations.
Compiler engineers might first use profdiff to narrow down
a performance problem, then replay the affected compila-
tion with a debugger or an IR visualizer [49]. Performance
may fluctuate between VM invocations, so we must sample
different compilation outcomes [15], whereas replay com-
pilation reproduces the same outcome. Therefore, the issue
addressed by replay compilation is distinct from the one
solved by profdiff.

Mosaner et al. [24] present an approach to improve op-
timization decisions in a dynamic compiler. They compile
and run methods with different optimization decisions. The
extracted execution statistics are used to train or fine-tune a
machine-learning model.

5.1 Performance Bug Detection in Compilers

There are several ways to detect performance bugs in compil-
ers. Black-box approaches make it possible to compare differ-
ent compilers. NULLSTONE [9] is a test suite covering indi-
vidual compiler optimizations. In random testing, small pro-
grams are randomly generated, compiled, and checked for po-
tential issues. Differential testing is a type of random testing.
Test cases are generated and compiled in two different set-
tings (e.g., by two different compilers or compiler versions).
Various methods are employed to compare the compiled exe-
cutables. If there is a difference, the test case is automatically
reduced to trigger the bug in fewer lines of code. Barany [2]
statically compares binaries by performance-related criteria
such as instruction count, the number of arithmetic opera-
tions, or memory accesses. Kitaura and Ishiura [21] statically
detect dissimilar code sections to detect potential perfor-
mance differences. Then, they execute the code to verify the
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findings. Theodoridis et al. [45] instrument the source code
with markers and check whether the compiler eliminates

the markers as dead code. An optimization opportunity is
reported if two compilers remove different sets of markers.

Hashimoto and Ishiura [17] employ an equivalence-based
method, which is a type of random testing. They prepare
an optimized and unoptimized version of the same C pro-
gram and compare the generated code. If the compiler fails
to optimize the unoptimized version of the program, a prob-
lem is reported. If an issue is detected, the source code is
automatically reduced to isolate the problem.

Moseley et al. [25] collect profiles from executables com-
piled by different compilers, compiler versions, and configu-
rations. The profiles comprise the instruction mix, control-
flow edge counts, and data from hardware performance coun-
ters. They detect anomalies in these profiles to uncover per-
formance problems. The technique is limited to compilation
units with equivalent inlining.

Taneja et al. [44] employ a white-box approach, computing
static analyses on code fragments and comparing the results
to the analyses computed by LLVM. This way, they uncover
soundness issues or missed optimization opportunities.

5.2 Performance Diagnosis in General Software

Tools aimed at application developers may also detect perfor-
mance problems in programs and potentially suggest fixes.
Yu and Pradel [50] present an approach based on profiling
to pinpoint root causes of synchronization bottlenecks in
concurrent applications. Nistor et al. [26] introduce a method
to detect loops that can be exited early and suggest possible
source-code fixes. Curtsinger and Berger [10] show a method
to evaluate the potential impact of speeding up particular
lines of code in multi-threaded applications. Song and Lu
[39] present a tool to detect inefficient loops and suggest
fix strategies. Della Toffola et al. [11] present a tool that
suggests memoization for Java methods that repeat computa-
tions. Tan et al. [43] introduce a tool to mark useless memory
operations. Wen et al. [48] present a technique to discover
redundant computations.

6 Conclusion

We introduce the problem of identifying the causes of per-
formance regressions in modern compilers. We present a
solution based on tracking optimization decisions, where the
decisions are represented as trees capturing the structure
of either the optimizer or the inlined code, and we propose
techniques to compare differently inlined code. The tooling
is implemented as an open-source part of the Graal compiler.
We evaluate the techniques with industry-standard bench-
marks and describe three instances where we pinpointed the
decisions causing performance problems. The workloads are
about 8% to 30% faster when these decisions are overridden.
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