
Hardware Acceleration of Software Transactional Memory

Arrvindh Shriraman Virendra J. Marathe Sandhya Dwarkadas Michael L. Scott
David Eisenstat Christopher Heriot William N. Scherer III Michael F. Spear

Department of Computer Science, University of Rochester
{ashriram,vmarathe,sandhya,scott,eisen,cheriot,scherer,spear}@cs.rochester.edu

Abstract

Transactional memory (TM) systems seek to increase scalabil-
ity, reduce programming complexity, and overcome the various se-
mantic problems associated with locks. Software TM proposals run
on stock processors and provide substantial flexibility in policy, but
incur significant overhead for data versioning and validation in the
face of conflicting transactions. Hardware TM proposals have the
advantage of speed, but are typically highly ambitious, embed sig-
nificant amounts of policy in silicon, and provide no clear migration
path for software that must also run on legacy machines.

We advocate an intermediate approach, in which hardware is
used to accelerate a TM implementation controlled fundamentally
by software. We present a system, RTM, that embodies this ap-
proach. It consists of a noveltransactional MESI(TMESI) pro-
tocol and accompanying TM software. TMESI eliminates the key
software overheads of data copying, garbage collection, and vali-
dation, without introducing any global consensus algorithm in the
cache coherence protocol (a commit is allowed to perform using
only a few cycles of completely local operation). The only change
to the snooping interface is a “threatened” signal analogous to the
existing “shared” signal.

By leaving policy to software, RTM allows us to experiment
with a wide variety of policies for contention management, dead-
lock and livelock avoidance, data granularity, nesting, and virtual-
ization.

1. Introduction and Background
Moore’s Law has hit the heat wall. Simultaneously, the ability to
use growing on-chip real estate to extract more instruction-level
parallelism (ILP) is also reaching its limits. Major microproces-
sor vendors have largely abandoned the search for more aggres-
sively superscalar uniprocessors, and are instead designing chips
with large numbers of simpler, more power-efficient cores. The im-
plications for software vendors are profound: for 40 years only the
most talented programmers have been able to write good thread-
level parallel code; now everyone must do it.

Parallel programs have traditionally relied on mutual exclusion
locks, but these suffer from both semantic and performance prob-
lems: they are vulnerable to deadlock, priority inversion, and ar-
bitrary delays due to preemption. In addition, while coarse-grain

[copyright notice will appear here]

lock-based algorithms are easy to understand, they limit concur-
rency. Fine-grain locking algorithms are thus often required, but
these are difficult to design, debug, maintain, and understand.

Ad hoc nonblockingalgorithms [15, 16, 24, 25] solve the se-
mantic problems of locks by ensuring that forward progress is never
precluded by the state of any thread or set of threads. They provide
performance comparable to fine-grain locking, but each such algo-
rithm tends to be a publishable result.

Clearly, what we want is something that combines the semantic
advantages of ad hoc nonblocking algorithms with the conceptual
simplicity of coarse-grain locks. Transactional memory promises to
do so. Originally proposed by Herlihy and Moss [8], transactional
memory (TM) borrows the notions of atomicity, consistency, and
isolation from database transactions. In a nutshell, the programmer
or compiler labels sections of code asatomic and relies on the
underlying system to ensure that their execution islinearizable[7],
consistent, and as highly concurrent as possible.

Once regarded as impractical, in part because of limits on the
size and complexity of 1990s caches, TM has in recent years
enjoyed renewed attention. Rajwar and Goodman’s Transactional
Lock Removal (TLR) [19, 20] speculatively elides acquire and
release operations in traditional lock-based code, allowing critical
sections to execute in parallel so long as their write sets fit in cache
and do not overlap. In the event of conflict, all processors but one
roll back and acquire the lock conservatively. Timestamping is used
to guarantee forward progress. Martinez and Torrellas [13] describe
a related mechanism for multithreaded processors that identifies, in
advance, a “safe thread” guaranteed to win all conflicts.

Ananian et al. [1] argue that a TM implementation must sup-
port transactions of arbitrary size and duration. They describe two
implementations, one of which (LTM) is bounded by the size of
physical memory and the length of the scheduling quantum, the
other of which (UTM) is bounded only by the size of virtual mem-
ory. Rajwar et al. [21] describe a related mechanism (VTM) that
uses hardware tovirtualizetransactions across both space and time.
Moore et al. [18] attempt to optimize the common case by making
transactionally-modified overflow data visible to the coherence pro-
tocol immediately, while logging old values for roll-back on abort
(LogTM). Hammond et al. [5] propose a particularly ambitious re-
thinking of the relationship between the processor and the memory,
in which everythingis a transaction (TCC). However, they require
heavy-weight global consensus at the time of a commit.

While we see great merit in all these proposals, it is not yet
clear to us that full-scale hardware TM will provide the most
practical, cost-effective, or semantically acceptable implementation
of transactions. Specifically, hardware TM proposals suffer from
three key limitations:

1. They are architecturally ambitious—enough so that commercial
vendors will require very convincing evidence before they are
willing to make the investment.

1 2006/5/17



2. They embed important policies in silicon—policies whose im-
plications are not yet well understood, and for which current
evidence suggests that no one static approach may be accept-
able.

3. They provide no obvious migration path from current machines
and systems: programs written for a hardware TM system may
not run on legacy machines.

Kumar et al. [10] have recently proposed solutions to the first
and third of these problems. Hardware makes a “best effort” at-
tempt to complete transactions, falling back to software when nec-
essary. Unfortunately, they still embed significant policy in silicon.
For example, they assume that conflicts are detected as early as
possible (pessimistic concurrency control), disallowing either read-
write or write-write sharing. Previous published papers [11, 22]
reveal performance differences across applications of 2X – 10X
in each directionfor different approaches to contention manage-
ment, metadata organization, and eagerness of conflict detection
(i.e., write-write sharing). It is clear that no one knows the ”right”
way to do these things; it is likely that there is no one right way.

We propose that hardware serve simply to optimize the perfor-
mance of transactions that are controlled fundamentally by soft-
ware. This allows us, in almost all cases, to cleanly separate policy
and mechanism. The former is the province of software, allowing
flexible policy choice; the latter is supported by hardware in cases
where we can identify an opportunity for significant performance
improvement.

We present a system, RTM, that embodies this software-centric
hybrid strategy. RTM comprises aTransactional MESI(TMESI)
coherence protocol and a modified version of our RSTM software
TM [12]. TMESI extends traditional snooping coherence with a
“threatened” signal analogous to the existing “shared” signal, and
with several new instructions and cache states. One new set of states
allows transactional data to be hidden from the standard coherence
protocol, until such time as software permits it to be seen. A second
set allows metadata to be tagged in such a way that invalidation
forces an immediate abort.

In contrast to most software TM systems, RTM eliminates, in
the common case, the key overheads of data copying, garbage col-
lection, and consistency validation. In contrast to pure hardware
proposals, it requires no global consensus algorithm in the cache
coherence protocol, no snapshotting of processor state, and mes-
sage traffic comparable to that for a regular MESI coherence pro-
tocol. Nonspeculative loads and stores are permitted in the mid-
dle of transactions—in fact they constitute the hook that allows
us to implement policy in software. Among other things, we rely
on software to determine the structure of metadata, the granularity
of concurrency and sharing (e.g., word vs. object-based), and the
degree to which conflicting transactions are permitted to proceed
speculatively in parallel. (We permit, but do not require, read-write
and write-write sharing, with delayed detection of conflicts.) Most
important, we employ a softwarecontention manager[22, 23] to
arbitrate conflicts and determine the order of commits.

Because conflicts are handled in software, speculatively written
data can be made visible at commit time with only a few cycles of
entirely local execution. Moreover, these data (and a small amount
of nonspeculative metadata) areall that must remain in the cache
for fast-path execution: data that were speculativelyread or non-
speculativelywritten can safely be evicted at any time. Like the
other two hybrid proposals, RTM falls back to a software-only im-
plementation of transactions in the event of overflow (or at the dis-
cretion of the contention manager), but in contrast not only to the
hybrid proposals, but also to TLR, LTM, VTM, and LogTM, it can
accommodate “fast path” execution of dramatically larger transac-
tions with a given size of cache.

TMESI is intended for implementation either at the L1 level
of a CMP with a shared L2 cache, or at the L2 level of an SMP
with write-through L1 caches. We believe that similar extensions
could be devised for directory-based coherence protocols. TMESI
could also be used with a variety of other TM software. We do not
describe such extensions here.

Section 2 provides more detailed background and motivation for
RTM, including an introduction to software TM in general, a char-
acterization of its dominant costs, and an overview of how TMESI
and RTM address them. Section 3 describes TMESI in detail, in-
cluding its instructions, its states and transitions, and the mecha-
nism used to detect conflicts and abort remote transactions. Sec-
tion 4 then describes the RTM software that leverages this hard-
ware support. Our choice of concrete policies reflects experimen-
tation with several software TM systems, and incorporates several
forms of dynamic adaptation to the offered workload. We conclude
in Section 5 with a summary of contributions, a brief description of
our simulation infrastructure (currently nearing completion), and a
list of topics for future research.

2. RTM Overview
Software TM systems display a wide variety of policy and imple-
mentation choices. Our RSTM system [12] draws on experience
with several of these in an attempt to eliminate as much software
overhead as possible, and to identify and characterize what re-
mains. RTM is, in essence, a derivative of RSTM that uses hard-
ware support to reduce those remaining costs. A transaction that
makes full use of the hardware support is called ahardware trans-
action. A transaction that has abandoned that support (due to over-
flow or policy decisions made by the contention manager) is called
asoftware transaction.

2.1 Programming Model

Like most (though not all) STM systems, RTM isobject-based:
updates are made, and conflicts arbitrated, at the granularity of
language-level objects.1 Only those objects explicitly identified
as Shared are protected by the TM system. Other data (local
variables, debugging and logging information, etc.) can be accessed
within transactions, but will not be rolled back on abort.

Before aShared object can be used within a transaction, it
must beopenedfor read-only or read-write access. RTM enforces
this rule using C++ templates and inheritance, but a functionally
equivalent interface could be defined through convention in C. The
open_RO method returns a pointer to the current version of an ob-
ject, and performs bookkeeping operations that allow the TM sys-
tem to detect conflicts with future writers. Theopen_RW method,
when executed by a software transaction, creates a new copy, or
clone of the object, and returns a pointer to that clone, allowing
other transactions to continue to use the old copy. As in software
TM systems, a transaction commits with a single compare-and-
swap (CAS) instruction, after which any clones it has created are
immediately visible to other transactions (like UTM and LogTM,
software and hybrid TM systems employ what Moore et al. refer
to aseager version management[18]). If a transaction aborts, its
clones are discarded. RTM currently supports nested transactions
only via subsumption in the parent.

Figure 1 contains an example of C++ RTM code to insert an
element in a singly-linked sorted list of integers. The API is in-
herited from our RSTM system [12], which runs on legacy hard-
ware (space limitations preclude a full presentation here). The
rtm::Shared<T> template class provides an opaque wrapper
around transactional objects. Several crucial methods, including
operator new, are provided byrtm::Object<T>, from whichT

1 We do require that each object reside in its own set of cache lines.

2 2006/5/17



void intset::insert(int val) {
BEGIN_TRANSACTION;

const node* previous = head->open_RO();
// points to sentinel node

const node* current = previous->next->open_RO();
// points to first real node

while (current != NULL) {
if (current->val >= val) break;
previous = current;
current = current->next->open_RO();

}
if (!current || current->val > val) {

node *n = new node(val, current->shared());
// uses Object<T>::operator new

previous->open_RW()->next = new Shared<node>(n);
}

END_TRANSACTION;
}

Figure 1. Insertion in a sorted linked list using RTM.

must be derived. Within a transaction, bracketed byBEGIN_TRANS-

ACTION and END_TRANSACTION macros, theopen_RO() and
open_RW() methods can be used to obtainconst T* and T*

pointers respectively. Theshared() method performs the inverse
operation, returning a pointer to theShared<T> with which this
is associated. Our code traverses the list from the head, opening ob-
jects in read-only mode, until it finds the proper place to insert the
element. It then re-opens the object whosenext pointer it needs
to modify in read-write mode. To make such upgrades convenient,
Object<T>::open_RW returnsshared()->open_RW().

2.2 Software Implementation

The two principal metadata structures in RTM are thetransaction
descriptorand theobject header. The descriptor contains an indi-
cation of whether the transaction isactive, committed, or aborted.
The header contains a pointer to the descriptor of the most recent
transaction to modify the object, together with pointers to old and
new clones of the data. If the most recent writer committed in soft-
ware, the new clone is valid; otherwise the old clone is valid.

Before it can commit, a transactionT mustacquirethe headers
of any objects it wishes to modify, by making them point at its
descriptor. By using a CAS instruction to change the status word in
the descriptor fromactiveto committed, a transaction can then, in
effect, make all its updates valid in one atomic step. Prior to doing
so, it must also verify that all the object clones it has been reading
are still valid.

Acquisition is the hook that allows RTM to detect conflicts
between transactions. If a writerR discovers that a header it wishes
to acquire is already “owned” by some other, still active, writerS,
R consults a softwarecontention managerto determine whether to
abortS and steal the object, wait a bit in the hope thatS will finish,
or abortR and retry later. Similarly, if any object opened byR
(for read or write) has subsequently been modified by an already-
committed transaction, thenR must abort.

RTM can perform acquisition as early asopentime, or as late as
just before commit. The former is know aseageracquire, the latter
as lazyacquire. Most hardware TM systems, by contrast, perform
the equivalent of acquisition by requesting exclusive ownership of
a cache line. Since this happens as soon as the transaction attempts
to modify the line, these systems are inherently restricted toeager
conflict management[18]. They are also restricted to contention
management algorithms simple enough (and static enough) to be
implemented in hardware on a cache miss.

Work by Marathe et al. [11] suggests that TM systems should
choose between eager and lazy conflict detection based on the
characteristics of the application, in order to obtain the best per-

Threads
0 5 10 15 20 25 30

M
ic

ro
−

se
co

nd
s/

T
xn

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ASTM

RSTM

Coarse−grained Locks

Figure 2. Performance scaling of RSTM, ASTM, and coarse-grain
locking on a hash table microbenchmark.

Benchmark

LinkedList Hash RBTree−

Small

RBTree−

Large

Counter

E
x
e

c
u

ti
o

n
 T

im
e

 %
0

20

40

60

80

100

Validation

Memory Management

Metadata Management

Useful Work

Figure 3. Cost breakdown for RSTM on a single processor, for
five different microbenchmarks.

formance (we employ their adaptive heuristics). Likewise, work
by Scherer et al. [22, 23] suggests that the preferred contention
management policy is also application-dependent, and may alter
program run time by as much as an order of magnitude. In both
these dimensions, RTM provides significantly greater flexibility
than pure hardware TM proposals.

2.3 Dominant Costs

Figure 2 compares the performance of RSTM (the all-software
system from which RTM is derived) to that of coarse-grain locking
on a hash-table microbenchmark as we vary the number of threads
from 1 to 32 on a 16-processor 1.2GHz SunFire 6800. Also shown
is the performance (in Java) of ASTM, previously reported [11] to
match the faster of Sun’s DSTM [6] and the Cambridge OSTM [3]
across a variety of benchmarks. Each thread in the microbenchmark
repeatedly inserts, removes, or searches for (one third probability
of each) a random element in the table. There are 256 buckets, and
all values are taken from the range 0–255, leading to a steady-state
average of 0.5 elements per bucket.

Unsurprisingly, coarse-grain locking does not scale. Increased
contention and occasional preemption cause the average time per
transaction to climb with the number of threads. On a single proces-
sor, however, locking is an order of magnitude faster than ASTM,
and more than 3× faster than RSTM. We need about 4 active
threads in this program before software TM appears attractive from
a performance point of view.

Instrumenting code for the single-processor case, we can appor-
tion costs as shown in Figure 3, for five different microbenchmarks.
Four—the hash table of Figure 2, the sorted list whose insert opera-
tion appeared in Figure 1, and two red-black trees—are implemen-
tations of the same abstract set. The fifth represents the extreme
case of a trivial critical section—in this case one that increments a
single integer counter.

3 2006/5/17



In all five microbenchmarks TM overhead dwarfs real execution
time. Because they have significant potential parallelism, however,
both HashTable and RBTree outperform coarse-grain locks given
sufficient numbers of threads. Parallelism is nonexistent in Counter
and limited in LinkedList: a transaction that updates a node of the
list aborts any active transactions farther down the list.

Memory management in Figure 3 includes the cost of allo-
cating, initializing, and (eventually) garbage collecting clones.
The total size of objects written by all microbenchmarks other
than RBTree-Large (which uses 4 KByte nodes instead of the 40
byte nodes of RBTree-Small) is very small. As demonstrated by
RBTree-Large, transactions that access a very large object (espe-
cially if they update only a tiny portion of it) will suffer enormous
copying overhead.

In transactions that access many small objects,validation is
the dominant cost. It reflects a subtlety of conflict detection not
mentioned in Section 2.2. Suppose transactionR opens objects
X andY in read-only mode. In between, suppose transactionS
acquires both objects, updates them, and commits. ThoughR is
doomed to abort (the version ofX has changed), it may temporarily
access the old version ofX and the new version ofY . It is not
difficult to construct scenarios in which thismutual inconsistency
may lead to arbitrary program errors, induced, for example, by
stores or branches employing garbage pointers. (Hardware TM
systems are not vulnerable to this sort of inconsistency, because
they roll transactions back to the initial processor and memory
snapshot the moment conflicting data becomes visible to the cache
coherence protocol.)

Without a synchronous hardware abort mechanism, RSTM (like
DSTM and ASTM) requiresR to double-check the validity of all
previously opened objects whenever opening something new. For
a transaction that accesses a total ofn objects, thisincremental
validation imposesO(n2) total overhead.

As an alternative to incremental validation, Herlihy’s SXM [4]
and more recent versions of DSTM allow readers to add them-
selves to avisible readerlist in the object header at acquire time.
Writers must abort all readers on the list before acquiring the ob-
ject. Readers ensure consistency by checking the status word in
their transaction descriptor on everyopenoperation. Unfortunately,
the constant overhead of reader list manipulation is fairly high. In
practice, incremental validation is cheaper for small transactions
(as in Counter); visible readers are cheaper for large transactions
with heavy contention; neither clearly wins in the common middle
ground [23]. RSTM supports both options; the results in Figures 2
and 3 were collected using incremental validation.

2.4 Hardware Support

RTM uses hardware support to address the memory management
and validation overhead of software TM. In so doing it eliminates
the top two components of the overhead bars shown in Figure 3.

1. Our TMESI protocol allows transactional data, buffered in the
local cache, to be hidden from the normal coherence protocol.
This buffering allows RTM, in the common case, to avoid
allocating and initializing a new copy of the object in software.
Like most hardware TM proposals, RTM keeps only the new
version of speculatively modified data in the local cache. The
old version is written through to memory if necessary at the
time of the first transactional store. The new version becomes
visible to the coherence protocol when and if the transaction
commits. Unlike most hardware proposals (but like TCC), RTM
allows data to be speculatively read or even written when it
is also being written by another concurrent transaction. TCC
ensures, in hardware, that only one of the transactions will
commit. RTM relies on software for this purpose.

Instruction Description
SetHandler (H) Indicate address of user-level abort handler
TLoad (A, R) Transactional Load from A into R
TStore (R, A) Transactional Store from R into A
ALoad (A, R) Load A into R; tag “abort on invalidate”
ARelease (A) UntagALoaded line
CAS-Commit (A, O, N) End Transaction
Abort Invoked by transaction to abort itself
Wide-CAS (A, O, N, K) Update K (up to 4) adjacent words atomically

Table 1. ISA Extensions for RTM.

2. TMESI also allows selected metadata, buffered in the local
cache, to be tagged in such a way that invalidation will cause
an immediate abort of the current transaction. This mechanism
allows the RTM software to guarantee that a transaction never
works with inconsistent data, without incurring the cost of in-
cremental validation or visible readers (as in software TM),
without requiring global consensus for hardware commit, and
without precluding read-write and write-write speculation.

To facilitate atomic updates to multiword metadata (which
would otherwise need to be dynamically allocated, and accessed
through a one-word pointer), RTM also provides a wide compare-
and-swap, which atomically inspects and updates several adjacent
locations in memory.

A transaction could, in principle, use hardware support for cer-
tain objects and not for others. For the sake of simplicity, our ini-
tial implementation of RTM takes an all-or-nothing approach: a
transaction initially attempts to leverage TMESI support for write
buffering and conflict detection of all of its accessed objects. If it
aborts for any reason, it retries as a software transaction. Aborts
may be caused by conflict with other transactions (detected through
invalidation of tagged metadata), by the loss of buffered state to
overflow or insufficient associativity, or by executing theAbort in-
struction. (The kernel executesAbort on every context switch.)

3. TMESI Hardware Details
In this section, we discuss the details of hardware acceleration for
common-case transactions, which have bounded time and space
requirements. In order, we consider ISA extensions, the TMESI
protocol itself, and support for conflict detection and immediate
aborts.

3.1 ISA Extensions

RTM requires eight new hardware instructions, listed in Table 1.
TheSetHandlerinstruction indicates the address to which con-

trol should branch in the event of an immediate abort (to be dis-
cussed at greater length in Section 3.3). This instruction could be
executed at the beginning of every transaction, or, with OS kernel
support, on every heavyweight context switch.

TheTLoadandTStoreinstructions aretransactionalloads and
stores. All accesses to transactional data are transformed (via com-
piler support) to use these instructions. They move the target line
to one of fivetransactional statesin the local cache. Transactional
states are special in two ways: (1) they are not invalidated by read-
exclusive requests from other processors; (2) if the line has been
the subject of aTStore, then they do not supply data in response
to read or read-exclusive requests. More detail on state transitions
appears in Section 3.2.

The ALoad instruction supports immediate aborts of remote
transactions. When itacquiresa to-be-written object, RTM per-
forms a nontransactional write to the object’s header. Any reader
transaction whose correctness depends on the consistency of that
object will previously have performed anALoadon the header (at
the time of theopen). The read-exclusive message caused by the

4 2006/5/17



nontransactional write then serves as a broadcast notice that imme-
diately aborts all such readers. A similar convention for transaction
descriptors allows hardware transactions to immediately abort soft-
ware transactions even if those software transactions don’t have
room for all their object headers in the cache (more on this in
Section 3.3). In contrast to most hardware TM proposals, which
eagerly abort readers whenever another transaction performs a
conflicting transactional store, TMESI allows RTM to delay ac-
quires when speculative read-write or write-write sharing is desir-
able [11].

The AReleaseinstruction erases the abort-on-invalidate tag of
the specified cache line. It can be used forearly release, a software
optimization that dramatically improves the performance of certain
transactions, notably those that search large portions of a data
structure prior to making a local update [6, 11]. It is also used by
software transactions to release an object header after copying the
object’s data.

The CAS-Commitinstruction performs the usual function of
compare-and-swap. In addition, speculatively read lines (the trans-
actional and abort-on-invalidate lines) are untagged and revert to
their corresponding MESI states. If the CAS succeeds, specula-
tively written lines become visible to the coherence protocol and
begin responding to coherence messages. If the CAS fails, specula-
tively written lines are invalidated, and control transfers to the loca-
tion registered bySetHandler. The motivation behindCAS-Commit
is simple: software TM systems invariably use a CAS to commit the
current transaction; we overload this instruction to make buffered
transactional state once again visible to the coherence protocol.

TheAbort instruction clears the transactional state in the cache
in the same manner as a failedCAS-Commit. Its principal use is to
implement condition synchronization by allowing a transaction to
abort itself when it discovers that its precondition does not hold.
Such a transaction will typically then jump to its abort handler.
Abort is also executed by the scheduler on every context switch.

The Wide-CASinstruction allows a compare-and-swap across
multiple contiguous locations (within a single cache line). Similar
to Itanium’scmp8xchg16 instruction [9], if the first two words at
location A match their “old” values, all words are replaced with
the “new” values (loaded into contiguous registers).Wide-CASis
intended for fast update of object headers.

3.2 TMESI Protocol

A central goal of our design has been to maximize software flexi-
bility while minimizing hardware complexity. Like most hardware
TM proposals (but unlike TCC or Herlihy & Moss’s original pro-
posal), we use the processor’s cache to buffer a single copy of each
transactional line, and rely on shared lower levels of the memory
hierarchy to hold the old values of lines that have been modified
but not yet committed. Like TCC—but unlike most other hardware
systems—we permit mutually inconsistent versions of a line to re-
side in different caches. Where TCC requires an expensive global
arbiter to resolve these inconsistencies at commit time, we rely on
software to resolve them at acquire time. The validation portion
of a CAS-Commitis a purely local operation (unlike TCC, which
broadcasts all written lines) that exposes modified lines to subse-
quent coherence traffic.

Our protocol requires no bus messages other than those already
required for MESI. We add two new processor messages, PrTRd
and PrTWr, to reflectTLoadandTStoreinstructions, respectively,
but these are visible only to the local cache. We also add a “threat-
ened” bus signal (T) analogous to the existing “shared” signal (S).
The T signal serves to warn a reader transaction of the existence of
a potentially conflicting writer. Because the writer’s commit will be
a local operation, the reader will have no way to know when or if it
actually occurs. It must therefore make a conservative assumption

when it reaches the end of its own transaction (until then the line is
protected by the software TM protocol).

3.2.1 State transitions

Figure 4 contains a state transition diagram for the TMESI protocol.
The four states on the left comprise the traditional MESI protocol.
The five states on the right, together with the bridging transitions,
comprise the TMESI additions. Cache lines move from a MESI
state to a TMESI state on a transactional read or write. Once a
cache line enters a TMESI state, it stays in the transactional part
of the state space until the current transaction commits or aborts,
at which time it reverts to the appropriate MESI state, indicated by
the second (commit) or third (abort) letters of the transactional state
name.

The TSS, TEE, andTMM states behave much like their MESI
counterparts. In particular, lines in these states continue to supply
data in response to bus messages. The two key differences are
(1) on a PrTWr we transition toTMI; (2) on a BusRdX (bus
read exclusive) we transition toTII . These two states have special
behavior that serves to support speculative read-write and write-
write sharing. Specifically,TMI indicates that a speculative write
has occurred on the local processor;TII indicates that a speculative
write has occurred on a remote processor, but not on the local
processor.

A TII line must be dropped on either commit or abort, because
a remote processor has made speculative changes which, if com-
mitted, would render the local copy stale. No writeback or flush is
required since the line is not dirty. Even during a transaction, silent
eviction and re-read is not a problem because software ensures that
no writer can commit unless it first aborts the reader. ATMI line
is the complementary side of the scenario. On abort it must be
dropped, because its value was incorrectly speculated. On commit
it will be the only valid copy; hence the reversion toM. Software
must ensure that conflicting writers never both commit, and that if
a conflicting reader and writer both commit, the reader does so first
from the point of view of program semantics. Lines inTMI state
assert the T signal on the bus in response to BusRd messages. The
reading processor then transitions toTII rather thanTSSor TEE.
Processors executing aTStoreinstruction (writing processors) con-
tinue to transition toTMI; only one of the writers will eventually
commit, resulting in only one of the caches reverting toM state.
Lines originally inM or TMM state require a writeback on the first
TStoreto ensure that memory has the latest non-speculative value.

Among hardware TM systems, only TCC and RTM support
read-write and write-write sharing; all the other schemes mentioned
in Sections 1 and 2 use eager conflict detection. By allowing a
reader transaction to commit before a conflicting writer acquires the
contended object, RTM permits significant concurrency between
readers and long-running writers. Write-write sharing is more prob-
lematic, since only one transaction can usually commit, but may be
desirable in conjunction with early release [11]. Note that nothing
about the TMESI protocolrequiresread-write or write-write shar-
ing; if the software protocol detects and resolves conflicts eagerly,
theTII andTMI states will simply go unused.

3.2.2 Abort-on-invalidate

In addition to the states shown in Figure 4, the TMESI protocol
providesAM, AE, andASstates. TheA bit is set in response to an
ALoad instruction, and cleared in response to anARelease, CAS-
Commit, or Abort instruction (each of these requires an additional
processor–cache message not shown in Figure 4). Invalidation or
eviction of anAx line aborts the current transaction. If the processor
is executing at interrupt level when an abort occurs, delivery is
deferred until the return from interrupt. If the processor is in kernel
mode when the abort is delivered, delivery takes the form of an

5 2006/5/17



BusRd
/Flush

BusRdX
/Flush

PrTWr/Flush

PrTRd/−

PrTRd/−

PrTRd/−

PrTWr/−

PrTRd/−

PrTWr
/BusRdX

PrWr

BusRdX

PrRd/− BusRd
/Flush

PrWr

PrRd

PrRd/−
BusRd/Flush

PrRd

/ BusRdX

PrRd,PrWr/−

PrWr/−

/ BusRd(S)

PrTRd/BusRd(T)

PrTRd/BusRd(S,T)

    −

/BusRdX

/BusRdX

E

M

I

S

PrTWr/−

BusRdX

/Flush
BusRdX

BusRd TMI

TSS

PrTWr

TEE

TMM

TII

PrTWr
/BusRdX

PrTRd/−

/Flush

/Flush’

/Flush’

BusRdX/Flush’

BusRd/Flush

PrTRd,PrTWr,
BusRd,BusRdX/−

BusRdX/Flush’

−  −

PrTRd/BusRd(S,T)
 −

MESI States

TMESI States

PrTRd/−

BusRd/Flush’

CAS−Commit

ABORT

PrTRd,BusRdX/−
BusRd/Flush’

/Flush
PrTWr

PrTWr/  BusRdx

/BusRd(S)

Figure 4. TMESI Protocol. Dashed boxes enclose the MESI and TMESI subsets of the state space. All TMESI lines revert to MESI states in
the wake of aCAS-Commitor Abort. Specifically, the 2nd and 3rd letters of a TMESI state name indicate the MESI state to which to revert on
commit or abort, respectively. Notation on transitions is conventional: the part before the slash is the triggering message; after is the ancillary
action. “Flush” indicates that the cache supplies the requested data; “Flush′” indicates it does so iff the base protocol prefers cache–cache
transfers over memory–cache. When specified, S and T indicate signals on the “shared” and “threatened” bus lines; an overbar means “not
signaled”.

exception. If the processor is in user mode, delivery takes the form
of a spontaneous subroutine call. The current program counter
is pushed on the user stack, and control transfers to the address
specified by the most recentSetHandlerinstruction. If either the
stack pointer or the handler address is invalid, an exception occurs.

ALoads serve three related roles in RTM. First, every transac-
tion ALoads its own transaction descriptor (the word it will even-
tually attempt toCAS-Commit). If any other transaction aborts it
(by CAS-ing its descriptor toaborted), the first transaction is guar-
anteed to notice immediately. Second, every hardware transaction
ALoads the headers of objects it reads, so it will abort if a writer
acquires them. Third, a software transactionALoads the header of
any object it is copying (AReleaseing it immediately afterward), to
ensure the integrity of the copy. Note that a software transaction
never requires more than twoALoaded words at once, and we can
guarantee that these are never evicted from the cache.

3.2.3 State tag encoding

All told, a TMESI cache line can be in any of 12 different states: the
four MESI states (I, S, E, M), the five transactional states (TII, TSS,
TEE, TMM, TMI), and the three abort-on-invalidate states (AS, AE,
AM). For the sake of fast commits and aborts, we encode these in
five bits, as shown in Table 2.

T A MESI C/A M/I State
0 0 0 0 — —
0 0 1 1 0 0

}
I

0 0 0 1 — — S
0 0 1 0 — — E
0 0 1 1 1 —
0 0 1 1 0 1

}
M

1 0 0 0 — — TII
1 0 0 1 — — TSS
1 0 1 0 — — TEE
1 0 1 1 — 0 TMI
1 0 1 1 — 1 TMM
0 1 0 1 — — AS
0 1 1 0 — — AE
0 1 1 1 1 —
0 1 1 1 0 1

}
AM

T Line is (1) / is not (0) transactional
A Line is (1) / is not (0) abort-on-invalidate
MESI 2 bits: I (00), S (01), E (10), or M (11)
C/A Most recent txn committed (1) or aborted (0)
M/I Line is/was in TMM (1) or TMI (0)

Table 2. Tag array encoding. Interpretations of the bits (right) give
rise to 15 valid encodings of the 12 TMESI states.

6 2006/5/17



At commit time, if the CAS inCAS-Commitsucceeds, we first
broadcast a 1 on the C/A bit line, and use theT bits to conditionally
enable only the tags of transactional lines. Following this we flash-
clear theA andT bits. ForTSS, TMM, TII, andTEE the flash clear
alone would suffice, butTMI lines must revert toM on commit and
I on abort. We use theC/A bit to distinguish between these: a line
is interpreted as being in stateM if its MESI bits are 11 and either
C/A or M/I is set. On Aborts we broadcast 0 on the C/A bit line.

3.3 Conflict Detection & Immediate Aborts

Hardware TM systems typically checkpoint processor state at the
beginning of a transaction. As soon as a conflict is noticed, the hard-
ware restarts the losing transaction. Most hardware systems make
conflicts visible as soon as possible; TCC delays detection until
commit time. Software systems, by contrast, require that transac-
tionsvalidatetheir status explicitly, and restart themselves if they
have lost a conflict.

The overhead of validation, as we saw in Section 2.3, is one
of the dominant costs of software TM. RTM avoids this overhead
by ALoading object headers in hardware transactions. When a
writer modifies the header, all conflicting readers are aborted by
a single (broadcast) BusRdX. In contrast to most hardware TM
systems, this broadcast happens only at acquire time,notat the first
transactional store, allowing flexible policy.

Unfortunately, nothing guarantees that a software transaction
will have all of its object headers inALoaded lines. Moreover soft-
ware validation at the nextopenoperation cannot ensure consis-
tency: because hardware transactions modify data in place, objects
are not immutable, and inconsistency can arise among words of the
same object read at different times. The RTM software therefore
makes every software transaction a visible reader, and arranges for
it to ALoad its own transaction descriptor. Writers (whether hard-
ware or software) abort such readers at acquire time, one by one,
by writing to their descriptors. In a similar vein, a software writer
ALoads the header of any object it needs to clone, to make sure it
will receive an immediate abort if a hardware transaction modifies
the object in place during the cloning operation.2

Because RTM detects conflicts based on access to object head-
ers only, correctness for hardware transactions does not require that
TII, TSS, TEE, or TMM lines remain in the cache. These can be
freely evicted and reloaded on demand. Memory always has an up-
to-date non-speculative copy of data, which it returns; lines in TMI
state do not respond to read or write requests from the bus, thereby
allowing readers from both hardware and software transactions to
work with the stable non-speculative copy. When choosing lines
for eviction, the cache preferentially retainsTMI andAx lines. If it
must evict one of these, it aborts the current transaction, which will
then retry in software. Other hardware schemes buffer both transac-
tional reads and writes, exerting much higher pressure on the cache.

The abort delivery mechanism, described in Section 3.2.2, al-
lows both the kernel and user programs to execute hardware trans-
actions, so long as those transactions complete before control trans-
fers to the other. The operating system is expected to abort any cur-
rently running user-level hardware transaction when transferring
from an interrupt handler into the top half of the kernel. Interrupts
handled entirely in the bottom half (TLB refill, register window
overflow) can safely coexist with user-level transactions. Interrupt
handlers themselves cannot make use of transactions. User transac-
tions that take longer than a quantum to run will inevitably execute

2 An immediate abort is not strictly necessary if the cloning operation is
simply a bit-wise copy; for this it suffices to double-check validity after
finishing the copy. In object-oriented languages, however, the user can
provide a class-specificclone method that will work correctly only if the
object remains internally consistent.

in software. With simple statistics gathering, RTM can detect when
this happens repeatedly, and skip the initial hardware attempt.

3.4 Example

Figure 5 illustrates the interactions among three simple concurrent
transactions. Only the transactional instructions are shown. Num-
bers indicate the order in which instructions occur. At the beginning
of each transaction, RTM software executes aSetHandlerinstruc-
tion, initializes a transaction descriptor (in software), andALoads
that descriptor. Though theopen calls are not shown explicitly,
RTM software also executes anALoad on each object header at
the time of theopenand before the initialTLoador TStore.

Let us assume that initially objects A and B are invalid in all
caches. At y1 transaction T1 performs aTLoadof object A. RTM
software will haveALoaded A’s header into T1’s cache in state
AE (since it is the only cached copy) at the time of theopen. The
referenced line of A is then loaded inTEE. When the store happens
in T2 at y2, the line inTEE in T1 sees a BusRdX message and
drops toTII. The line remains valid, however, and T1 can continue
to use it until T2 acquires A (thereby aborting T1) or T1 itself
commits. Regardless of T1’s outcome, TheTII line must drop to
I to reflect the possibility that a transaction threatening that line
can subsequently commit.

At y3 T1 performs aTStoreto object B. RTM loads B’s header
in stateAE at the time of theopen, and B itself is loaded inTMI,
since the write is speculative. If T1 commits, the line will revert to
M, making theTStore’s change permanent. If T1 aborts, the line
will revert to I, since the speculative value will at that point be
invalid.

At y4 transaction T3 performs aTLoadon object A. Since T2
holds the line inTMI, it asserts the T signal in response to T3’s
BusRd message. This causes T3 to load the line inTII, giving it
access only until it commits or aborts (at which point it loses the
protection of software conflict detection). Prior to theTLoad, RTM
software will haveALoaded A’s header into T3’s cache during the
open, causing T2 to assert the S signal and to drop its own copy of
the header toAS. If T2 acquires A while T3 is active, its BusRdX
on A’s header will cause an invalidation in T3’s cache and thus an
immediate abort of T3.

Event y5 is similar to y4, and B is also loaded inTII .

We now consider the ordering of events~E1 , ~E2 , and ~E3 .

1. E1 happens before E2 and E3: When T1 acquires B’s header,
it invalidates the line in T3’s cache. This causes T3 to abort. T2,
however, can commit. When it retries, T3 will see the new value
of A from T1’s commit.

2. E2 happens before E1 and E3: When T2 acquires A’s header,
it aborts both T1 and T3.

3. E3 happens before E1 and E2: Since T3 is only a reader of
objects, and has not been invalidated by writer acquires, it com-
mits. T2 can similarly commit, if E1 happens before E2, since
T1 is a reader of A. Thus, the orderingE3, E1, E2will allow all
three transactions to commit. TCC would also admit this sce-
nario, but none of the other hardware schemes mentioned in
Sections 1 or 2 would do so, because of eager conflict detec-
tion. RTM enforces consistency with a single BusRdX per ob-
ject header. In contrast, TCC must broadcast all speculatively
modified lines at commit time.

4. RTM Software
In the previous section we presented the TMESI hardware, which
enables flexible policy making in software. With a few exceptions

7 2006/5/17



1

1

TLoad  A

TStore  B

Acquire B
CAS-Commit

T1

3

3

TLoad  A

TLoad B

CAS-Commit

T3

4

4

5

5

Data
T1 TEE     A

AE       OH(A)
Tag Data

T1
Tag

AS       OH(A)
TII       A

DataTag
T2 AS       OH(A)

TMI     A

Data
T1

Tag
AS       OH(A)

AE       OH(B)
TMI     B

TII       A

DataTag
T2 AS       OH(A)

TMI     A

Data
T1

Tag
AS       OH(A)

AS       OH(B)
TMI     B

TII       A

Data
T1

Tag
AS       OH(A)

AE       OH(B)
TMI     B

TII       A

DataTag
T2 AS       OH(A)

TMI     A

DataTag
T3 AS       OH(A)

TII       A
DataTag

T2 AS       OH(A)
TMI     A

Data
T3

Tag
AS       OH(A)

AS       OH(B)
TII       B

TII       A

CAS-Commit
Acquire A

TStore  A

T2

2

2

E1 E2 E3

Figure 5. Execution of Transactions. Top: interleaving of accesses in three transactions, with lazy acquire. Bottom: Cache tag arrays at
various event points. (OH(x) is used to indicate the header of object x.)

related to the interaction of hardware and software transactions,
policy is set entirely in software, with hardware serving simply to
speed the common case. Moir [17] describes a design philosophy
for a hybrid transactional memory system, with the goal of being
able to use any underlying hardware support for transactional mem-
ory. We present a concrete proposal for both the hardware and the
software that retain policy flexibility in software.

Transactions that overflow hardware due to the size or associa-
tivity of the cache are executed entirely in software, while ensur-
ing interoperability with concurrent hardware transactions. Soft-
ware transactions are essentiallyunboundedin space and time. In
the subsections below we first describe the metadata that allows
hardware and software transactions to share a common set of ob-
jects, thereby combining fast execution in the common case with
unbounded space in the general case. We then describe mechanisms
used to ensure consistency when handling immediate aborts. Fi-
nally, we present context-switching support for transactions with
unbounded time.

4.1 Transactions Unbounded in Space

The principal metadata employed by RTM are illustrated in Fig-
ure 6. The object header has five main fields: a pointer to the most
recent writer transaction, a serial number, pointers to one or two
clones of the object, and a head pointer for a list of software trans-
actions currently reading the object. (The need for explicitly visible
software readers, explained in Section 3.3, is the principal policy re-
striction imposed by RTM. Without such visibility [and immediate
aborts] we see no way to allow software transactions to interoperate
with hardware transactions that may modify objects in place.)

The low bit of the transaction pointer in the object header is
used to indicate whether the most recent writer was a hardware or
software transaction. If the writer was a software transaction and
it has committed, then the “new” object is current; otherwise the
“old” object is current (recall that hardware transactions make up-
dates in place). Writers acquire a header by updating it atomically
with a Wide-CASinstruction. To first approximation, RTM object
headers combine DSTM-styleTMObjectandLocatorfields [6].3

Serial numbers allow RTM to avoid dynamic memory manage-
ment by reusing transaction descriptors. When starting a new trans-
action, a thread increments the number in the descriptor. When ac-
quiring an object, it sets the number in the header to match. If,
at opentime, a transaction finds mismatched numbers in the ob-
ject header and the descriptor to which it points, it interprets it as
if the header had pointed to a matchingcommitteddescriptor. On
abort, a thread must erase the pointers in any headers it has ac-
quired. As an adaptive performance optimization for read-intensive
applications, a reader that finds a pointer to acommitteddescriptor
replaces it with a sentinel value that saves subsequent readers the
need to dereference the pointer.

For hardware transactions, the in-place update of objects and
reuse of transaction descriptors eliminate the need for dynamic
memory management. Software transactions, however, must still

3 RSTM avoids the need for WCAS by moving much of an object’s meta-
data into the data object instance, rather than the header. In particular, it
arranges for the newer data object to point to the older [12]. We keep all
metadata in the header in RTM to minimize the need forALoaded cache
lines.

8 2006/5/17



Reader 1 Reader 2

Serial Number

Status

Txn−1 Descriptor

Single Version

Data Object −

Serial Number

Status

Txn−2 Descriptor

Transaction

Old Object

New Object

Serial Number

Reader List
Software Txn

Serial Number

Status

Serial Number

Status

Txn−1 Descriptor

Old Version

Data Object −
Clone

Txn−2 Descriptor
Software WriterHardware Writer

Object HeaderObject Header

Reader 1 Reader 2

Transaction

Old Object

New Object

Serial Number

Software Txn
Reader List

H

S

H

S

Data Object −

Figure 6. RTM metadata structure. On the left a hardware transaction is in the process of acquiring the object, overwriting the transaction
pointer and serial number fields. On the right a software transaction will also overwrite the New Object field. If a software transaction
acquires an object previously owned by a committed software transaction, it overwrites〈Old Object, New Object〉 with 〈New Object, Clone〉.
Several software transactions can work concurrently on their own object clones prior toacquiretime, just as hardware transactions can work
concurrently on copies buffered in their caches.

allocate and deallocate clones and entries for explicit reader lists.
For these purposes RTM employs a lightweight, custom storage
manager. In a software transaction, acquisition installs a new data
object in the “New Object” field, erases the pointer to any data
object O that was formerly in that field, and reclaims the space
for O. Immediate aborts preclude the use of dangling references.

4.2 Deferred Aborts

While aborts must be synchronous to avoid any possible data in-
consistency, there are times when they shouldnot occur. Most
obviously, they need to be postponed whenever a transaction is
currently executing RTM system code (e.g., memory manage-
ment) that needs to run to completion. Within the RTM library,
code that should not be interrupted is bracketed withBEGIN_NO_

ABORT. . .END_NO_ABORT macros. These function in a manner rem-
iniscent of the preemption avoidance mechanism of SymUnix [2]:
BEGIN_NO_ABORT increments a counter, inspected by the stan-
dard abort handler installed by RTM. If an abort occurs when the
counter is positive, the handler sets a flag and returns.END_NO_

ABORT decrements the counter. If it reaches zero and the flag is set,
it clears the flag and reinvokes the handler.

Transactions may perform nontransactional operations for log-
ging, profiling, debugging, or similar purposes. Occasionally these
must be executed to completion (e.g. because they acquire and re-
lease an I/O library lock). For this purpose, RTM makesBEGIN_

NO_ABORT andEND_NO_ABORT available to user code.

4.3 Transactions Unbounded in Time

To permit transactions of unbounded duration, RTM must ensure
that software transactions survive a context switch, and that they be
aware, on wakeup, of any significant events that transpired while
they were asleep. Toward these ends, RTM requires that the sched-
uler be aware of the location of each thread’s transaction descrip-
tor, and that for software transactions this descriptor contain, in
addition to the information shown in Figure 6, (1) an indication
of whether the transaction is running in hardware or in software,
and (2) for software transactions, the transaction pointer and serial
number of any object currently being cloned.

The scheduler performs the following actions.

1. To avoid confusing the state of multiple transactions, the sched-
uler executes anAbort instruction on every context switch,
thereby clearing both T and A states out of the cache. A soft-
ware transaction can resume execution when rescheduled. A
hardware transaction, on the other hand, is aborted. The sched-
uler modifies its state so that it will wake up in its abort handler
when rescheduled.

2. As previously noted, interoperability between hardware and
software transactions requires that a software transactionALoad
its transaction descriptor, so it will notice immediately if
aborted by another transaction. When resuming a software
transaction, the scheduler re-ALoads the descriptor.

3. A software transaction may be aborted while it is asleep. At
preemption time the scheduler notes whether the transaction’s
status is currentlyactive. On wakeup it checks to see if this has
been changed toaborted. If so, it modifies the thread’s state so
that it will wake up in its abort handler.

4. A software transaction mustALoad the header of any object it
is cloning. On wakeup the scheduler checks to see whether that
object (if any) is still valid (by comparing the current and saved
serial numbers and transaction pointers). If not, it arranges for
the thread to wake up in its handler. If so, it re-ALoads the
header.

These rules suffice to implement unbounded software transac-
tions that interoperate correctly with (bounded) hardware transac-
tions.

5. Conclusions and Future Work
We have described a transactional memory system, RTM, that uses
hardware to accelerate transactions managed by a software proto-
col. RTM is 100% source-compatible with the RSTM software TM
system, providing users with a gentle migration path from legacy
machines. We believe this style of hardware/software hybrid con-
stitutes the most promising path forward for transactional program-
ming models.

9 2006/5/17



In contrast to previous transactional hardware protocols, RTM

1. requires only one new bus signal and no hardware consensus
protocol or extra traffic at commit time.

2. requires, for fast path operation, that onlyspeculatively written
lines be buffered in the cache.

3. falls back to software on overflow, or at the direction of the
contention manager, thereby accommodating transactions of
effectively unlimited size and duration.

4. allows software transactions to interoperate with ongoing hard-
ware transactions.

5. supports immediate aborts of remote transactions, even if their
transactional state has overflowed the cache.

6. permits read-write and write-write sharing, when desired by the
software protocol.

7. permits “leaking” of information from inside aborted transac-
tions, for logging, profiling, debugging, and similar purposes.

8. performs contention management entirely in software, enabling
the use of adaptive and application-specific protocols.

We are currently nearing completion of an RTM implementa-
tion using the GEMS SIMICS/SPARC-based simulation infrastruc-
ture [14]. In future work, we plan to explore a variety of topics,
including other styles of RTM software (e.g., word-based); hard-
ware (e.g., directory-based protocols); nested transactions; gradual
fall-back to software, with ongoing use of whatever fits in cache;
context tags for simultaneous transactions in separate hardware
threads; and realistic real-world applications.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded Transactional Memory. InProc. of the 11th Intl.
Symp. on High Performance Computer Architecture, pages 316–327,
San Francisco, CA, Feb. 2005.

[2] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly
Parallel UNIX Systems. InProc. of the USENIX Workshop on Unix
and Supercomputers, Pittsburgh, PA, Sept. 1988.

[3] K. Fraser and T. Harris. Concurrent Programming Without Locks.
Submitted for publication, 2004. Available as research.microsoft.com/˜tharris/drafts/cpwl-
submission.pdf.

[4] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention
Management in SXM. InProc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[5] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional
Memory Coherence and Consistency. InProc. of the 31st Intl. Symp.
on Computer Architecture, München, Germany, June 2004.

[6] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
Transactional Memory for Dynamic-sized Data Structures. InProc. of
the 22nd ACM Symp. on Principles of Distributed Computing, pages
92–101, Boston, MA, July 2003.

[7] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects.ACM Trans. on Programming
Languages and Systems, 12(3):463–492, July 1990.

[8] M. Herlihy and J. E. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. InProc. of the 20th Intl. Symp.
on Computer Architecture, pages 289–300, San Diego, CA, May 1993.
Expanded version available as CRL 92/07, DEC Cambridge Research
Laboratory, Dec. 1992.

[9] Intel Corporation. Intel Itanium Architecture Software Developers
Manual. Revision 2.2, Jan. 2006.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid
Transactional Memory. InProc. of the 11th ACM Symp. on Principles

and Practice of Parallel Programming, New York, NY, Mar. 2006.

[11] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. InProc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[12] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the Overhead of Software
Transactional Memory. InACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing,
Ottawa, ON, Canada, July 2006. Held in conjunction with PLDI
2006. Expanded version available as TR 893, Dept. of Computer
Science, Univ. of Rochester, Mar. 2006.

[13] J. F. Martinez and J. Torrellas. Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications. InProc.
of the 10th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 18–29, San Jose, CA, Oct.
2002.

[14] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M.
Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacets General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. InACM SIGARCH Computer Architecture News,
Sept. 2005.

[15] M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. In
Proc. of the SIGPLAN 2004 Conf. on Programming Language Design
and Implementation, pages 35–46, Washington, DC, June 2004.

[16] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. InProc. of
the 15th ACM Symp. on Principles of Distributed Computing, pages
267–275, Philadelphia, PA, May 1996.

[17] M. Moir. Hybrid Transactional Memory. Unpublished manuscript,
Sun Microsystems Laboratories, Burlington, MA, July 2005.

[18] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. InProc. of the 12th Intl.
Symp. on High Performance Computer Architecture, Austin, TX, Feb.
2006.

[19] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution. InProc. of the 34th Intl.
Symp. on Microarchitecture, Austin, TX, Dec. 2001.

[20] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of
Lock-Based Programs. InProc. of the 10th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages
5–17, San Jose, CA, Oct. 2002.

[21] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. InProc. of the 32nd Intl. Symp. on Computer Architecture,
Madison, WI, June 2005.

[22] W. N. Scherer III and M. L. Scott. Contention Management in
Dynamic Software Transactional Memory. InProc. of the ACM PODC
Workshop on Concurrency and Synchronization in Java Programs, St.
Johns, NL, Canada, July 2004.

[23] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. InProc. of the 24th
ACM Symp. on Principles of Distributed Computing, Las Vegas, NV,
July 2005.

[24] H. Sundell and P. Tsigas. NOBLE: A Non-Blocking Inter-Process
Communication Library. InProc. of the 6th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers, Washing-
ton, DC, Mar. 2002. Also TR 2002-02, Chalmers Univ. of Technology
and G̈oteborg Univ., G̈oteborg, Sweden.

[25] R. K. Treiber. Systems Programming: Coping with Parallelism. RJ
5118, IBM Almaden Research Center, Apr. 1986.

10 2006/5/17


