
Scalable String Analysis: An Experience Report
Kostyantyn Vorobyov

Yang Zhao
Padmanabhan Krishnan

Oracle Labs
Brisbane, Queensland, Australia

(kostyantyn.x.vorobyov,yang.yz.zhao,paddy.krishnan)@oracle.com

Abstract
In this paper we present OLSA – a tool for scalable static
string analysis of Java programs. OLSA is based on intra-
procedural string value flow graphs connected via call-graph
edges. Formally, this uses a context-sensitive grammar to
generate the set of possible strings. The analysis is focused on
scalability and is thus not sound. This trade off is acceptable
in the context of bug-finding in large web applications.

We evaluate our approach by using OLSA to detect SQL in-
jections and unsafe use of reflection in DaCapo benchmarks
and a large internal Java codebase and compare the perfor-
mance of OLSA with JSA, one of state-of-the-art string anal-
ysers. The results indicate that OLSA can analyse industrial-
scale codebases in a matter of hours, whereas JSA does not
scale to many DaCapo programs. The set of potential strings
generated by our string analysis can be used for checking
the validity of the reported potential vulnerabilities.

CCS Concepts: • Security and privacy → Software se-
curity engineering; • Software and its engineering →
Automated static analysis; Software maintenance tools.

Keywords: static analysis, local reasoning, context-sensitive
grammar

ACM Reference Format:
Kostyantyn Vorobyov, Yang Zhao, and Padmanabhan Krishnan.
2021. Scalable String Analysis: An Experience Report. In Proceedings
of the 10th ACM SIGPLAN International Workshop on the State Of the
Art in Program Analysis (SOAP ’21), June 22, 2021, Virtual, Canada.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3460946.
3464321

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOAP ’21, June 22, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8468-1/21/06. . . $15.00
https://doi.org/10.1145/3460946.3464321

1 Motivation
Static string analysis underpins many security-related analy-
ses including detection of SQL injections, cross-site scripting
and improper sanitisation. Even though string analysis has
received much attention [3, 5, 11], its application to large
commercial codebases is still unclear. One of the reasons for
such results is that calculating possible values for a string
variable is not straightforward. For instance, Costantini et
al. [8] observe that the state-of-the-art in this field is still
limited; one can use finite automata to model string values,
but if the automata are precise they do not scale up.
A popular string analysis tool for Java™1 programs that

makes use of finite automata is the Java String Analyser
(JSA) [5]. JSA aims to be sound, has been used in a number of
projects and shown to produce useful results [6, 9, 10, 13, 16].
However, as shown by experiments with Violist [11], a string
analysis framework for Java and Android, JSA does not scale
to large codebases. The same experimentation shows that
Violist outperforms JSA, however this evaluation is based on
a handful of small Java and Android applications. OSA [4]
is another string analysis tool for Java that uses abstract
interpretation and allows context-sensitive handling of field
variables (a feature not supported by JSA). Experiments with
OSA indicated that due to the added context-sensitivity OSA
was more precise then JSA but did not outperform JSA in
terms of runtime.
In this paper, we tackle the problem of fast and practical

string analysis for large Java applications. Specifically, given
a callsite 𝑐 that invokes function 𝑓 , the goal of the analysis is
to compute the set of string values 𝑓 can produce at 𝑐 . Even
though this is similar to JSA, where a value flow graph (VFG)
def-use edges is used to identify the string values that can
reach a particular location, we show that our analysis scales
to Java codebases that have millions of lines of code.
We report our experience in developing a scalable string

analysis for Java in the context of the Parfait static anal-
yser [7]. There are two main reasons for our string analysis.
The first is to identify potential issues that may be missed
by Parfait. Parfait’s main focus is on precision (at the cost of
accuracy). Therefore, we sacrifice soundness for scalability.
This is in keeping with practice in industry [15]. The focus on

1Java™is a registered trademark of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

https://doi.org/10.1145/3460946.3464321
https://doi.org/10.1145/3460946.3464321
https://doi.org/10.1145/3460946.3464321

SOAP ’21, June 22, 2021, Virtual, Canada Vorobyov, Zhao, Krishnan

precision ensures that most of Parfait’s reports are actionable.
Therefore, by default, Parfait does not enable string analysis.
Thus, we want to identify reports that Parfait could have
potentially missed. The second is to enhance Parfait’s taint
analysis with specific information. That is, rather than just
report that a string is potentially tainted, we aim to generate
string-related expressions that can be used for debugging or
error reporting.

1.1 High Level Approach
IFDS and CFL-reachability [14] are efficient techniques for
context-sensitive data flow analysis. Inspired by these ideas,
we propose a string analysis that presents a context-sensitive
solution in the form of a formal context-sensitive grammar.
Note that most of the rules in this grammar are context-
free. The number of context-sensitive rules is linear in the
number of callsites. In other words, we extend CFGs with
special symbols to encode the context-sensitivity required
for the analysis.

If a function 𝑓 is involved in generating the string values
for a variable, our string analysis generates grammar 𝐺𝑏

𝑓
for

function 𝑓 that takes into account only the body of 𝑓 . An
extended grammar𝐺 𝑓 is then obtained by adding extra rules
to 𝐺𝑏

𝑓
. 𝐺 𝑓 generates strings that capture the behaviour of

other functions (including recursive behaviour). Thus, for
each string in this extended grammar, we need to apply an
algorithm (say A) that interprets these special symbols to
generate the actual strings of interest. That is, the set of
possible strings at the callsite will be {A(𝑤) | 𝑤 ∈ L(𝐺 𝑓)},
where L(𝐺 𝑓) denotes the language of grammar 𝐺 𝑓 .

This two-step process also allows us to instantiateA with
different algorithms to generate client-specific strings. For
instance, while detecting SQL injections a SQL parser that
discards invalid strings can be used. If the requirements of
the client analysis are not known, all possible strings (subject
to resource requirements) can be generated.

In the following sectionwe describe our analysis algorithm
in greater detail and in Section 3 we present our experimental
results of applying our approach to different systems.

2 Scalable String Analysis
Most existing string analysers focus on precision and require
expensive computations. A spot check of our codebases indi-
cated that such heavy-weight analysis was often not needed.
For instance, SQL queries in Java are often encoded as con-
stants concatenated with input values. Such expressions can
be computed using simpler and more scalable techniques. In
the remainder of this section we describe Oracle Labs String
Analyser (OLSA) – our scalable string analyser.

OLSA first creates a JSA-style string value-flow graph
(SVFG) for each method using only an intra-procedural anal-
ysis. That is, starting from a point of interest (i.e., a hotspot),
OLSA uses backwards def-use analysis to build a separate

SVFG for each method in the backward sequence. This pro-
cess is extended with context-sensitivity to achieve better
precision. The inter-procedural analysis (viz., the 𝜃 ’s in the
grammar) is handled by special switch nodes described below.
Once SVFG is constructed, OLSA utilises backwards graph
traversal to compute string values per hotspot.
We first present an example to illustrate our ideas. For-

mal description of OLSA analysis is presented further in
Algorithm 1.

2.1 Example

1 String foo(String s1, String s2) {

2 if (...) {

3 String t1 = s1 + s2;

4 return t1;

5 } else if (...) {

6 String t2 = s2 + "1";

7 l1: String u1 = foo(s1, t2);

8 return u1;

9 } else {

10 String t3 = "0" + s1;

11 l2: String u2 = foo(t3, s2);

12 return u2;

13 }

14 }

15 String result = foo("a", "b");

Listing 1. Example program

The intra-procedural CFG as defined for JSA correspond-
ing to the example in Figure 1 is developed below. The upper-
case letter non-terminals correspond to program variables
(e.g., 𝑇1 corresponds to t1 defined on line 3) and 𝑅𝐸𝑇𝑓 de-
notes the return value of the function 𝑓 .

T1 → 𝑐𝑜𝑛𝑐𝑎𝑡 (S1, S2) (1)
𝑅𝐸𝑇foo → T1 | U1 | U2 (2)
T2 → 𝑐𝑜𝑛𝑐𝑎𝑡 (S2, "1") (3)
T3 → 𝑐𝑜𝑛𝑐𝑎𝑡 ("0", S1) (4)

Because OLSA does not address inter-procedural propaga-
tion of strings, no direct productions for 𝑈 1 and 𝑈 2 are
defined. We extend the grammar to capture the different
invocations of foo for𝑈 1 and𝑈 2 in the following way:

U1 → 𝜃𝑙1 𝑅𝐸𝑇foo (5)
U2 → 𝜃𝑙2 𝑅𝐸𝑇foo (6)

In general, the non-terminal symbol 𝜃𝑙 corresponds to the
callsite at label 𝑙 . The above two rules assign the return value
of the function foo to U1 and U2 after processing of the
callsites at labels 𝑙1 and 𝑙2 in Figure 1. In other words, 𝜃
represents the context and 𝑅𝐸𝑇foo captures the propagation
of string values. We explain this processing by 𝜃 in greater
detail below.

Scalable String Analysis: An Experience Report SOAP ’21, June 22, 2021, Virtual, Canada

The analysis further requires to capture the flow of actual
parameters to formal parameters of the function. Rules that
capture this flow are shown below, where the non-terminals
on the left-hand side correspond to the formal parameters
and the non-terminals on the right-hand side correspond to
the actual parameters.

𝜃𝑙1 𝑆1 → S1 𝜃𝑙1 𝑆2 → T2 (7)
𝜃𝑙2 𝑆1 → T3 𝜃𝑙2 𝑆2 → S2 (8)

Finally, we need another rule to summarise the instantiation
at callsites. The following template rule captures the valid
instantiation of a summary in a context given by 𝜃 , where
𝑜𝑝 denotes any string operation with arity 𝑛.

𝜃𝑙 𝑜𝑝 (𝑋1, . . . , 𝑋𝑛) → 𝑜𝑝 (𝜃𝑙 𝑋1, . . . , 𝜃𝑙 𝑋𝑛) (9)

Note that the generated grammar is not context-free since
rules from (7) to (9) are context-sensitive because the non-
terminals 𝜃𝑙1 and 𝜃𝑙2 appear on the left-hand side of the
productions.

Given the above rules, we now showwe can derive a string
for the callsite at label 𝑙1, assuming that the called function
returns at Line 4.
𝑅𝐸𝑇foo → 𝑈 2 (from 2)

→ 𝜃𝑙2 𝑅𝐸𝑇foo (from 6)
→ 𝜃𝑙2 𝑇 1 (from 2)
→ 𝜃𝑙2 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑆1, 𝑆2) (from 1)
→ 𝑐𝑜𝑛𝑐𝑎𝑡 (𝜃𝑙2 𝑆1, 𝜃𝑙2 𝑆2) (from 9)
→ 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑇 3, 𝑆2) (from 8)
→ 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑐𝑜𝑛𝑐𝑎𝑡 (”0”, 𝑆1), 𝑆2) (from 4)

Once the derivation is complete, the semantics of the
string operations may be applied to generate the actual set
of strings. For the variable result in Figure 1, JSA generates
the string <XXXX> (i.e., it cannot resolve it). A brief investiga-
tion suggests that the presence of recursion results in JSA’s
alias analysis and inter-procedural analysis of string val-
ues being imprecise. OLSA generates strings "0ab", "0ab1"
and "ab". OLSA does not generate "00ab11" because of the
unfolding limits (loops are unfolded only once) in our imple-
mentation that are imposed for scalability. Note that we have
replaced the inter-procedural alias analysis with a context-
sensitive grammar rules (e.g., rules 7) unfolded on-demand.
This results in a scalable but unsound analysis.
2.2 OLSA Algorithm
Algorithm 1 shows our technique to construct a grammar𝐺
for a given program 𝑃 . The grammar 𝐺 has non-terminals
corresponding to program variables, say 𝑋 for x. For the
inter-procedural analysis we use the term formal(𝑙, 𝑥) to
denote the formal parameter that corresponds to the ac-
tual parameter 𝑥 at callsite 𝑙 . The language L(𝑋) of a non-
terminal 𝑋 is the same as the set of strings that the program
variable 𝑥 holds in a sound path-insensitive, flow and fully

callsite-sensitive analysis. The algorithm generates the rel-
evant grammar rules corresponding to each program state-
ment. As each statement is handled independently, the algo-
rithm is compositional by design.

input :A program 𝑃

output :A context-sensitive grammar 𝐺
1 The grammar 𝐺 is defined as (Σ,N ,R).
2 Σ is the set of terminals containing the string

constants in 𝑃 , names of string operations and
symbols ‘(’, ‘)’and ‘,’.

3 N is the set of non-terminals corresponding to
program variables (denoted by uppercase letters),
𝑅𝐸𝑇𝑓 corresponds to the return variable for
function 𝑓 in 𝑃 , 𝑥 indicates that 𝑥 represents a
sequence of variables and is used to capture
polyadic operations, and 𝜃𝑙 for every callsite
location 𝑙 in 𝑃 .

4 R := ∅
5 for every statement 𝑠 in 𝑃 do
6 if 𝑠 is 𝑥 := 𝑜𝑝 (𝑦) then
7 R := R ∪ {𝑋 → 𝑜𝑝 (𝑦)}
8 else if 𝑠 is 𝑙 : 𝑥 := 𝑓 𝑢𝑛𝑐 (𝑦) then
9 for every 𝑋𝑖 , op in func add the following to

R do

10

R := R ∪ {𝑋 → 𝜃𝑙 𝑅𝐸𝑇𝑓 𝑢𝑛𝑐 }
∀𝑧 ∈ 𝑦 : R := R ∪ {𝜃𝑙 𝑓 𝑜𝑟𝑚𝑎𝑙 (𝑙, 𝑧) → 𝑍 }
R := R ∪ {𝜃𝑙 𝑜𝑝 (𝑋1, . . . , 𝑋𝑛) →

𝑜𝑝 (𝜃𝑙 𝑋1, . . . , 𝜃𝑙 𝑋𝑛)}
11 end
12 end

Algorithm 1: Grammar construction.

In Algorithm 1 Line 7 handles string operations such as
concat or replace. As we do not process such operations
in the grammar generation phase, we note that 𝑋 can de-
rive only the result obtained from the variables used in the
operation. The definitions starting at Line 9 in Algorithm 1
handle function calls and thus adds the necessary symbols
to handle context-sensitivity. These rules are similar to any
context-sensitive program analysis. That is, the variable 𝑋
can derive the result of the function call at location 𝑙 that
is captured by 𝜃𝑙 . Similarly, the transfer of values from the
actual parameters and the values in the local variables in the
function are analysed context-sensitively using 𝜃𝑙 .
Theoretically, the generated grammar can be used to de-

rive a string for any callsite in the program 𝑃 . Due to its
nondeterministic nature, we additionally construct a graph
to represent the grammar and use a customised graph traver-
sal to generate strings at a particular callsite. Figure 1 shows
the internal representation of the grammar generated for pro-
gram in Figure 1, where nodes represent non-terminals, and

SOAP ’21, June 22, 2021, Virtual, Canada Vorobyov, Zhao, Krishnan

Figure 1. String value flow graph.

directed edges show dependencies between the nodes (non-
terminals). The blue nodes labelled 𝑠1 and 𝑠2 in the graph
represent the formal parameters of the function, while the
brown node labelled 𝑟𝑒𝑡 represents its return node. To sim-
plify the implementation, different return statements were
joined into a single return node.

To capture the semantics of𝜃 in the generated grammarwe
introduce switch nodes with sequences of slots that represent
callsites. There is an in-switch node for every non-terminal
representing a formal parameter and an out-switch node for
every return non-terminal. The slots in the out-switch node
correspond exactly to the slots in the in-switch node. In order
to preserve this correspondence, we construct a linear order
on the set of callsites of the function and arrange the in-
switch and out-switch slots in that order. The non-terminals
corresponding to actual parameters are connected to the
in-switch slot (that is reserved for that callsite) instead of
the formal parameter non-terminals.

To collect potential string values that can flow into a given
node in the SVFG, the OLSA utilises a graph traversal algo-
rithm to traverse the graph backwards. It can start from any
node and stop at some end node that represents either a
string constant or a user-input value. We explain the key
aspects of the implementation using the example shown in
Figure 1. For demonstration purposes, we only consider 6
types of nodes in this algorithm.

• constant: a node with only one outgoing edge, such
as nodes "0", "1", "a" or "b".

• simple: a node with an arbitrary number of incoming
and outgoing edges, e.g., node ret in Figure 1.

• unary operation: a node with one incoming edge and
one outgoing edge. The incoming string values will be
applied a unary operation before being sent out. An
example of a unary operation is trim.

• binary operation: a node with two incoming edges
and one outgoing edge that represents a binary oper-
ation. For instance, binary operation node concat in
Figure 1 models string concatenation.

• in-switch: a node with one or more incoming edges
(connecting to the corresponding actual arguments
from different callsites) and one outgoing edge (con-
necting to a formal parameter node of the function).

• out-switch: a node with one incoming edge (from the
unique return node of a function) and one or more
outgoing edges (connecting to a different callsite).

Note that after the SVFG is constructed, the order of the
incoming edges of an in-switch node must be matched with
the order of the outgoing edges of the out-switch node in
terms of different callsites of the function. We use a𝐶𝑜𝑛𝑡𝑒𝑥𝑡
stack to distinguish string propagation at different call sites.
This can be seen as a light-weight implementation of the
construction of the supergraph in the IFDS algorithm [14].
For in-switch nodes, we pop the current context value

from the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 stack, generate string values for the in-
coming edges and then push the current context value back
into the𝐶𝑜𝑛𝑡𝑒𝑥𝑡 . Analogously, for out-switch nodes, we first
determine the index of the current outgoing edge, push it
into the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 stack, and then calculate the string values
from its incoming edges. After that, the top of the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡
stack will be popped.

During the graph traversal to propagate string values, we
maintain a map of each node that has been visited under a
given context along with the generated values. If a node has
already been visited in the same context, we will directly
retrieve the saved result and stop the traversal. Therefore,
each node in the string value flow graph will be only visited
once in a particular context and each cycle in the string value
flow graph is actually unfolded at most once.

3 Experimental Results
We now describe our results of the analysis on codebases
that have more than 1 million lines of code. Because open
benchmarks such as SecuriBench [12] are not representative
of real applications, the main results we present are on large
proprietary internal codebases.
To evaluate the performance of OLSA we also compare

the results with JSA. Since JSA did not scale to our internal
system, we present the results of our comparison on bench-
marks from the DaCapo suite [2] and the unit tests associated
with JSA. We were unable to compare OLSA against neither
Violist nor OSA. Even after a considerable effort, we were
unable to get Violist working in our environment, and the
implementation of OSA is not publicly available.

For our scalability experimentation we selected an internal
enterprise system composed of a number of web applications.
The entire system has 32 million lines of Java code calculated
using cloc [1]. Because the analysis time depends on the

Scalable String Analysis: An Experience Report SOAP ’21, June 22, 2021, Virtual, Canada

number of hotspots, we also report the number of hotspots.
All loops in the resulting grammar are traversed only once
and the implementation supports only a few typical string
operations such as concat, replace and substring. For all
experiments reported in this section we output all possible
strings computed by the analysis.

Our experiments were carried out on a 8-core 2.60GHz E5-
2690 Intel Xeon processor with 128GB RAM, running 64-bit
Oracle Linux™2. All runtimes are in seconds and ⊥ indicates
that the analysis did not terminate after 10 minutes.

3.1 DaCapo
In the experiments using programs from the DaCapo suite
we set the hotspots to arguments of print methods from the
java.io and javax.servlet.jsp packages and addition-
ally java.class.forName function.
Table 1 presents the results of the comparison with JSA

over 15 selected DaCapo benchmarks. We used benchmarks
from all available revisions of DaCapo excluding programs
that failed to build to the intermediate representation used
by OLSA. Both OLSA and JSA were run on all selected bench-
marks. Of these JSA was able to complete analysis (within
10 minute limit) only for 3 programs (shown via Table 1),
whereas OLSA analysed all used benchmarks in less then 9
seconds. Similarly to Li et al. [11] we attribute the scalability
issues of JSA to inter-procedural alias analysis that often led
to memory exhaustion in larger DaCapo benchmarks.

In addition to runtime, we compared the number of strings
both tools were able to resolve (see Table 2), where a fully
resolved string corresponds to a string literal, whereas a
partially resolved string has a mixture of constants and
unknown components. The constants in partially resolved
strings provide useful information to the developer to deter-
mine if the report is actionable. For instance, the partially
resolved string "SELECT␣*␣FROM␣<XXXX>" at an SQL com-
mand will need further investigation while partial string
"document.write(<img␣src=␣<XXXX>>" is clearly a false
positive. In sunflow both tools resolved (fully or partially)
approximately 70% of the hotspots. In avrora and sunflow
benchmarks, however, OLSA resolved more strings overall
but the majority of these strings were resolved only partially.
JSA, on the other hand was able to fully resolve slightly more
strings then OLSA but had fewer partial strings. Such results
demonstrate effectiveness of OLSA that was able to infer
entire or partial strings in most cases and additionally was
able to analyse over 4 thousand of hotspots in less then 9
seconds which makes this tool highly usable in practice.

3.2 Internal Codebases
For experiments with our internal codebase we usedmethods
related to SQL injection (e.g., java.sql.executeQuery) and

2Oracle Linux™ is a registered trademark of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

Table 1. Comparing OLSA and JSA over DaCapo.

Codebase Hotspots JSA OLSA
Runtime Runtime

Entire codebase 4,304 ⊥ 8.77
xalan 637 ⊥ 0.82
derby 542 ⊥ 2.67
cassandra 301 ⊥ 0.49
bloat 748 324.35 0.66
avrora 40 941.25 0.25
sunflow 91 98.47 0.08

Table 2. JSA and OLSA string resolution over DaCapo.

JSA Resolved OLSA Resolved
Codebase Fully Partially Fully Partially

xalan ⊥ ⊥ 40% 36%
derby ⊥ ⊥ 30% 47%
cassandra ⊥ ⊥ 34% 24%
bloat 53% 30% 36% 58%
avrora 43% 28% 38% 45%
sunflow 65% 4% 64% 4%

Table 3. Runtime SQL injection.

Size(KLoC) Hotspots OLSA Runtime % Resolved

Entire codebase 33,966 8,735 78.8
3,048 5,896 711 61.5
1,821 3,270 371 85.1
953 2,248 897 81.5
858 2,059 590 55.3

unsafe use of reflection (java.class.forName) as hotspots.
They were motivated by a client security analysis where
string arguments should not be tainted, i.e., controlled by a
potential attacker.
Tables 3 and 4 summarise the OLSA performance over

different web applications from our internal codebase. They
present the results on all the web applications as well as the
four largest (by number of hotspots) applications. The ta-
bles show the size of the application, the number of relevant
hotspots and the percentage of hotspots that were fully re-
solved in these cases. Results show that OLSA string analysis
is able to analyse enterprise-scale codebases. OLSA was able
to generate potential strings for SQL injection and unsafe
reflection over the entire codebase in slightly over one hour
and in less than three hours respectively. Because many of
the strings are fully resolved (i.e., as constants), the percent-
age of hotspots that need manual inspection (of around 20%)
is acceptable for an in-depth security analysis.

SOAP ’21, June 22, 2021, Virtual, Canada Vorobyov, Zhao, Krishnan

Table 4. Runtime unsafe reflection.

Size(KLoC) Hotspots OLSA Runtime % Resolved

Entire codebase 38,189 8,988 86.6
853 6,153 1137 78.0
953 4,501 802.1 87.3
593 3,047 572.5 77.9
269 2,444 385.8 79.2

3.3 JSA Unit Tests
Finally, to evaluate precision of our analysis, we analysed
303 small test programs from the JSA unit test suite. Each
program contains a single hotspot and hard-coded inputs,
that is, these programs have the exact set of strings an ideal
analysis should compute.

Overall, JSA was more precise and produced ideal results
for 32% of programs and identified strings partially in an-
other 30% of cases. OLSA performed worse and could not
correctly identify strings (either fully or partially) in 68% of
cases. The reason OLSA has incorrect answers is because it
is not field sensitive and ignores constructs involving arrays
and other data structures. In principle OLSA can be extended
to support such features, however experiments in other con-
texts suggested that the increase in runtime performance is
also combined with lower precision. Because the hard-coded
inputs used in the JSA unit tests are not representative of
features in the larger codebases, OLSA was not extended to
support field-sensitivity and data structures.

4 Conclusion
In this paper we have presented our experience in develop-
ing OLSA – a practical string analyser that scales to large
enterprise-level codebases and produces useful results.

The key insight into OLSA is that alias analysis is very ex-
pensive and thus limits scalability and precision. Performing
only intra-procedural data-flow analysis combined with a
limited form of context-sensitive analysis gives us the neces-
sary scalability in the context of bug-finding.
The results of experiments with JSA using our internal

codebase show that OLSA can analyse large software us-
ing security-related configurations in a matter of hours and
yield useful results with almost 80% of strings resolved. Spot
checks indicate that unresolved strings reported by OLSA
can in principle be solved by supporting more features such
as field-sensitivity. The impact of adding field-sensitivity to
scalability is unknown at this stage.
The experimentation comparing precision of OLSA with

JSA over its unit tests shows the trade off between scalability
and precision of the two tools, where JSA correctly identified
more strings. Many of the strings incorrectly reported by
OLSA are due to lack of support of arrays, loop productions,

field sensitivity and aliasing, features that are likely to in-
crease analysis runtime. Such unit tests, however, may not be
representative of real programs. Further experiments with
DaCapo benchmarks show that the precision of the tools
is comparable. JSA, however, was only able to analyse of 3
programs within the allocated time budget.
Overall, we have observed that computing precise string

expressions, often viewed as a desirable outcome for a string
analysis tool, is not always useful. Obtaining precise results
often requires costly analyses that may fail to scale to large
codebases. This is especially the case for specific problems.
For instance, as shown by our experiments, in computing
queries that typically involve constant strings (e.g., static
part of SQL queries), a simpler and faster analysis suffices.

Acknowledgements. We thank Raghavendra Ramesh for
his initial ideas to this work. We also thank the anonymous
referees for their detailed feedback.

References
[1] cloc. https://github.com/AlDanial/cloc, 2008.
[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA, pages 169–190. ACM, 2006.

[3] T. Bultan, F. Yu, M. Alkhalaf, and A. Aydin. String Analysis for Software
Verification and Security. Springer, 2017.

[4] T-H. Choi, O. Lee, H. Kim, and K-G. Doh. A practical string analyzer by
the widening approach. In APLAS, volume LNCS, 4279, pages 374–388.
Springer, 2006.

[5] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis
of string expressions. In SAS, volume LNCS 2694, pages 1–18. Springer,
2003.

[6] M. Christodorescu, N. Kidd, and W-H. Goh. String analysis for x86
binaries. In PASTE, pages 88–95. ACM, September 2005.

[7] C. Cifuentes, N. Keynes, L. Li, N. Hawes, and M. Valdiviezo. Transi-
tioning Parfait into a development tool. S&P, 10(3):16–23, May/June
2012.

[8] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string values.
In ICFEM, volume LNCS, 6991, pages 505–521. Springer, 2011.

[9] C. Gould, Z. Su, and P. T. Devanbu. Static checking of dynamically
generated queries in database applications. In ICSE, pages 645–654.
IEEE, 2004.

[10] W. G. J. Halfond and A. Orso. AMNESIA: analysis and monitoring for
neutralizing SQL-injection attacks. In ASE, pages 174–183. ACM, 2005.

[11] D. Li, Y. Lyu, M. Wan, and W. G. J. Halfond. String analysis for Java
and Android applications. In FSE, pages 661–672. ACM, 2015.

[12] B. Livshits. Stanford SecuriBench. https://suif.stanford.edu/~livshits/
securibench/download.html, 2005.

[13] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In
APLAS, volume LNCS, 3780, pages 139–160. Springer, 2005.

[14] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49–61. ACM, 1995.

[15] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter.
Tricorder: Building a program analysis ecosystem. In ICSE, pages
598–608. IEEE Computer Society, 2015.

[16] A. Steinhauser and F. Gauthier. JSPChecker: Static detection of context-
sensitive cross-site scripting flaws in legacy web applications. In PLAS,
pages 57–68. ACM, 2016.

https://github.com/AlDanial/cloc
https://suif.stanford.edu/~livshits/securibench/download.html
https://suif.stanford.edu/~livshits/securibench/download.html

	Abstract
	1 Motivation
	1.1 High Level Approach

	2 Scalable String Analysis
	2.1 Example
	2.2 OLSA Algorithm

	3 Experimental Results
	3.1 DaCapo
	3.2 Internal Codebases
	3.3 JSA Unit Tests

	4 Conclusion
	References

