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Improving Parallelism in Hardware Transactional Memory
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Hardware transactional memory (HTM) is supported by recent processors from Intel and IBM. HTM is
attractive because it can enhance concurrency while simplifying programming. Today’s HTM systems rely on
existing coherence protocols, which implement a requester-wins strategy. This, in turn, leads to very poor
performance when transactions frequently conflict, causing them to resort to a non-speculative fallback path.
Often, such a path severely limits concurrency.

In this paper, we propose very simple architectural changes to the existing requester-wins HTM implemen-
tations. The idea is to support a special mode of execution in HTM, called power mode, which can be used to
enhance conflict resolution between regular and so-called power transactions. A power transaction can run
concurrently with regular transactions that do not conflict with it. This permits higher levels of concurrency in
cases when a (regular) transaction cannot make progress due to conflicts and would require a non-speculative
fallback path otherwise.

Our idea is backward-compatible with existing HTM systems, imposing no additional cost on transactions
that do not use the power mode. Furthermore, using power transactions requires no changes to target
applications that employ traditional lock synchronization. Using extensive evaluation of micro- and STAMP
benchmarks in a transactional memory simulator and real hardware-based emulation, we show that our
technique significantly improves the performance of the baseline that does not use power mode, and performs
comparably with state-of-the-art related proposals that require more substantial architectural changes.
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1 INTRODUCTION
Hardware transactional memory (HTM) supports a model of concurrent programming where the
programmer specifies which code blocks should be atomic, but not how that atomicity is achieved.
Some form of HTM is currently supported by processors from Intel [18] and IBM [6, 19, 33].
Transactional programming models are attractive because they promise simpler code structure and
better concurrency compared to traditional lock-based synchronization.
An atomic code block is called a transaction. HTM executes transactions speculatively: if an

attempt to execute a transaction commits, that code block appears to have executed instantaneously,
while if it aborts, that code has no effect, and control passes to an abort handler; a condition code
usually indicates why the transaction failed.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
XXXX-XXXX/2017/7-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Dave Dice, Maurice Herlihy, and Alex Kogan

As long as transactions do not conflict on the shared data they access, and as long as pathologies
such as capacity aborts and unsupported instructions are avoided, HTM has been shown to achieve
nearly linear scalability [9, 20, 37]. However, the experience shows that even with a moderate level
of conflicts between hardware transactions, the performance of HTM substantially deteriorates [9,
13, 37]. That is because most existing HTM implementations piggy-back on cache coherence
protocols [17], whichmostly implement a requester-wins policy: if one transaction requests exclusive
access to a cache line held by another, the earlier transaction aborts and restarts. Thus, data
conflicts cause repetitive transactional aborts [29], which in turn force the execution to proceed
through a slower, non-speculative path. This path typically employs locks (e.g., in the very popular
transactional lock elision (TLE) method [12]), and taking this path aborts any concurrent speculative
transactions, even when there is no actual data conflict between the speculative and non-speculative
threads.

This paper’s contribution is to propose enhancing existing requester-wins HTM systems with a
strikingly simple mechanism that allows threads to continue speculating on HTM despite repetitive
aborts. The idea is to elevate the status of a transaction that fails to commit so that any conflict
between this and other, non-elevated transactions can be resolved in the favor of the former.
Thus, the elevated transaction, which we call a power transaction or running in a power mode,
can execute speculatively in parallel with transactions it does not conflict with, while impeding
progress only of transactions that it does conflict with. In a nutshell, in order to support power
mode, each coherence request is augmented with one bit indicating whether the request is coming
from a thread speculating on HTM. The power transaction replies with a negative acknowledgment
(NACK) to coherence requests from other transactions, causing the requester to abort and allowing
the power transaction to proceed. At the same time, regular transactions not conflicting with power
transaction(s) can run in parallel with the latter.

As an example where this additional parallelism may be beneficial, consider a binary search tree
where each tree operation is run in a separate transaction. If two operations try to modify the same
node in the tree, they might repeatedly conflict and abort each other. Once one of those transactions
decides to abandon speculation and execute under lock, it will cause all other transactions, including
those that access a completely different set of nodes in the tree, to wait for its completion. With
our proposal, however, that transaction will switch into the power mode, and thus stop the other
operation on the same node from aborting it again; all other operations working on different nodes
would be able to seamlessly continue their speculation. As described later in the paper, a simple
software or hardware mechanism can be put in place to ensure that only one transaction enters the
power mode at a time. Such a mechanism is required for performance only, not correctness; that is,
multiple power transactions can coexist in the same system as long as they do not conflict, and
abort each other if they do.

We note that power transactions are “backward-compatible” with existing HTM systems in the
sense that allowing hardware transactions the ability to escalate to power mode will not break
existing code. Moreover, support for power transactions imposes no additional cost on transactions
that do not use the power mode. Furthermore, power transactions can be employed without
modifying target applications, e.g., in any case where TLE is applicable. In fact, when the entry to
the power mode is controlled by hardware, the existence of the power mode can be completely
hidden from the programmer.
We used two approaches to evaluate the utility of power transactions. First, exploiting the

recent support for compiling transactional programs in GCC [15], we emulated hardware power
transactions in software running on top of a real HTM implementation (namely, Intel Haswell
TSX). We conducted experiments to compare the relative performance of a number of micro-
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Improving Parallelism in Hardware Transactional Memory 1:3

and STAMP [24] benchmarks with and without power transactions. (As described below, our
software emulation is conservative, in the sense that it tends to understate the advantage of power
mode.) With one exception, every benchmark tested yielded improved performance under power
mode. These experiments imply that the standard dual-path code structure, in which any non-
speculative transaction automatically aborts all speculative transactions, fails to exploit substantial
opportunities for concurrent execution. We stress that the potential benefit of the power mode is in
unleashing the parallelism in workloads where some transactions conflict with each other, allowing
those transactions that do not conflict to keep running. In particular, the power mode is not useful
when all transactions conflict, nor when none of them conflict. The fact that this parallelism exists
in various workloads is not trivial, but our performance evaluation clearly demonstrate that it does.

Second, we added the power mode support to SuperTrans [30], a transactional memory simulator
built from SESC [32], that was recently enhanced to more accurately simulate best-effort HTM
similar to Intel TSX [29]. Using SuperTrans, we compared the utility of power mode to two variants
of PleaseTM [29], a recent related proposal for improving parallelism in HTM, as well as to the
baseline implementation that does not use power mode. Using STAMP benchmarks [24], we
show that power mode not only provides non-trivial speedup above the baseline implementation
(confirming our emulation-based study), but also performs similarly to (but slightly better than)
both variants of PleaseTM despite requiring less architectural changes.

2 RELATEDWORK
In Intel Haswell [18] and its successors, as well as in IBM Power 8 [6], hardware transactions
are best-effort: no transaction is guaranteed to commit. Transactions may abort because of data
conflicts, cache overflow, or cache associativity issues. Transactions must not execute certain
instructions, such as I/O instructions and system calls.
In these systems, progress is usually guaranteed by combining HTM with some form of lock-

ing. Perhaps the simplest and most widely-used such technique is the transactional lock elision
(TLE) [12], where the critical section associated with a lock is first attempted speculatively, transac-
tionally reading but not writing the lock state. TLE is attractive, because it can be enabled, without
any changes to the target application, at the level of a library providing lock implementations while
preserving the semantics provided by the lock based synchronization [9, 12]. If the speculative lock
elision fails (typically, after a few retries), the thread acquires the lock and re-executes the critical
section non-speculatively. TLE provides the same progress guarantees as regular locking, but it has
a non-trivial cost: once the lock has been acquired, all concurrent speculative transactions will fail
and wait until the lock is released, even if there are no actual data conflicts. As a result, numerous
papers show that TLE is very effective when most transactions succeed, but its benefit fades once
the lock is acquired often [9, 13, 37]. In order to keep our usage examples of power transactions
concrete, we focus on the use of locks as the alternative path, effectively enhancing the standard
TLE technique [12]. We note, though, that power mode is equally helpful in reducing the use of any
fallback path, such as the one implemented using software transactional memory (STM) [7, 23],
lock-free techniques [21], etc.

The use of a special execution mode for (software or hardware) transactions has been previously
explored in related contexts. Blundell et al., for instance, design a system called OneTM that supports
unbounded hardware transactions [3]. One of the variants of OneTM, called OneTM-Concurrent,
supports concurrent execution of non-overflown transactions and non-transactional code with one
overflown transaction. In order to support this mode of execution, OneTM-Concurrent requires,
among other architectural changes, additional metadata storage and management in memory
controllers as well as an additional architectured register, saved and restored on every context

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: July 2017.
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switch. Power mode, being designed to enhance existing (bounded) HTM implementations, does
not require any of those complications.

In the context of software transactional memory, Ni et al. [28] describe an STM runtime library
that supports multiple modes of executions. One of the modes, called obstinate, is a software
equivalent of power transactions. Citing from [28], "a transaction running in obstinate mode always
wins all conflicts with other transactions – regular transactions are allowed to run concurrently
with the obstinate one, but the obstinate transaction has the highest conflict resolution priority
of all transactions in the system“. As expected from any STM system, however, the control over
execution modes and conflict resolution between transactions in [28] is done entirely in software,
in a dedicated contention manager module of the system.

Since the introduction of theHTMdesign byHerlihy andMoss [17], numerous attempts have been
made to improve and extend it (e.g., [1, 22, 25, 26, 31, 36] to give just a very few examples). The scope
of this paper precludes elaborating on all these efforts. We note, however, that, broadly speaking,
the architectural changes required by most of them go far and beyond the ones needed to support
the power mode. Furthermore, the prime goal they pursue (e.g., supporting hardware transactions
with unbounded capacity [1, 22, 25, 36], running transactions across context switches [31, 36],
supporting nested transactions [26, 36], etc.) is typically different from the one considered in this
paper.
Perhaps the most relevant prior work to this paper is the recent publication by Park et al. on a

PleaseTM mechanism for requester-wins HTM systems [29]. In PleaseTM, hardware transactions
insert plea bit (or bits) into their responses to coherence requests. These plea bits are considered
by the requester and allow supporting alternative conflict resolution schemes. For instance, a
requester running a hardware transaction and receiving a response with the plea bit set may abort
its transaction, effectively achieving a responder-wins conflict resolution strategy for hardware
transactions. By keeping track of the number of transactionally read cache lines and encoding
this information in a number of plea bits, PleaseTM allows a scheme where a transaction with
more lines read wins a conflict. While requiring several architectural changes, PleaseTM does not
modify the cache coherence protocol itself, meaning that a pleading transaction releases a cache
line upon receiving a coherence request. Consequently, in order to ensure atomicity, the pleading
transaction needs to re-request the cache line and validate the line data when the line is re-acquired.
As a result, even when a requesting transaction decides to abort (i.e., accept the plea), it slows
down the responding transaction, and would do that over and over again with every retry. This
mechanism also puts pressure at the coherence bus, especially when the requesting transaction
runs on a different socket. In opposite to PleaseTM, power mode allows resolution of conflicts at
the time the request is received, without slowing down the responding transaction and without
increasing coherence traffic. Furthermore, transactions in PleaseTM can still repeatedly abort each
other as long as they respond with pleading bits to each other’s requests. At the same time, power
mode provides more definitive control with respect to which transaction would receive priority
over others.
In another relevant paper, Armejach et al. consider a few hardware and hybrid (software and

hardware) techniques to improve performance of requester-wins HTM [2]. Perhaps the most
relevant technique to our work is the one called DRW (delayed requester-wins). The idea behind
DRW is to allow the exclusive owner of a cache line to delay response to conflicting requests, thus
increasing the chance for its transaction to complete. Delayed conflicting requests are queued at
the exclusive owners caches and are considered when the transaction ends (by commit or abort).
To avoid deadlocks, DRW associates timeouts with buffered requests and conservatively handles
a request when its timer expires. The requirement to manage the buffers of incoming conflicting
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Improving Parallelism in Hardware Transactional Memory 1:5

requests and their associated timers call for hardware changes that are much more elaborated than
supporting power transactions.

3 POWER TRANSACTIONS
We first describe the common mechanism required to support power transactions regardless of how
transactions enter the power mode. Next, we discuss the details of supporting a software-controlled
entry into the power mode, followed by details on a hardware-controlled entry. We note that those
two entry methods are complementary, i.e., we envision that some architectures may provide both
methods, alike the support for HLE and RTM in Intel TSX [18]. Note that exiting power mode
does not require any special treatment, i.e., power transactions commit or abort exactly as regular
transactions. Finally, we discuss variations of our design along with their impact on the properties
of power transactions.

3.1 Common Mechanism
Supporting the power mode requires each hardware thread to maintain a distinctive speculation
status that can be encoded in one bit of a thread state. That is, in addition to the status indicating
that a given hardware thread is speculating on HTM, we need to store a bit of information (that
we call the power-mode bit), which, when set, indicates that the speculating thread is running in
power mode. This bit will be set when a hardware thread starts a new power transaction (via one
of the mechanisms described in the subsequent sections) and reset when the thread completes that
transaction (either through commit or abort).

In addition, we require to add a speculation status bit as a simple payload to coherence request
messages. This bit indicates whether the request is coming from a thread speculating on HTM
(either in power or regular modes). It is ignored by the coherence hardware and is simply passed to
cache controllers, which in turn can take it into consideration when preparing the corresponding
coherence response.
Cache controllers are modified so that when the following three conditions hold, they respond

with a special NACK message: (1) the speculation bit in the incoming request is set, (2) the power-
mode bit of the target thread is set, and (3) the request is to invalidate or downgrade transactionally-
held data. If any of those conditions does not hold, the cache controller logic remains unchanged.
We note that in order to support (regular, non-power-mode) HTM, the cache controller already
implements logic to consider the speculation state of the target as well as whether the request is to
invalidate or downgrade transactionally-held data (so that the hardware transaction run by the
target thread can be aborted). Thus, the additional complexity of considering the speculation bit in
the request payload is trivial.

Another modification in the cache controller is related to the treatment of the NACK coherence
response message. Specifically, when the NACK is received and the receiving thread is speculating
on HTM (either in power or regular modes), the current transaction is aborted; a special abort code
may be used to specify that the abort occurred due to a data conflict with a power transaction.
Otherwise, the NACK response is ignored. This can happen only if the hardware transaction
that issued the coherence request, which resulted in the NACK response, has been aborted while
awaiting that response. Figure 1 illustrates possible interactions between a thread running a power
transaction (P), a thread running another (regular or power) transaction (R), and a thread running
non-transactional code (N).
The only modification to the cache coherence protocol is supporting a special NACK response

message (if it does not already support one). We note that numerous previous papers on computer
architecture considered adding a NACK message (e.g., [4, 22, 25, 36]). As opposite to most of that
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(a) R conflicting with P (b) R not conflicting with P (c) N conflicting with P

Fig. 1. Interactions between a thread running a power transaction (P) and another thread running a (regular
or power) transaction (R) or non-transactional code (N).

Fig. 2. Architectural changes required to support power transactions.

work, however, the very limited use of NACKs in our case does not result in any additional changes
in the coherence protocol, such as managing timestamps and adding deadlock-avoidance logic, or
in coherence messages, such as including timestamps in every coherence request message.

The required changes in an HTM architecture are summarized in Figure 2 with new or modified
components shown in grey. We believe that all the proposed changes are simple, if not trivial.
It is hard to compare in a quantitive way the amount of hardware changes required by various
proposals to existing architectures, especially given that those proposals often modify different
components of the architectures. Yet, adding support for power mode stands out for its simplicity,
and is substantially less intrusive when compared to any related proposal known to us as described
in Section 2. This makes supporting power mode more feasible in real systems.
Note that the common mechanism as described so far does not limit or control the number

of power transactions that can coexist in the system. Such control is provided through entry
mechanisms described in the subsequent sections.

3.2 Software-Controlled Entry
In order to allow software to control which transaction(s) would run in a power mode, one new
instruction should be added to the instruction set architecture (ISA). This instruction should be
virtually identical to the one used to begin a (regular) hardware transaction, but use a different
opcode, which would instruct the core executing it to set the power-mode bit of the corresponding
hardware thread. As mentioned above, there is no need to add a new instruction(s) for completing
the power mode transaction.
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With the software-controlled entry to power mode, it is the responsibility of the programmer to
ensure (or not) that only one transaction switches into the power mode at a time. As a common
case, at most one transaction accessing shared data would run in the power mode. However, we
stress that this is merely a performance consideration rather than correctness. In fact, as we discuss
in Section 3.4, there are cases (e.g., performance debugging) in which having multiple transactions
in power mode is desirable.
Following is one particular approach for ensuring that there is at most one transaction in the

power mode. This approach is integrated with a common implementation of the TLE mecha-
nism [12], and assumes that the target application uses locks to synchronize access to shared data
inside critical sections. As mentioned in Section 2, TLE can be enabled without any changes to the
target application, e.g., by interposing the library providing the lock implementation. The power
mode preserves this property – using a TLE mechanism with power transactions, such as the one
described below, does not require modifying target applications as well.
In the TLE mechanism enhanced to exploit power transactions, the entry into power mode is

protected by a lock. For simplicity, we use a spin lock, but other locks are possible (e.g., a queue lock
for fairness). Figure 3 shows pseudo-code for such an enhanced TLE mechanism. Here, a transaction
elevates into the power mode if it repeatedly fails to commit. The atomic compare-and-swap (CAS)
instruction (Line 24) ensures that only the thread that sets the powerFlag flag to its thread ID will
enter the power mode. We note that using thread IDs can be avoided, e.g., by using a thread-local
flag that tells the current thread whether it is the one that entered the power mode. Notice that
the code does not access the powerFlag flag inside a hardware transaction. Thus, starting (and
committing) a power transaction does not abort regular transactions.

When using power mode, regular transactions may be subject to the lemming effect [11] arising
when one transaction enters power mode and forces the rest to follow; this effect exists with
(regular) transactions in standard TLE as well [11]. One way to mitigate the lemming effect is to
give less (or even zero) weight for retries happening while the powerFlag flag is set. That is, if
an attempt to use a regular transaction fails and powerFlag is set, we discount this attempt by
decrementing the ntrials counter (Line 16). We note that the pseudo-code in Figure 3 also includes
a standard anti-lemming optimization in TLE, in which a transaction is retried only when the lock
becomes available (Line 28) [20].

3.3 Hardware-Controlled Entry
Along with (or instead of) a software-controlled entry into power mode, the HTM engine itself may
control when a regular transaction switches into the power mode. In this case, no ISA extensions
are required. In fact, the availability of power mode for hardware transactions may be completely
hidden from the programmer in this case.

A simple hardware-based scheme can be put in place to ensure that there is only one power trans-
action at a time, either system-wide or for each process. There are many ways to implement such
functionality, which requires the ability to arbitrate concurrent requests from multiple hardware
threads. One option, similar to the proposal made in [3], is to add a shared (between all hardware
threads) transaction status word, which resides in a fixed location in the virtual address space
of each process. This word acts as a mutex lock, i.e., the thread enters the power mode only if it
atomically sets the value of the word and exits that mode when it atomically resets it. Unlike the
proposal in [3], however, regular transactions do not need to monitor this word and perform any
special logic for conflict detection when it is set.
Considering the HLE mechanism in Intel TSX [18] as an example, when the hardware thread

encounters a lock instruction with the opcode prefix that allows speculation, it may start speculation
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initially : ( global ) lock = 0;
( global ) powerFlag = −1;
(thread local ) tID = unique thread ID;

Lock procedure:

1 ntrials = 0;
2 while (true) {
3 // start a regular or power transaction according to the value of ' powerFlag '
4 if (( powerFlag != tID && begin_htm()) ||
5 (powerFlag == tID && begin_power_htm())) {
6 if (isLocked(&lock )) self−abort ();
7 return;
8 }
9 if (! self−aborted) {
10 if (powerFlag == tID) {
11 // exit the power mode and fall to the lock
12 powerFlag = −1;
13 break;
14 } else if (powerFlag != −1) {
15 // avoid the lemming effect
16 ntrials −−;
17 }
18 // increase the counter for the number
19 // of non−power mode trials
20 if (++ ntrials >= MAX_TLE_TRIALS) {
21 // if we exhausted the number of non−power mode trials , check if the ' powerFlag ' flag is
22 // available and try to set it .
23 // Note: for TLE we would simply break here and fall to the lock
24 if (powerFlag == −1) CAS(&powerFlag, −1, tID);
25 }
26 }
27 // wait for the lock to become available
28 while (isLocked(&lock )) { pause; }
29 }
30 // we failed to commit a transaction , grab the lock
31 Lock(&lock);

Unlock procedure:

1 if (! isLocked(&lock )) {
2 commit_htm();
3 if (powerFlag == tID) powerFlag = −1;
4 } else {
5 Unlock(&lock);
6 }

Fig. 3. TLE using power transactions

using a regular transaction. If aborted, it may try to atomically set the transaction status word, and
if succeeded, it shall set its power-mode bit, and run a power transaction. Upon completion (either
abort and commit), it shall reset the power-mode bit and the shared transaction status word. If the
thread fails to set the transaction status word, which means that another power transaction is in
progress, it may retry with a regular transaction or, if the preset retry policy instructs so, execute
the lock instruction non-speculatively.
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3.4 Variations
There are a few interesting extensions for the common mechanism discussed in Section 3.1. First,
we may omit including the speculation status bit in the coherence request messages. A power
transaction then will send NACKs in response to all invalidation and downgrading requests, not just
requests from transactions. A transactional thread (regular or power) that receives a NACK simply
aborts, and a non-transactional thread backs off (pauses) and resends its request. This approach has
some advantages: it alleviates the need to introduce a new bit into coherence messages’ payload,
and it protects power transactions against conflicts with non-transactional threads (but not with
other power transactions). The principal disadvantage is that care must be taken to avoid denial-
of-service vulnerabilities, perhaps by limiting the duration during which a power transaction can
refuse invalidations or by throttling (at the hardware level) the rate at which transactions can
enter the power mode. Furthermore, the need to introduce a back-off mechanism into the cache
controller logic may complicate the support for power mode.
Second, the power mode support could be easily generalized to encompass multiple levels of

power transactions. Instead of a single power-mode bit, each hardware thread state may include
a power-mode counter indicating the level at which the thread is running a power transaction.
The payload of cache coherence messages is respectively enhanced to include this counter. Higher-
priority transactions refuse invalidation and downgrading requests from lower-priority transactions,
effectively providing a kind of transactional priority system, which may be a start toward adapting
transactional programming to reactive systems [35]. It is straightforward to enhance both software
and hardware-controlled entry mechanisms discussed above to climb through the levels of power
mode before resorting to a non-speculative execution. It should be noted that in the software-
controlled entry, a new ISA instruction for starting a power mode transaction should include a
level argument. Along with that, no further changes are required for the hardware-controlled entry
beyond increasing the number of transaction status words to match the number of power mode
levels (as long as the maximum power mode level can be stored in a transaction status word that
can be updated atomically).
As mentioned in Section 3.1, when a transaction receives a NACK and aborts, it may specify a

special abort code providing indication to the programmer of a conflict with a power transaction.
Taking this a step further, we may use a different abort code to indicate that the recipient of the
NACKwas running in the powermode as well. This abort code provides away to detect undesired data
sharing between transactions. A transactional undesired data sharing occurs when two transactions
that are believed to have disjoint data sets actually have a data conflict. Such hidden conflicts can
result from false sharing, from hidden data accessed by library calls, or from performance counters
and related structures. Such conflicts can cause transactions to abort more often than expected,
adversely affecting system performance. To test whether two transactions have disjoint data sets,
run them concurrently in power mode, and if one aborts with the power-mode conflict abort code,
then the transactions’ data sets are not disjoint, and there is a possibly unexpected data sharing.
Note that the special abort code would allow detection and, potentially, a repair of both true and
false sharing issues, facilitating recent work that employs hardware performance counters for that
purpose [14]. Exploring this potential benefit of supporting the power mode is left as future work.

4 EMULATION-BASED EVALUATION
We have evaluated the utility of power mode with two complementary approaches. In this section
we describe our attempt to emulate power mode transactions in software (i.e., running themwithout
HTM), while regular transactions run on top of HTM. This approach is inspired by work on hybrid
transactional memory systems [8], and in particular, by the implementation of refined TLE [9].
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We note that this is not our intent to compare power transactions to hybrid TMs (which use a
software-only code path), but rather to evaluate if and how the existence of power mode support
can increase the parallelism of hardware transactions and ultimately improve performance of
the existing HTM implementations. Our second evaluation approach is based on a transactional
memory simulator, and is described in Section 5.

4.1 Framework
4.1.1 High-Level Idea. Our experience shows that the time required for a successful execution of

an atomic block using a hardware transaction is comparable to running that block in software1. This
is also echoed by results of single-thread performance in various papers [9, 27, 37]. We leverage this
fact to emulate power mode transactions in software, while using an actual HTM implementation
(Intel Haswell, in our case) to execute regular transactions.

In order to mimic the behavior of a hardware power-mode implementation and resolve data
conflicts between power and regular transactions in favor of the former, we utilize software “met-
alocks”. These metalocks are implemented with the use of ownership records, or orecs, commonly
used in the design of software and hybrid transactional memory systems [8, 16]. We instrument all
memory accesses in transactions to read and update ownership records as appropriate, leveraging
a recently introduced compiler support for a completely automatic instrumentation process. Thus,
both power and regular transactions run on the instrumented path. A power transaction acquires
ownership on memory words it accesses by writing into ownership records. Regular transactions
check (by reading ownership records) that their memory accesses are not conflicted with those
made by the concurrent power mode transaction, if such exists. The ownership records are designed
in a way that regular transactions are aborted only when an actual conflict exists (as they should).
In particular, a regular transaction is not aborted when it reads the same data as a power transaction
does. Furthermore, a simple mechanism is put in place to clear all ownership records at once
when the power mode transaction is completed, either by abort or commit (details are provided in
Appendix A).

Our framework effectively adds the power mode to an existing HTM implementation, leveraging
all of its properties for running and managing (regular) hardware transactions. In the emulated
system, all instructions but loads and stores have absolutely the same latency as provided by the
native platform. Load and store instructions are slowed down due to the use of instrumentation.
We note that both power and regular transactions are slowed down, so the relative performance of
these transaction types using the software metalocks is a way to estimate their relative performance
in a hardware implementation. Indeed, because power transactions, unlike regular transactions,
might be required to write each time they read (to acquire corresponding metalocks), our estimation
is conservative, favoring the relative performance of regular transactions. Despite the impacts
of instrumentation, which depend on the number of loads and stores in a critical section [9], we
believe that the ability to exploit an actual HTM implementation as well as the ability to use
arbitrary benchmarks make our framework an interesting tool able to provide important insights
on performance of power mode. In the following subsection, we expand on implementation aspects
of our framework.

4.1.2 Implementation Details. The GCC compiler [15] (starting from version 4.8) provides the
libitm interface for transactional programs. The compiler translates critical sections implemented

1 This is true at least as long as transactions are not tiny, so the overhead of starting and committing a hardware transaction
is negligible.
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as atomic transactions into two distinct code paths: instrumented and uninstrumented. The instru-
mented code path includes calls to instrumentation barriers, functions invoked on each transactional
memory access. The libitm library provides instrumentation barriers for a few standard synchro-
nization mechanisms, such as TLE, STM, or lock synchronization, as well as the opportunity to
provide customized instrumentation barriers and functions to be called when transactions commit
or abort. For our framework, however, we used our own custom implementation of the libitm
interface to reduce instrumentation overheads2.

We associate two metalocks with each cache line accessed by a transaction, one for read access
and another for write access. A power transaction (run without HTM) acquires metalocks for the
cache lines it accesses, according to the access mode desired (read or write) by writing a value into
the corresponding metalock. A regular transaction (run with HTM) reads the metalocks associated
with the cache lines it accesses, and aborts if it finds a metalock held in a conflicting mode. If
the metalock does not conflict, the transaction proceeds to access the intended data. This scheme
emulates power mode semantics, ensuring that any conflicting (and only conflicting) request by a
regular transaction for data accessed by a power mode transaction is refused, causing that regular
transaction to abort.

The instrumentation increases every transaction’s data footprint, doubling the number of accessed
cache lines. However, regular transactions access the additional (metalock) cache lines only for
reading, which does not stress Haswell HTM, whose read set capacity is relatively large [27].
Although power transactions access metalocks for writing, they do not use HTM and thus are not
limited by its write capacity.
Power transactions sustain conflicts with regular transactions, but they can abort for other

reason, and in particular, due to capacity limitations. A direct way to emulate capacity aborts for
a power transaction is to detect when a capacity limit is reached, roll back that transaction, and
restart it using locks. This direct approach, however, requires logging each transaction’s write set
and reverting its memory updates on abort, further increasing instrumentation overhead. Instead,
we opted for the following less intrusive emulation. First, each power mode transaction takes a
timestamp when it begins its execution. Second, we track the number of cache lines accessed by a
power mode transaction. Once this number goes beyond a preset limit, we calculate the time period
δ elapsed since the transaction started, switch to the locking mode, and spin for another time period
δ , effectively charging twice for the transaction so far. Once a power mode transaction switches
to the locking mode (simply by setting a Boolean flag), all regular transactions are aborted (as in
standard TLE) and wait for the lock to become available again. By spinning after lock acquisition (for
the time period δ ), we “charge” for the time required to re-execute the same atomic block without
actually rolling back the changes made by the power mode transaction and without reapplying
them under lock. A reader interested in further implementation details, including the metalock
structure and the pseudocode of instrumentation barriers, is referred to Appendix A.

Our experiments were run on an Intel Haswell (Core i7-4770) 4-core hyper-threaded machine (8
hardware threads in total). Before starting measurements, all threads were set to spin for a few
seconds to allow the system to warm up. Our goal was to compare standard TLE [12] with one
that makes use of power transactions (henceforth PowerTLE). The pseudo-code for PowerTLE is
provided in Figure 3. To evaluate the benefit of the additional concurrency provided by power
mode, and to reduce the impact of other unrelated factors, such as the cost of instrumentation or
transactions’ increased memory footprints, we used exactly the same instrumentation barriers for

2The library implementing the libitm interface in GCC is dynamically linked to an executable, resulting in an expensive
function call for every memory access on the instrumented path. Our custom implementation of the libitm interface
supports static linkage with the target executable.
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TLE as well. We emphasize that the prime difference between TLE and PowerTLE in our framework
is the ability of the latter to use a power transaction that runs concurrently with regular transactions
as long as those two kinds of transactions do not actually conflict on shared data.

Each critical section was attempted ten times using regular transactions before reverting to lock
(in TLE) or power mode (in PowerTLE). As demonstrated in Figure 3, a power mode transaction is
tried only once (or more, in case of self-abort indicating that the lock is taken). We note, however,
that other, more sophisticated retry policies that use power mode can be put into place. Although
finding an optimal lock elision retry policy is an interesting question by itself [10, 13], it falls out of
scope of this paper.

4.2 Skip List-based PriorityQueues
Figure 4 shows throughput results of a priority queue microbenchmark that uses a standard
skip list implementation as an underlying data structure. The results shown are the average of
ten runs performed in the same configuration. The breakdown of operations between different
modes of executions, e.g., regular transactions, power transactions, etc., is presented in Figure 5.
For PowerTLE, we report separately regular transactions completed without any power mode
transaction running concurrently with them (denoted as NonC TXs) and those completed while
some power mode transaction was running (denoted as C TXs).

For the experiment reported in Figure 4 (a), the queue is initialized with 100K elements, and all
threads run a total number of 100K RemoveMin operations, divided equally among the participating
threads. We measure the time from the start till the last thread is done with its operations, and
calculate throughput by dividing the total number of performed operations (100K) by this time.
In this particular workload, all threads compete with each other over the minimal element in the
queue. Not surprisingly, except for two threads, power mode does not increase throughput, since
a power mode transaction conflicts with every other regular transaction and thus aborts them.
This is echoed by results in Figure 5 (a) showing that only very few regular transactions manage
to complete, while the majority of operations is executed using a lock (in TLE) or power mode
transactions (in PowerTLE). The case of two threads is slightly different, and shows that substantial
portion of regular transactions completes concurrently with a power-mode transaction. Indeed,
this is the only point where PowerTLE beats TLE by a large gap (cf. Figure 4 (a)). We believe this
happens because a regular transaction (running a very short RemoveMin operation) manages to
“sneak in” without any contention while another thread transitions into power mode and before the
actual data conflict occurs. In TLE, all transactions are aborted at the moment the lock is acquired,
and thus transactions do not have enough time to complete when another thread switches to lock.
When we increase the number of threads, this benefit of PowerTLE fades as regular transactions
conflict with each other.

In the experiment reported in Figure 4 (b), the queue is initialized with 100K elements, and each
thread runs loop iterations for 5 seconds, where in each iteration it chooses randomly to remove
a minimal element or insert a random element into the queue. Here the increased concurrency
provided by power mode starts to take effect as the number of threads increases. This is because
when a thread runs, e.g., an Insert operation in power mode, other threads can proceed concurrently
to apply their non-conflicting operations. As a result, at 8 threads, PowerTLE achieves almost 2x
more throughput than TLE. Figure 5 (b) shows that, indeed, some portion of regular transactions
manages to complete concurrently with a power transaction, and this portion grows with the
number of threads. Interestingly, the portion of regular transactions completing non-concurrently
with a power transaction is also larger for PowerTLE than the portion of transactions in TLE. We
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Fig. 4. Skip list-based priority queue throughput. Higher is better.
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Fig. 5. Breakdown of execution modes for operations in skip list-based priority queue benchmark. “C TXs”
(“NonC TXs”) stand for transactions executed concurrently (non concurrently, respectively) with a power
transaction.

attribute that to the decreased lemming effect [11] that power transactions have comparing to lock,
as the former do not abort all transactions but only those conflicting with them.

The benefit of PowerTLE over TLE increases even further whenwe consider only Insert operations
that are less likely to conflict with each other compared to RemoveMin operations. Figure 4 (c)
shows the results of the experiment where the queue is initially empty and all threads perform a
total number of 100K insert operations, divided equally among threads. At 8 threads, PowerTLE
achieves more than 2x throughput of TLE. When the number of threads grows, the improved
concurrency of PowerTLE becomes evident with the increase in the portion of regular transactions
executed while a power mode transaction was running (cf. Figure 5 (c)).

4.3 AVL Tree-based Sets
In this section, we discuss results of a set microbenchmark implemented on top of AVL trees. The
AVL tree implementation is similar to the one found in OpenSolaris OS. In all experiments, each
thread runs iterations for 5 seconds, and in each iteration it chooses an operation and a key. The
operations are randomly selected from a given workload distribution, while the key is randomly
selected from a given range from 0 to 511. The set is initialized to contain half of the given key
range (256 keys).
Figure 6 (a) shows results for the read only workload where all threads perform only Find

operations. Here, the vast majority of operations succeed without any retries, and thus power
mode is not used. Thus, both TLE and PowerTLE yield identical performance. The breakdown of
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Fig. 6. AVL tree-based set throughput. Higher is better.
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Fig. 7. Breakdown of execution modes for operations in AVL tree-based set benchmark.

execution modes shows that, indeed, virtually all operations succeed using regular transactions
(cf. Figure 7 (a)). This is not surprising, as the operations do not conflict with each other.

The workloads in Figure 6 (b) and (c) include update operations. Specifically, in the former
threads perform 60% Find operations, while in the latter threads perform 20% Find operations; the
rest is divided equally between Insert and Remove. Here, as the number of threads grows, some
transactions fall back to the lock (in TLE) as they experience conflicts on data they access. As
a result, the benefit of increased concurrency provided by PowerTLE becomes more significant
as the number of threads and/or the portion of update operations increases. The breakdown of
execution modes for these workloads (Figures 7 (b) and (c), respectively) confirms that as the
number of threads increases, more regular transactions manage to complete concurrently with a
power transaction in PowerTLE, rather than falling to the lock as they would with TLE.

4.4 STAMP
This section presents results measured with the STAMP benchmarking suite [24], which is used
extensively in transactional memory research3. For each benchmark, we used a standard (’native’)
set of command line parameters. Figure 8 shows running time reported by each benchmark,
averaged over ten runs. We omit the results for one of the STAMP benchmarks (namely, bayes) due
to extremely high variance (which was also observed by others [29, 37]).

3 We used a version of STAMP available at https://github.com/mfs409/stamp.

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://github.com/mfs409/stamp


687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Improving Parallelism in Hardware Transactional Memory 1:15

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(a) genome

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(b) intruder

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(c) kmeans (high contention)

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(d) kmeans (low contention)

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(e) labyrinth

 6

 7

 8

 9

 10

 11

 12

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(f) ssca2

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(g) vacation (high contention)

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(h) vacation (low contention)

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

1 2 3 4 6 8

T
im

e
 (

s
e
c
)

# threads

TLE
PowerTLE

(i) yada

Fig. 8. STAMP running time measurements. Lower is better.

The results in Figure 8 show that power mode can be very helpful in certain cases, while it is
harmful in one particular case. Specifically, in five cases (genome, intruder, kmeans-high, vacation-
high and vacation-low), PowerTLE beats TLE by substantial margin, while it harms the performance
of yada. Notably, in all three cases where PowerTLE performs on par with or only slightly improves
over TLE (kmeans-low, labyrinth and ssca2), the TLE variant exhibits scalability up to 8 threads,
thus limiting the benefits of power mode.
The breakdown of execution modes for critical sections of various STAMP benchmarks is

presented in Figure 9, and sheds some light on the performance of PowerTLE compared to TLE.
First, just like in the case of microbenchmarks reported in Sections 4.2 and 4.3, power mode appears
to be helpful when substantial amount of transactions fail to lock (in TLE) and these transactions
manage to commit using power mode. This happens in all five cases where PowerTLE beats TLE.

Second, in two of the three cases where PowerTLE and TLE perform almost the same (kmeans-
low and ssca2), the vast majority of critical sections execute using regular transactions only. In fact,
the only place where PowerTLE improves slightly over TLE in kmeans-low is when a small fraction
of critical sections fail to the lock (in TLE) or revert to power mode (in PowerTLE) as the number
of threads grows. Along with that, the case of labyrinth shows a different picture (cf. Figure 9(e)).
Despite almost half of critical sections being executed using locks (in TLE), only a small portion of
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(b) intruder

0%

20%

40%

60%

80%

100%

1 2 3 4 6 8 1 2 3 4 6 8

P
e
rc

e
n
t 
o
f 
e
x
e
c
u
ti
o
n
s

# threads

NonC TXs

C TXs

Power TXs

Lock

TXs

Lock

TLEPowerTLE

(c) kmeans (high contention)
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(e) labyrinth
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Fig. 9. Breakdown of execution modes for critical sections in STAMP benchmarks.

them is executed using power mode transactions (in PowerTLE), suggesting that the majority of
those transactions fail due to capacity reasons. These results suggest that most of the time in this
particular benchmark is spent outside of critical sections, explaining why despite the overhead of
failed power mode transactions, PowerTLE achieves essentially the same results as TLE for this
benchmark.
Finally, while yada shows a similar pattern to labyrinth (i.e., executions fail to commit using

power mode transactions and therefore switch to lock), its running time is more sensitive to the
performance of its critical sections. Here, the cost of failed power mode transactions is detrimental
to the performance of PowerTLE. This benchmark shows that power transactions, like any kind of
speculative execution, are effective only when speculation is mostly successful. We note, though,
that a relatively straightforward optimization in PowerTLE that might eliminate performance
degradation in yada, is to avoid using the power mode if a regular transaction fails due to capacity.
This optimization should be used with care, as at times transactions that fail due to capacity do
manage to commit if retried [5]. Exploring the impact of this optimization is in our future work.

5 SIMULATOR-BASED EVALUATION
In addition to the framework discussed above, we added support for power mode into Super-
Trans [30], a transactional memory simulator built on top of SESC [32]. As reported in [29],
SuperTrans was enhanced with a best-effort HTM support similar to Intel TSX.
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Benchmark Baseline MoreReadsWins ResponderWins PowerTLE
genome 1.000 0.912 0.859 0.928
intruder 1.000 0.847 1.180 1.100
kmeans (low) 1.000 0.999 0.999 1.003
kmeans (high) 1.000 0.527 0.527 0.667
labyrinth 1.000 0.950 1.126 0.782
ssca2 1.000 1.002 1.003 1.014
vacation (low) 1.000 0.994 1.011 1.047
vacation (high) 1.000 0.948 0.971 1.035
yada 1.000 0.952 0.978 0.521
mean 1.000 0.903 0.962 0.900
Table 1. Relative performance of STAMP (lower is better).

Benchmark Baseline MoreReadsWins ResponderWins PowerTLE
genome 1.3 1.1 0.9 0.0
intruder 15.2 9.3 20.3 0.1
kmeans (low) 0.0 0.0 0.0 0.0
kmeans (high) 5.6 0.0 0.0 0.0
labyrinth 25.4 26.3 26.8 0.0
ssca2 0.0 0.0 0.0 0.0
vacation (low) 0.0 0.0 0.0 0.0
vacation (high) 0.4 0.1 0.3 0.0
yada 28.1 17.1 16.8 0.0

Table 2. Percent of transactions that fall to the lock.

In our evaluation, we use the default configuration file provided with the simulator, with minor
configuration modifications for more realistic cache structure4. Specifically, we model a CMP
machine with 64 cores connected through a 8 by 8 mesh network. Each core has private 8-way
associative 64KB L1 instruction and data caches, a private 16-way associative 256KB L2 cache and a
shared L3 cache with 8MB capacity. The L1 caches have hit latency of 3 cycles, the L2 caches have
hit latency of 18 cycles, and the L3 cache has hit latency of 34 cycles.
We simulate a system with 16 threads running STAMP [24] with recommended inputs for

a simulator environment. Note that these input sets are different from the native ones used in
Section 4.4, as they are intended to produce shorter workloads that can be simulated in a reasonable
time. Thus, some benchmarks might exhibit different contention patterns.

We modify the existing TLE implementation to use power transactions following the pseudocode
in Figure 3. In line with the previous section, we refer to this modified implementation as PowerTLE.
We compare PowerTLE to TLE running on top of the baseline (requester-wins, best-effort) HTM as
well as on top of HTM modified according to the PleaseTM proposal [29]. For the latter, we use
two variations called ResponderWins and MoreReadsWins. In the former, the requester running a
hardware transaction and receiving a line with the plea bit set, aborts its transaction. In the latter,
each core tracks the number of cache lines read transactionally and includes this counter along
with the plea bit. The requester compares this counter to its own, and aborts its transaction if it read
less lines than the responder. Both these variations are discussed in detail in [29] and implemented
in SuperTrans by their authors.
Table 1 summarizes the relative performance of all variants compared to the baseline HTM

implementation. That is, for each variant, we divide the simulated running time of the benchmark (as
reported in the "Time=” output line by each benchmark) to the one measured with the baseline. The
simulator results show that PowerTLE outperforms TLE, and performs on par with (but marginally
better, on average, than) both PleaseTM variants. In general, the average gains of PowerTLE over

4 We verified that our configuration modifications did not have any impact on the results.
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TLE are more modest compared to those measured with our emulation framework, in part due
to the different workload settings. Yet, PowerTLE is able to significantly (by 22–48%) improve
performance of 3 benchmarks, while not harming the performance of any other benchmark by
more than 10%.

Table 2 provides details on the number of transactions that end up falling to the lock for each of
the variants. Two observations can be drawn from these data. First, the percentage of transactions
falling to the lock in the baseline TLE is different, across all STAMP benchmarks, from the percentage
presented in Figure 9 for the emulation-based evaluation. This suggests that the contention patterns
are indeed different, and explain the difference in the overall performance results. Second, PowerTLE
eliminates virtually all failures to the lock. This property is important for several benchmarks, such
as yada and labyrinth, helping PowerTLE there to achieve better parallelism between hardware
transactions that leads to impressive gains over TLE. We note, though, that the lack of failures to
the lock does not translate to performance advantage for all benchmarks, as same transactions that
fall to the lock in TLE might be unable to make progress in PowerTLE due to conflicts with a power
mode transaction.

6 CONCLUSION
HTM is a promising tool to ease the development and accelerate the performance of concurrent
code. Most existing HTM implementations rely on requester-wins cache coherence protocols and
provide best-effort guarantees to concurrent transactions. The first property means that concurrent
transactions abort frequently when data conflicts are common, as demonstrated by multitude
of previous work [9, 13, 37]. The second property means that in order to guarantee progress,
concurrent programs must include a non-speculative fallback path [18]. This path is typically
implemented using a lock [12]; once a thread switches to this path, all other transactions have to
wait even if they do not conflict with the holder of the lock.

In this paper, we introduced special power transactions with the aim of alleviating these issues.
These transactions, running in a so-called power mode, receive priority in conflict resolution with
other, regular transactions. We show that supporting power transactions requires very simple,
almost trivial changes to existing best-effort requester-wins HTM implementations. Our extensive
experimental evidence using micro- and STAMP benchmarks, collected with emulation on top
of a real HTM implementation as well as with a transactional memory simulator, demonstrates
that power mode can improve parallelism between hardware transactions, leading to significant
benefits for HTM that supports power transactions over the one that does not.
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A ADDITIONAL DETAILS ON EMULATION-BASED EVALUATION
Figures 10 and 11 provide additional implementation details of our emulation of the power mode,
including the definition of metalocks and other auxiliary data structures (Figures 10), and the
pseudo-code of read and write instrumentation barriers (Figure 11). Although we target the Intel
Haswell architecture, the evaluation framework design is architecture-independent, and can be
used with other HTM systems.

The mapping between an address (or more precisely, a cache line) and its corresponding metalock
uses a fast pseudo-uniform hash function described in [34]. In our framework, we used very large
arrays of 4M words representing metalocks (Lines 27 and 28) to reduce the chance that two cache
lines will be mapped to the same metalock. Moreover, large arrays and a pseudo-uniform hash
function mean that the chance that two cache lines accessed in the same transaction are mapped
into adjacent metalock words is negligible, mitigating the chance for false sharing on the accessed
metadata. As a result, it was not necessary to pad metalock words to avoid false sharing. Other
fields in the State structure (cf. Figures 10), however, are properly padded (not shown for clarity).
Entering power mode is protected by a simple test-test-set lock (similar to the one shown in

Figure 3) augmented with a sequence number (cf. Line 24 and 25). The latter is incremented after
every lock acquisition (that is, right after a transaction enters the power mode) and before lock
release (that is, right before a power mode transaction commits). The sequence number serves the
purpose of efficient release of all acquired metalocks. Specifically, an execution that uses a regular
transaction stores the current sequence number in a thread-local variable (localSeqNumber in the
ThreadInfo structure, Line 37) before starting on HTM (and thus any change to this number by a
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1 #define NUM_META_LOCKS (4 ∗ 1024 ∗ 1024)
2 #define CACHE_LINE_SIZE (64)

4 #define READ_CAPACITY (256)
5 #defineWRITE_CAPACITY (64)

7 // fast pseudo−uniform hash function that maps a given key
8 // into a number between 0 and mask
9 uint64_t fast_hash( uintptr_t key, uint64_t mask) { ... }

11 // These macros translate from an address to a
12 // read/ write meta lock protecting the cache line
13 // where the address belongs to .
14 #define ADDR_TO_READ_LOCK(addr) \
15 (&rMetadata[fast_hash( \
16 addr&~(CACHE_LINE_SIZE−1), \
17 NUM_META_LOCKS−1)])
18 #define ADDR_TO_WRITE_LOCK(addr) \
19 (&wMetadata[fast_hash( \
20 addr&~(CACHE_LINE_SIZE−1), \
21 NUM_META_LOCKS−1)])

23 struct State {
24 uint64_t powerFlag;
25 uint64_t seqNumber;
26 bool isLocked;
27 uint64_t rMetadata[NUM_META_LOCKS];
28 uint64_t wMetadata[NUM_META_LOCKS];
29 uint32_t uniqRCacheLines;
30 uint32_t uniqWCacheLines;
31 uint64_t lastPowerModeStartTime;
32 ...
33 } g_State ;

35 struct ThreadInfo {
36 bool myPowerFlag;
37 uint64_t localSeqNumber;
38 ...
39 }

Fig. 10. Implementation details for power mode support

41 T read_barrier (void ∗addr) {
42 ThreadInfo ∗tx = getThreadInfo ();
43 if (! tx−>myPowerFlag) {
44 uint64_t seqNumber = tx−>localSeqNumber;
45 if (∗ADDR_TO_WRITE_LOCK(addr) >= seqNumber)
46 htm_abort ();
47 } else {
48 if (∗ADDR_TO_READ_LOCK(addr) < g_State.seqNumber) {
49 ∗ADDR_TO_READ_LOCK(addr) = g_State.seqNumber;
50 membarstoreload();
51 if (! g_State . isLocked &&
52 ++g_State.uniqRCacheLines > READ_CAPACITY) {
53 // switch to the lock−based execution ;
54 // this aborts all regular transactions ,
55 // and forces them to wait for the lock
56 // to become available again
57 g_State . isLocked = true ;
58 membarstoreload();
59 // calculate how much time we wasted
60 // so far on this power mode transaction
61 uint64_t timer = read_hw_clock();
62 uint64_t delta = timer −
63 g_State . lastPowerModeStartTime;
64 // charge this amount of time for the
65 // re−execution under lock
66 while (read_hw_clock() − timer < delta );
67 }
68 }
69 }
70 return ∗addr;
71 }

73 void write_barrier (void ∗addr, T val ) {
74 ThreadInfo ∗tx = getThreadInfo ();
75 if (! tx−>myPowerFlag)) {
76 uint64_t seqNumber = tx−>localSeqNumber;
77 if (∗ADDR_TO_READ_LOCK(addr) >= seqNumber)
78 htm_abort ();
79 if (∗ADDR_TO_WRITE_LOCK(addr) >= seqNumber)
80 htm_abort ();
81 } else {
82 int seqNumber = ∗ADDR_TO_WRITE_LOCK(addr);
83 if (seqNumber < g_State.seqNumber)) {
84 ∗ADDR_TO_WRITE_LOCK(addr) = g_State.seqNumber;
85 if (! g_State . isLocked &&
86 ++g_State.uniqWCacheLines > WRITE_CAPACITY) {
87 /∗ same as Lines 53-66 ∗/
88 }
89 }
90 }
91 ∗addr = val ;
92 }

Fig. 11. Instrumentation barriers used to implement
the libitm interface of GCC

power mode transaction does not abort running regular transactions). Regular transactions use
this number to check whether the metalock is “locked” by a power mode transaction (see Lines 44
and 76). Thus, once the sequence number is incremented at the end of the power transaction, any
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regular transaction starting and reading this number afterwards can deduce that all metalocks have
been released.
The power transaction (whose myPowerFlag is set) stores the current sequence number into

the corresponding metalock word (Lines 49 and 84). We use an if-statement (Lines 48 and 83) to
check whether the store is actually required to avoid writing the same value when the same cache
line is accessed multiple times by a power transaction. (This if-statement also helps to keep track
of the number of unique cache lines accesses for read and for write; the concrete use of these
numbers is described later.) This optimization is more important for the read barrier, which requires
a store-load memory fence (Line 50) to ensure that the metalock update becomes visible to regular
transactions before the power transaction performs its read; otherwise, a power transaction may
read inconsistent data. We note that in TSO architectures, such as Intel Haswell, the store-load
memory fence is not required in the write barrier due to the total order on memory writes.

Notice that in the read instrumentation barrier, a regular transaction accesses a write metalock
only (Line 45), while in the write barrier, it accesses both read and write metalocks (Lines 77 and 79).
Thus, a regular transaction is able to share cache lines accessed by a power transaction for read,
but it cannot acquire ownership of (i.e., write to) cache lines accessed by a power transaction for
read or for write, as required.
The uniqRCacheLines and uniqWCacheLines fields of the State structure are used to keep

track of the number of unique cache lines accessed by a power transaction for read and for write,
respectively. As described above, we use these numbers to emulate capacity aborts by power
transactions and re-execution under lock. Based on data in [27], the read capacity of HTM in
Intel Core i7-4770 machine (which is the machine we used for our evaluation) is several tens of
thousands of cache lines, while the write capacity is a few hundreds of cache lines. Factors like
cache associativity and hyper threading limit the effective capacity of hardware transactions. In
fact, our experiments show that in some cases, transactions experience capacity aborts when they
access only a few hundreds of cache lines for read and even less than that for write. As a result, we
chose very conservative capacity limits for our evaluation (cf. Lines 4 and 5).

Taking the read barrier as an example, once the number of unique read cache lines goes beyond a
threshold (Line 52), we switch to the lock-based execution by turning the isLocked flag on (Line 57).
After that, we calculate how much time has passed since we started the power transaction, and spin
for that amount of time, charging the lock-based execution for running the prefix of the (effectively,
aborted) power transaction (Lines 61–66). Note that once the power transaction transitions into
the lock-based execution, other, regular transactions are aborted and wait for the lock to become
available again. Thus, the lock-based execution in a real system would take the same path as the
power-mode transaction, as it would access the same memory locations and read same values. As a
result, the emulation of time cost required to abort a power transaction and re-execute it under
lock is realistic. Note that once the execution of the power transaction continues under lock, it goes
through same barriers, to keep the cost of memory access comparable across all execution modes.
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