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Abstract
In this work, we demonstrate that augment-001
ing a dataset with examples that are far from002
the initial training set can lead to significant003
improvements in test set accuracy. We draw004
on the similarity of deep neural networks and005
nearest neighbor models. Like a nearest neigh-006
bor classifier, we show that, for any test exam-007
ple, augmentation with a single, nearby train-008
ing example of the same label–followed by009
retraining–is often sufficient for a BERT-based010
model to correctly classify the test example.011
In light of this result, we devise FRANN, an012
algorithm that attempts to cover the embed-013
ding space defined by the trained model with014
training examples. Empirically, we show that015
FRANN, and its variant FRANNK, construct016
augmented datasets that lead to models with017
higher test set accuracy than either uncertainty018
sampling or a random augmentation baseline.019

1 Introduction020

Despite super-human performance on benchmark021

datasets, state-of-the-art natural language process-022

ing models are far from true language understand-023

ing. Their brittleness has been demonstrated in024

many ways: simple rules can be utilized to cre-025

ate examples that cause trained models to fail, and026

methods that exploit model confidence can be used027

to generate nonsensical adversaries (Ribeiro et al.,028

2018; Alzantot et al., 2018; Jia and Liang, 2017).029

Modern techniques, coupled with manual effort,030

have even been used to generate examples on which031

production models fail (Ribeiro et al., 2020).032

These issues are even more pronounced in cases033

when training data is scarce. Small training sets are034

common when developing domain-specific models,035

e.g., when building business-grade conversational036

systems (Coucke et al., 2018). In these cases, devel-037

opers must construct their own training sets, which038

is costly and may introduce undesirable artifacts.039

A family of approaches for combating brittle-040

ness, especially in scarce-data regimes, is data aug-041

mentation. A data augmentation algorithm is a 042

mechanism for adding additional examples to the 043

training set. The hope is that a model trained on the 044

augmented data will be less prone to failure than a 045

model trained on the original set. Algorithms for 046

data augmentation in NLP have enjoyed success, 047

but they are often specific to particular types of 048

model failures and may require significant manual 049

effort (Min et al., 2020; Li et al., 2020; McCoy 050

et al., 2019; Kaushik et al., 2020). 051

Our goal is to develop a characterization of the 052

examples, which, upon augmentation, are likely 053

to improve test set accuracy. Drawing on the sim- 054

ilarity between deep neural models and nearest 055

neighbor models (Cohen et al., 2019), we study a 056

BERT-based classifier, the examples on which it 057

fails, and the nearest neighbors of those failures in 058

a held-out set of examples. Similar to a 1-nearest 059

neighbor classifier, we show that in 70% of ex- 060

periments, augmenting a training set with a single 061

nearest neighbor of a failed test example, leads to 062

correct classification of the failure after re-training. 063

Bolstered by this result, we introduce FRANN, 064

a data augmentation policy that attempts to “cover" 065

the relevant regions of embedding space with train- 066

ing examples, so that nearest neighbor classifica- 067

tion is effective. Specifically, FRANN operates by 068

iteratively augmenting a training set with the most 069

different example—measured by Euclidean dis- 070

tance in the model’s embedding space—from the 071

existing training examples. We compare FRANN, 072

and its variant, FRANNK, to uncertainty sampling 073

(active learning) and random augmentation from a 074

held-out set (Settles, 2012). Our experiments show 075

that augmentation with far-away examples leads to 076

larger gains in test set accuracy than the competing 077

methods. 078

2 Background 079

In this work, we study methods for data augmenta- 080

tion. In particular, we are concerned with scenarios 081
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in which the amount of labeled data is small. To082

ground our study, we focus on intent classification083

because it is a key step in building domain-specific084

conversational agents (Coucke et al., 2018). In085

practice, building such models are plagued by hav-086

ing very little training data1. At a high-level, in087

intent classification, the input is a natural language088

clause—called an utterance—and the goal is to089

predict its label.090

We experiment with two datasets: Bank-091

ing77 (Casanueva et al., 2020a) and CLINC (Lar-092

son et al., 2019). Banking77 includes 10,003 train-093

ing utterances and 3080 test utterances unevenly094

distributed among 77 classes. CLINC includes095

1500 in scope training utterances and 4500 test096

utterances evenly distributed among 150 classes.097

Like previous work, we ignore CLINC’s out of098

scope utterances (Lee et al., 2021). For both099

datasets, we follow previous work and downsample100

the training data to a maximum of 10 utterances101

per class to mimic real-world intent classification102

settings (Anaby-Tavor et al., 2020; Larson et al.,103

2019; Casanueva et al., 2020b). The excluded train-104

ing utterances are referred to as the held out train105

set, and we use them for augmentation.106

3 Experiments107

Recall that our goal is to characterize the examples108

which, when added to a dataset, yield the largest109

improvements in test set accuracy. In developing110

this characterization, we are inspired by the sim-111

ilarity between deep neural classifiers and latent112

space 1-nearest neighbor classifiers. In this section,113

we examine this similarity in the context of data114

augmentation.We begin by defining notation.115

Notation. Let D = {(xi, yi)}Ni=1 be a dataset116

of pairs of points, x ∈ X , and their labels y ∈117

{1, · · · ,K}, and let f : X → {1, · · · ,K} be a118

classification model. In our experiments we distin-119

guish between train, test, and a held-out dataset us-120

ing subscripts, e.g., Dtrain. For some dataset D, let121

D+ and D− be the set of point-label pairs that are122

classified correctly and incorrectly by the model,123

respectively, i.e., D+ = {(x, y) ∈ D|f(x) = y}124

and where y is the ground-truth label for the point125

x. Finally, let D[y′] = {(x, y) ∈ D|y = y′}, i.e.,126

all examples in D with label y′. Throughout our127

experiments we represent each example, x, as its128

encoding in a trained model’s final, pre-softmax129

1A handful of industry practitioners building such system
confirm this claim.

layer. We measure distance between the embedded 130

examples using Euclidean distance. 131

3.1 Augmentation with a single example. 132

Consider a 1-nearest neighbor classifier and a mis- 133

classified point-label pair, (x, y) ∈ D−test. In order 134

to correctly classify x, a new data point-label pair, 135

(x?, y) must be added to the training set such that, 136

(x?, y) = argmin
(x′,y′)∈D′

train

d(x′, x) 137

where d(·, ·) represents Euclidean distance, and 138

D′train is the original training set augmented with 139

a single example, (x?, y). In words, x? must be 140

closer to x than any other point in the training set, 141

and it must have label y. 142

We hypothesize that deep neural networks ex- 143

hibit similar behavior with respect to data augmen- 144

tation. Namely, that augmenting a dataset with a 145

misclassified point’s nearest neighbor (with respect 146

to the model’s embedding space), and training a 147

new model on the augmented dataset, will yield a 148

corrected prediction. Note that after augmentation, 149

the training set only has one additional point. 150

To test this hypothesis, we fine-tune a (Hugging- 151

Face) BERT-base-uncased model (Devlin et al., 152

2018; Wolf et al., 2020) with an additional se- 153

quence classification layer on the (downsampled) 154

CLINC training data (Section 2).We use the trained 155

model to predict the labels of points in the test 156

set, Dtest. For each misclassifed point-label pair 157

(x, y) ∈ D−test, we search for the nearest neighbor 158

of x among the points in the held out training set 159

of class y, i.e., 160

(z?, y) = argmin
(z,y)∈Dheldout[y]

d(z, x). 161

If z? is closer to x than any point in the training 162

set, we create a new dataset, D′train = Dtrain ∪ 163

{(z?, y)}. We refer to this method of selecting 164

examples for augmentation as KNN. Moreover, 165

if such an augmentation can be made, we train 166

a (new) model on the augmented dataset and check 167

whether the new model correctly classifies x, i.e., 168

f ′(x) = y. We repeat this process for all test points 169

incorrectly classified by the initial model. 170

Result. Despite being trained on only 10% of 171

the training examples, the initial fine-tuned model 172

achieves 89% in-scope accuracy. The process 173

described above (KNN) yields 297 augmented 174

datasets. In 212 out of 297 experiments (71.4%), 175
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adding the nearest neighbor of the incorrectly clas-176

sified test point, x, and re-training, yields a new177

model that correctly classifies x. This result demon-178

strates the potential impact of a single augmented179

example (especially in low-data regimes) and pro-180

vides evidence of the similarity between our origi-181

nal model and a 1-nearest neighbor classifier in its182

learned latent space, even after re-training.183

3.2 Augmenting with Multiple Examples184

In our next experiment, we test whether the same185

phenomenon holds as the number of examples186

added to the training set grows. Since training187

alters the representations of all examples, this may188

break many of the nearest-neighbor relationships189

that exist before augmentation and re-training.190

We conduct the following experiment with191

CLINC. We select a batch of misclassified exam-192

ples from the test set, and for each example, we add193

a single held-out example to the training set using194

KNN (as above, Section 3.1). Thus, the number of195

examples added to the train set is exactly equal to196

the number of examples in the batch. The selected197

examples from the held-out set are all added to the198

train set simultaneously. Afterward, we train a new199

model on the augmented train set and calculate the200

fraction of test points from the batch that are cor-201

rectly classified by the new model. We compare202

the examples selected by KNN with a policy that,203

for each test example of label y in the batch, se-204

lects a single example uniformly at random from205

Dheldout[y], i.e., the examples in the held-out set206

of label y. The result is visualized for batches of207

size {10, 30, 50, · · · , 290} in Figure 1. The chart208

shows that augmentation via KNN yields models209

that correctly classify ∼80% of previously misclas-210

sified target examples, regardless of the number211

examples added to the training set. This is consis-212

tently ∼2x better than selecting random examples213

of the same classes as the target test examples. We214

observe a similar trend when this experiment is re-215

peated on the Banking data (Figure 3, Appendix).216

3.3 Augmentation Policies217

The experiments above show that augmenting a218

training set with the nearest neighbor of a failing219

test example (i.e., KNN) often leads to correct clas-220

sification of that test example after retraining. How-221

ever, KNN requires: 1. knowledge of failing test222

points, and 2. held-out, labeled data, neither of223

which is likely to be available. On the other hand,224

recent work shows that augmentation via retrieval225
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Figure 1: Fraction Correct - CLINC. The fraction of
incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training.

from an unlabeled corpus can be effective for im- 226

proving test accuracy (Du et al., 2020). Thus, in our 227

final experiment, we study a variation of KNN for 228

settings in which an unlabeled corpus is available. 229

We propose FRANN, The FaRthest Nearest 230

Neighbor algorithm, that attempts to "cover" the 231

latent space with examples. Intuitively, by cover- 232

ing the space, it is more likely for each test point 233

to have a nearby neighbor in the training set. By 234

the experiments above, this is likely to increase 235

test set accuracy. To cover the space, FRANN se- 236

lects unlabeled examples, greedily, in decreasing 237

order of distance to their nearest neighbor in the 238

training set. We also test two variants: FRANNK 239

and FRAALL, which greedily select unlabeled ex- 240

amples in descending order of average distance to 241

their closest k neighbors, and to all training exam- 242

ples, respectively. We compare our algorithms to 243

an uncertainty sampling (ENTROPY), i.e., greedily 244

selecting unlabeled examples in descending order 245

of entropy in the trained model’s corresponding 246

softmax distribution (Settles, 2012). As a baseline, 247

we also consider an algorithm that randomly selects 248

unlabeled examples (RANDOM). In practice, the 249

augmented unlabeled examples can be automati- 250

cally labeled by a separate model (Du et al., 2020) 251

or by hand. For simplicity, we use the ground-truth 252

labels. We report test set accuracy as the number 253

of augmented examples increases. 254

Figure 2 visualizes the result for the Bank- 255

ing dataset. The plot shows that FRANN and 256

FRANNK are top performers, achieving the high- 257

est accuracy when 500 examples are used for 258

augmentation. The gap between FRANN and 259
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Figure 2: Test Set Accuracy - Banking. Test set accu-
racy as a function of the number of augmented exam-
ples for Banking dataset.

FRANNK and the rest of the policies increases260

with batch size. Interestingly, FRAALL performs261

worst for many batch sizes. Similar results for262

CLINC appear in the appendix (Figure 4).263

4 Discussion264

Our experiments underscore the value of augment-265

ing a dataset with points that are far from the exist-266

ing training examples. This is opposite of recent ap-267

proaches, which augment a dataset with examples268

that are similar to the training set (Anaby-Tavor269

et al., 2020; Du et al., 2020). Understandably, aug-270

menting with similar examples is safe; i.e., nearby271

examples are more likely to be in-domain and rel-272

evant. However, our work suggests that such a273

conservative approach is likely excluding examples274

that could significantly improve accuracy. There-275

fore, we conjecture that augmenting a dataset with276

both nearby and far-away points is likely to yield277

the largest improvements in test set accuracy.278

Limitations. We raise a handful of limitations of279

our results. First, we only test a single model (fine-280

tuned BERT-base uncased) on a single task (intent281

classification). Given the similarities between neu-282

ral and nearest neighbor models, we are optimistic283

about similar results holding for other tasks. Next,284

to mimic real-world scenarios, the training sets we285

use are small. Improvements from augmentation286

are likely more modest for larger training sets. Fi-287

nally, we note that all of the examples we use for288

augmentation are (approximately) drawn from the289

test distribution. In practice, this would not be the290

case for a large unlabeled corpus. Despite this, we291

argue that our experiments are interesting in their 292

own right, and demonstrate the value of far-away 293

examples in data augmentation. 294

5 Related Work 295

Some studies of data augmentation in NLP in- 296

troduce syntactic and semantic perturbations of 297

training examples, which when used during aug- 298

mentation, improves model robustness (Min et al., 299

2020; Li et al., 2020; McCoy et al., 2019). Related 300

work demonstrates that augmenting a training set 301

with counterfactual examples improves classifier 302

performance, especially on counterfactual test ex- 303

amples (Kaushik et al., 2020). Neural language 304

models have also been used to create new training 305

examples by replacing tokens in original training 306

instances (Kobayashi, 2018). Unlike these works, 307

our method of augmentation specifically considers 308

the model’s encoding of the training set. 309

One closely related exploration studies nearest 310

neighbors of misclassified test examples with re- 311

spect to the train set (Rajani et al., 2020). Unlike 312

our study, they focus on analyzing model predic- 313

tions and finding labeling errors. They test the 314

effect of excluding groups nearest neighbors from 315

training, while we focus on augmentation. More- 316

over, we experiment with a handful of augmenta- 317

tion policies. A similar work was carried out from 318

the lens of active learning lens by Geifman and 319

El-Yaniv (2017). However, their work was limited 320

to the field of computer vision. 321

Many recent studies demonstrate the effective- 322

ness of utilizing nearest neighbors for various neu- 323

ral prediction tasks. For example, in sequence label- 324

ing, the nearest neighbors of a test sequence can be 325

leveraged to accurately label the sequence (Wise- 326

man and Stratos, 2019). A similar phenomenon 327

was demonstrated in language modeling (Khan- 328

delwal et al., 2020). Like our work, in both of 329

these cases, nearest neighbors are computed using 330

distance in the learned latent space of a language 331

model. However, both of these works focus on test 332

time prediction using nearest neighbors rather than 333

data augmentation. Other work with similar flavor 334

includes neural machine translation, language gen- 335

eration, and text classification approaches that ex- 336

plicitly retrieve training examples at test time (Gu 337

et al., 2018; Zhang et al., 2018; Weston et al., 2018; 338

Wallace et al., 2018). Related work studies influ- 339

ence functions and their role in interpretability in 340

NLP (Koh and Liang, 2017; Han et al., 2020). 341
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Figure 3: Fraction Correct - Banking. The fraction
of incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training for
Banking dataset.

Appendix534

A Augmenting with Multiple Examples535

We follow the same methodology as presented in536

Section 3.2—augmenting with multiple examples537

in increasing batch sizes—but experiment with538

the Banking dataset. The result is visualized for539

batches of size {10, 30, 50, · · · , 490} in Figure 3.540

Similar to on CLINC, the chart shows that aug-541

mentation via KNN leads to models that correctly542

classify∼80% of previously misclassified target ex-543

amples, regardless of the number examples added544

to the training set. This is consistently better than545

selecting random examples of the same classes as546

the target test examples.547

B Other Augmentation Policies548

In Section 3.3, we proposed 3 augmentation549

policies—FRANN, FRANNK and FRAALL—550

and compared them with uncertainty sampling551

(ENTROPY) and a RANDOM baseline. We perform552

the same for the CLINC dataset and visualize the553

result in Figure 4. The plot shows that FRANNK554

achieves the highest maximum held-out test ac-555

curacy (when 250 zpoints are augmented to the556

training set). After all 290 augmentations are made557

FRANNK and FRANN achieve similarly high ac-558

curacy, followed closely by ENTROPY. We hy-559

pothesize that our approach outperforms ENTROPY560

because deep-neural networks are notorious for561

having uncalibrated confidences (Guo et al., 2017;562

Feng et al., 2018). All policies outperform RAN-563

DOM augmentation. Together, the results reinforce564
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Figure 4: Test Set Accuracy - CLINC. The test set
accuracy as a function of the number of augmentation
points for data augmentation policies.

the similarity between our BERT-based sequence 565

classifier and a 1-nearest neighbor classier with 566

respect to data augmentation, and suggest that aug- 567

mentation with examples that are far away from the 568

training examples helps improve test set accuracy 569

more than the other methods. 570
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