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Abstract

In this work, we demonstrate that augment-
ing a dataset with examples that are far from
the initial training set can lead to significant
improvements in test set accuracy. We draw
on the similarity of deep neural networks and
nearest neighbor models. Like a nearest neigh-
bor classifier, we show that, for any test exam-
ple, augmentation with a single, nearby train-
ing example of the same label-followed by
retraining—is often sufficient for a BERT-based
model to correctly classify the test example.
In light of this result, we devise FRANN, an
algorithm that attempts to cover the embed-
ding space defined by the trained model with
training examples. Empirically, we show that
FRANN, and its variant FRANNK, construct
augmented datasets that lead to models with
higher test set accuracy than either uncertainty
sampling or a random augmentation baseline.

1 Introduction

Despite super-human performance on benchmark
datasets, state-of-the-art natural language process-
ing models are far from true language understand-
ing. Their brittleness has been demonstrated in
many ways: simple rules can be utilized to cre-
ate examples that cause trained models to fail, and
methods that exploit model confidence can be used
to generate nonsensical adversaries (Ribeiro et al.,
2018; Alzantot et al., 2018; Jia and Liang, 2017).
Modern techniques, coupled with manual effort,
have even been used to generate examples on which
production models fail (Ribeiro et al., 2020).
These issues are even more pronounced in cases
when training data is scarce. Small training sets are
common when developing domain-specific models,
e.g., when building business-grade conversational
systems (Coucke et al., 2018). In these cases, devel-
opers must construct their own training sets, which
is costly and may introduce undesirable artifacts.
A family of approaches for combating brittle-
ness, especially in scarce-data regimes, is data aug-

mentation. A data augmentation algorithm is a
mechanism for adding additional examples to the
training set. The hope is that a model trained on the
augmented data will be less prone to failure than a
model trained on the original set. Algorithms for
data augmentation in NLP have enjoyed success,
but they are often specific to particular types of
model failures and may require significant manual
effort (Min et al., 2020; Li et al., 2020; McCoy
et al., 2019; Kaushik et al., 2020).

Our goal is to develop a characterization of the
examples, which, upon augmentation, are likely
to improve test set accuracy. Drawing on the sim-
ilarity between deep neural models and nearest
neighbor models (Cohen et al., 2019), we study a
BERT-based classifier, the examples on which it
fails, and the nearest neighbors of those failures in
a held-out set of examples. Similar to a 1-nearest
neighbor classifier, we show that in 70% of ex-
periments, augmenting a training set with a single
nearest neighbor of a failed test example, leads to
correct classification of the failure after re-training.

Bolstered by this result, we introduce FRANN,
a data augmentation policy that attempts to “cover"
the relevant regions of embedding space with train-
ing examples, so that nearest neighbor classifica-
tion is effective. Specifically, FRANN operates by
iteratively augmenting a training set with the most
different example—measured by Euclidean dis-
tance in the model’s embedding space—from the
existing training examples. We compare FRANN,
and its variant, FRANNK, to uncertainty sampling
(active learning) and random augmentation from a
held-out set (Settles, 2012). Our experiments show
that augmentation with far-away examples leads to
larger gains in test set accuracy than the competing
methods.

2 Background

In this work, we study methods for data augmenta-
tion. In particular, we are concerned with scenarios



in which the amount of labeled data is small. To
ground our study, we focus on intent classification
because it is a key step in building domain-specific
conversational agents (Coucke et al., 2018). In
practice, building such models are plagued by hav-
ing very little training data'. At a high-level, in
intent classification, the input is a natural language
clause—called an utterance—and the goal is to
predict its label.

We experiment with two datasets: Bank-
ing77 (Casanueva et al., 2020a) and CLINC (Lar-
son et al., 2019). Banking77 includes 10,003 train-
ing utterances and 3080 test utterances unevenly
distributed among 77 classes. CLINC includes
1500 in scope training utterances and 4500 test
utterances evenly distributed among 150 classes.
Like previous work, we ignore CLINC’s out of
scope utterances (Lee et al., 2021). For both
datasets, we follow previous work and downsample
the training data to a maximum of 10 utterances
per class to mimic real-world intent classification
settings (Anaby-Tavor et al., 2020; Larson et al.,
2019; Casanueva et al., 2020b). The excluded train-
ing utterances are referred to as the held out train
set, and we use them for augmentation.

3 Experiments

Recall that our goal is to characterize the examples
which, when added to a dataset, yield the largest
improvements in test set accuracy. In developing
this characterization, we are inspired by the sim-
ilarity between deep neural classifiers and latent
space 1-nearest neighbor classifiers. In this section,
we examine this similarity in the context of data
augmentation.We begin by defining notation.

Notation. Let D = {(z;,5:)}Y, be a dataset
of pairs of points, x € X, and their labels y €
{1,---,K},andlet f : X — {1,--- K} bea
classification model. In our experiments we distin-
guish between train, test, and a held-out dataset us-
ing subscripts, e.g., Di;ain. For some dataset D, let
DT and D~ be the set of point-label pairs that are
classified correctly and incorrectly by the model,
respectively, i.e., DT = {(z,y) € D|f(z) = y}
and where y is the ground-truth label for the point
x. Finally, let D[y'] = {(z,y) € D|ly = ¢}, i.e.,
all examples in D with label 3. Throughout our
experiments we represent each example, z, as its
encoding in a trained model’s final, pre-softmax

' A handful of industry practitioners building such system
confirm this claim.

layer. We measure distance between the embedded
examples using Euclidean distance.

3.1 Augmentation with a single example.

Consider a 1-nearest neighbor classifier and a mis-
classified point-label pair, (2, y) € Di.. In order
to correctly classify z, a new data point-label pair,
(z*,y) must be added to the training set such that,

argmin d(z',z)
(=’ ,y")€D;

train

(x*vy) =

where d(-,-) represents Euclidean distance, and

fain 18 the original training set augmented with
a single example, (z*,y). In words, z* must be
closer to  than any other point in the training set,
and it must have label y.

We hypothesize that deep neural networks ex-
hibit similar behavior with respect to data augmen-
tation. Namely, that augmenting a dataset with a
misclassified point’s nearest neighbor (with respect
to the model’s embedding space), and training a
new model on the augmented dataset, will yield a
corrected prediction. Note that after augmentation,
the training set only has one additional point.

To test this hypothesis, we fine-tune a (Hugging-
Face) BERT-base-uncased model (Devlin et al.,
2018; Wolf et al., 2020) with an additional se-
quence classification layer on the (downsampled)
CLINC training data (Section 2).We use the trained
model to predict the labels of points in the test
set, Dyest. For each misclassifed point-label pair
(x,y) € Dyegt» We search for the nearest neighbor
of = among the points in the held out training set
of class y, i.e.,

arg min
(2,9) €Dheldout [¥]

(z%,y) = d(z,x).

If 2* is closer to = than any point in the training
set, we create a new dataset, Dérain = Dirain U
{(z*,y)}. We refer to this method of selecting
examples for augmentation as KNN. Moreover,
if such an augmentation can be made, we train
a (new) model on the augmented dataset and check
whether the new model correctly classifies z, i.e.,
f'(x) = y. We repeat this process for all test points

incorrectly classified by the initial model.

Result. Despite being trained on only 10% of
the training examples, the initial fine-tuned model
achieves 89% in-scope accuracy. The process
described above (KNN) yields 297 augmented
datasets. In 212 out of 297 experiments (71.4%),



adding the nearest neighbor of the incorrectly clas-
sified test point, z, and re-training, yields a new
model that correctly classifies x. This result demon-
strates the potential impact of a single augmented
example (especially in low-data regimes) and pro-
vides evidence of the similarity between our origi-
nal model and a 1-nearest neighbor classifier in its
learned latent space, even after re-training.

3.2 Augmenting with Multiple Examples

In our next experiment, we test whether the same
phenomenon holds as the number of examples
added to the training set grows. Since training
alters the representations of all examples, this may
break many of the nearest-neighbor relationships
that exist before augmentation and re-training.

We conduct the following experiment with
CLINC. We select a batch of misclassified exam-
ples from the test set, and for each example, we add
a single held-out example to the training set using
KNN (as above, Section 3.1). Thus, the number of
examples added to the train set is exactly equal to
the number of examples in the batch. The selected
examples from the held-out set are all added to the
train set simultaneously. Afterward, we train a new
model on the augmented train set and calculate the
fraction of test points from the batch that are cor-
rectly classified by the new model. We compare
the examples selected by KNN with a policy that,
for each test example of label y in the batch, se-
lects a single example uniformly at random from
Dheldout[V], 1.€., the examples in the held-out set
of label y. The result is visualized for batches of
size {10, 30,50, - - ,290} in Figure 1. The chart
shows that augmentation via KNN yields models
that correctly classify ~80% of previously misclas-
sified target examples, regardless of the number
examples added to the training set. This is consis-
tently ~2x better than selecting random examples
of the same classes as the target test examples. We
observe a similar trend when this experiment is re-
peated on the Banking data (Figure 3, Appendix).

3.3 Augmentation Policies

The experiments above show that augmenting a
training set with the nearest neighbor of a failing
test example (i.e., KNN) often leads to correct clas-
sification of that test example after retraining. How-
ever, KNN requires: 1. knowledge of failing test
points, and 2. held-out, labeled data, neither of
which is likely to be available. On the other hand,
recent work shows that augmentation via retrieval
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Figure 1: Fraction Correct - CLINC. The fraction of
incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training.

from an unlabeled corpus can be effective for im-
proving test accuracy (Du et al., 2020). Thus, in our
final experiment, we study a variation of KNN for
settings in which an unlabeled corpus is available.

We propose FRANN, The FaRthest Nearest
Neighbor algorithm, that attempts to "cover" the
latent space with examples. Intuitively, by cover-
ing the space, it is more likely for each test point
to have a nearby neighbor in the training set. By
the experiments above, this is likely to increase
test set accuracy. To cover the space, FRANN se-
lects unlabeled examples, greedily, in decreasing
order of distance to their nearest neighbor in the
training set. We also test two variants: FRANNK
and FRAALL, which greedily select unlabeled ex-
amples in descending order of average distance to
their closest k neighbors, and to all training exam-
ples, respectively. We compare our algorithms to
an uncertainty sampling (ENTROPY), i.e., greedily
selecting unlabeled examples in descending order
of entropy in the trained model’s corresponding
softmax distribution (Settles, 2012). As a baseline,
we also consider an algorithm that randomly selects
unlabeled examples (RANDOM). In practice, the
augmented unlabeled examples can be automati-
cally labeled by a separate model (Du et al., 2020)
or by hand. For simplicity, we use the ground-truth
labels. We report test set accuracy as the number
of augmented examples increases.

Figure 2 visualizes the result for the Bank-
ing dataset. The plot shows that FRANN and
FRANNK are top performers, achieving the high-
est accuracy when 500 examples are used for
augmentation. The gap between FRANN and
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Figure 2: Test Set Accuracy - Banking. Test set accu-
racy as a function of the number of augmented exam-
ples for Banking dataset.

FRANNK and the rest of the policies increases
with batch size. Interestingly, FRAALL performs
worst for many batch sizes. Similar results for
CLINC appear in the appendix (Figure 4).

4 Discussion

Our experiments underscore the value of augment-
ing a dataset with points that are far from the exist-
ing training examples. This is opposite of recent ap-
proaches, which augment a dataset with examples
that are similar to the training set (Anaby-Tavor
et al., 2020; Du et al., 2020). Understandably, aug-
menting with similar examples is safe; i.e., nearby
examples are more likely to be in-domain and rel-
evant. However, our work suggests that such a
conservative approach is likely excluding examples
that could significantly improve accuracy. There-
fore, we conjecture that augmenting a dataset with
both nearby and far-away points is likely to yield
the largest improvements in test set accuracy.

Limitations. We raise a handful of limitations of
our results. First, we only test a single model (fine-
tuned BERT-base uncased) on a single task (intent
classification). Given the similarities between neu-
ral and nearest neighbor models, we are optimistic
about similar results holding for other tasks. Next,
to mimic real-world scenarios, the training sets we
use are small. Improvements from augmentation
are likely more modest for larger training sets. Fi-
nally, we note that all of the examples we use for
augmentation are (approximately) drawn from the
test distribution. In practice, this would not be the
case for a large unlabeled corpus. Despite this, we

argue that our experiments are interesting in their
own right, and demonstrate the value of far-away
examples in data augmentation.

5 Related Work

Some studies of data augmentation in NLP in-
troduce syntactic and semantic perturbations of
training examples, which when used during aug-
mentation, improves model robustness (Min et al.,
2020; Li et al., 2020; McCoy et al., 2019). Related
work demonstrates that augmenting a training set
with counterfactual examples improves classifier
performance, especially on counterfactual test ex-
amples (Kaushik et al., 2020). Neural language
models have also been used to create new training
examples by replacing tokens in original training
instances (Kobayashi, 2018). Unlike these works,
our method of augmentation specifically considers
the model’s encoding of the training set.

One closely related exploration studies nearest
neighbors of misclassified test examples with re-
spect to the train set (Rajani et al., 2020). Unlike
our study, they focus on analyzing model predic-
tions and finding labeling errors. They test the
effect of excluding groups nearest neighbors from
training, while we focus on augmentation. More-
over, we experiment with a handful of augmenta-
tion policies. A similar work was carried out from
the lens of active learning lens by Geifman and
El-Yaniv (2017). However, their work was limited
to the field of computer vision.

Many recent studies demonstrate the effective-
ness of utilizing nearest neighbors for various neu-
ral prediction tasks. For example, in sequence label-
ing, the nearest neighbors of a test sequence can be
leveraged to accurately label the sequence (Wise-
man and Stratos, 2019). A similar phenomenon
was demonstrated in language modeling (Khan-
delwal et al., 2020). Like our work, in both of
these cases, nearest neighbors are computed using
distance in the learned latent space of a language
model. However, both of these works focus on test
time prediction using nearest neighbors rather than
data augmentation. Other work with similar flavor
includes neural machine translation, language gen-
eration, and text classification approaches that ex-
plicitly retrieve training examples at test time (Gu
et al., 2018; Zhang et al., 2018; Weston et al., 2018;
Wallace et al., 2018). Related work studies influ-
ence functions and their role in interpretability in
NLP (Koh and Liang, 2017; Han et al., 2020).
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Figure 3: Fraction Correct - Banking. The fraction
of incorrectly predicted test examples that are predicted
correctly after augmentation (KNN) and re-training for
Banking dataset.

Appendix
A Augmenting with Multiple Examples

We follow the same methodology as presented in
Section 3.2—augmenting with multiple examples
in increasing batch sizes—but experiment with
the Banking dataset. The result is visualized for
batches of size {10, 30, 50, - - - , 490} in Figure 3.

Similar to on CLINC, the chart shows that aug-
mentation via KNN leads to models that correctly
classify ~80% of previously misclassified target ex-
amples, regardless of the number examples added
to the training set. This is consistently better than
selecting random examples of the same classes as
the target test examples.

B Other Augmentation Policies

In Section 3.3, we proposed 3 augmentation
policies—FRANN, FRANNK and FRAALL—
and compared them with uncertainty sampling
(ENTROPY) and a RANDOM baseline. We perform
the same for the CLINC dataset and visualize the
result in Figure 4. The plot shows that FRANNK
achieves the highest maximum held-out test ac-
curacy (when 250 zpoints are augmented to the
training set). After all 290 augmentations are made
FRANNK and FRANN achieve similarly high ac-
curacy, followed closely by ENTROPY. We hy-
pothesize that our approach outperforms ENTROPY
because deep-neural networks are notorious for
having uncalibrated confidences (Guo et al., 2017;
Feng et al., 2018). All policies outperform RAN-
DOM augmentation. Together, the results reinforce

92.5 x  FRaNN ™
#  FRaNNK-5 .
92,01 @ FRaAll x
A entropy % % %
915 random . x o
] ® X t g A
o x 7'y
g 910 x & A A ® o
g A 2 )
< 90.5 x & ot ¢
4 x ¥
(] X s &
" 90.0 A
. . » A
4
89.5 - 2,
89.0 §
0 50 100 150 200 250 300

Num Augmented Examples

Figure 4: Test Set Accuracy - CLINC. The test set
accuracy as a function of the number of augmentation
points for data augmentation policies.

the similarity between our BERT-based sequence
classifier and a 1-nearest neighbor classier with
respect to data augmentation, and suggest that aug-
mentation with examples that are far away from the
training examples helps improve test set accuracy
more than the other methods.



