
Gelato: Feedback-driven and Guided Security
Analysis of Client-side Applications

Behnaz Hassanshahi, Hyunjun Lee, Paddy Krishnan, Jörn Güy Suß
Oracle Labs, Brisbane, Australia
{firstname.lastname}@oracle.com

Abstract—Even though a lot of effort has been invested in
analyzing client-side web applications during the past decade,
the existing tools often fail to deal with the complexity of modern
JavaScript applications. However, from an attacker point of view,
the client side of such web applications can reveal invaluable
information about the server side. In this paper, first we study
the existing tools and enumerate the most crucial features a
security-aware client-side analysis should be supporting. Next,
we propose GELATO to detect vulnerabilities in modern client-
side JavaScript applications that are built upon complex libraries
and frameworks. In particular, we take the first step in closing the
gap between state-aware crawling and client-side security analysis
by proposing a feedback-driven security-aware guided crawler
that is able to analyze complex frameworks automatically, and
increase the coverage of security-sensitive parts of the program
efficiently. Moreover, we propose a new lightweight client-side
taint analysis that outperforms the start-of-the-art tools, requires
no modification to browsers, and reports non-trivial taint flows
on modern JavaScript applications.

I. INTRODUCTION

The client-server design of web applications allows devel-
opers to perform the logic and computation of their applica-
tions on both the client and server sides. The powerful and rich
features of modern browsers have enticed developers to use
languages, such as JavaScript, HTML and CSS, to implement
complex and highly interactive user interfaces on the client
side. All the client-side source-code that runs in the browsers
is available to everyone, including attackers. While attackers
have been actively exploiting client-side vulnerabilities, such
as DOM-based XSS [23] for almost a decade now, the increase
in complexity of JavaScript applications and frameworks
has rendered the existing tools ineffective to prevent them.
Moreover, from an attacker point of view, the client side of
web applications can reveal invaluable information about the
server side, such as REST end points, validation routines, and
database queries.

In this paper, we propose GELATO to detect vulnerabili-
ties in modern client-side JavaScript applications, which are
often built upon complex libraries and frameworks. More
specifically, we address the practical challenges necessary to
deal with such web applications. For this purpose, first we
enumerate the most crucial features a security-aware client-side
analysis should be supporting, and report on the status of state-
of-the-art dynamic analysis tools accordingly. We limit our
study to dynamic analysis tools because they suit the dynamic
nature of JavaScript applications.

Even though a lot of effort has been invested in analyzing
client-side web applications during the past decade, the exist-
ing tools often fail to deal with the complexity of modern

JavaScript applications. To understand why, we provide an
overview of the most essential features necessary to analyze
a client-side application to detect security issues. Table I
summarizes the features supported by the existing tools and
compares them against GELATO.

From this table, we can make several interesting obser-
vations: (1) all of the tools except for GELATO miss at least
six features necessary to analyze modern real-world JavaScript
applications; (2) existing tools either focus on improving the
crawling technology or security analysis, and there is no tool
that focuses on both aspects, while one is not independent of
the other; (3) most of the crawlers that focus on improving the
coverage (lines of JavaScript code or number of discovered
hyperlinks) are not guided towards specific locations, which
can be essential for security analysis in practice; and (4)
GELATO is the only tool that directly addresses complex
libraries and frameworks, reducing the need to have manually
crafted models.

Having support for all of the features listed in Table I
to perform a client-side security analysis is challenging. In
this paper, we take the first step in bringing together a state-
aware crawler and a client-side security analysis, and in closing
the gap between them. One of the challenges that state-aware
crawlers face is that the search space they need to explore
(number of paths in the state graph) can grow exponentially.
Therefore, traversing the whole search space can result in
poor performance. In practice, we have found the efficiency of
crawlers to be one of the most essential factors for them to be
used for testing. However, it is possible to devise an algorithm
to cover specific paths of interest efficiently, without having to
traverse the whole search space. By guiding GELATO towards
specific targets, we improve the performance while achieving
acceptable coverage. Furthermore, GELATO tries to incorporate
most of the features in Table I that are crucial for a security
analysis to detect vulnerabilities effectively in practice.

To analyze modern JavaScript applications for security
vulnerabilities, crawlers play a substantial role by providing
inputs to the program. However, the state-of-the-art security
analysis tools [42], [49] either don’t have a crawler or provide
an insufficient support. Hence, while they can report vulner-
abilities in the first page of applications for Alexa top [1]
websites, they cannot report vulnerabilities in the other parts of
the applications as shown in Sec. VI. During the past few years,
many crawling techniques have been proposed to explore the
search space on the client side.

Fe
at

ur
e

G
E

L
A

T
O

C
ra

w
lja

x
[4

4]
jÄ

k
[5

0]
Fe

ed
ex

[4
6]

W
A

T
E

G
[5

5]
A

rt
em

is
+S

ID
[3

9]
A

rt
fo

rm
D

ex
te

rJ
S

[4
9]

K
ud

zu
[5

2]
C

T
T

[4
2]

F1
3

3
3

3
3

3
3

7
7

7
F2

7
7

7
7

7
3

7
7

7
7

F3
3

7
7

7
7

3
3

3
3

7
F4

3
3

3
3

3
3

3
3

3
7

F5
3

7
3

7
7

7
7

7
7

7
F6

3
3

3
3

3
3

3
7

7
7

F7
3

7
3

3
3

3
3

7
7

7
F8

3
7

7
7

7
7

3
7

7
7

F9
3

7
7

7
7

7
3

7
3

7
F1

0
7

7
7

7
7

7
7

7
7

7
F1

1
3

7
3

7
7

7
7

3
3

3
F1

2
3

7
7

7
7

7
7

7
7

7
F1

3
7

7
7

3
3

7
3

7
7

7
F1

4
3

3
3

3
7

3
3

7
3

7
F1

5
3

7
7

7
7

7
7

7
7

7

TA
B

L
E

I:
C

om
pa

ri
ng

fe
at

ur
es

su
pp

or
te

d
by

ex
is

tin
g

cl
ie

nt
-s

id
e

an
al

ys
is

to
ol

s.
B

el
ow

,w
e

pr
ov

id
e

a
sh

or
t

de
sc

ri
pt

io
n

fo
r

ea
ch

of
th

es
e

fe
at

ur
es

:
F1

:
C

lie
nt

-s
ta

te
-a

w
ar

e
re

fe
rs

to
cr

aw
le

rs
th

at
in

te
ra

ct
w

ith
th

e
cl

ie
nt

-s
id

e
us

er
in

te
rf

ac
e

an
d

ex
pl

or
e

its
di

ff
er

en
t

po
ss

ib
le

st
at

es
at

ru
nt

im
e.

F2
:

Se
rv

er
-s

ta
te

-a
w

ar
e

re
fe

rs
to

cr
aw

le
rs

th
at

ai
m

to
tr

ig
ge

r
di

ff
er

en
t

st
at

es
at

th
e

se
rv

er
si

de
.

F3
&

F4
:

D
at

a
in

pu
t

&
ev

en
t

se
qu

en
ce

ge
ne

ra
tio

n
sh

ow
s

w
he

th
er

th
e

an
al

yz
er

ge
ne

ra
te

s
da

ta
in

pu
ts

an
d

ev
en

t
se

qu
en

ce
s,

re
sp

ec
tiv

el
y.

F5
:

D
yn

am
ic

ev
en

t
ha

nd
le

rs
re

gi
st

ra
tio

n
sh

ow
s

w
he

th
er

th
e

an
al

yz
er

su
pp

or
ts

ev
en

t
ha

nd
le

rs
th

at
ar

e
re

gi
st

er
ed

dy
na

m
ic

al
ly

.
F6

:
St

at
ic

lin
k

ex
tr

ac
tio

n
re

fe
rs

to
th

e
cr

aw
le

rs
th

at
ca

n
st

at
ic

al
ly

fin
d

hy
pe

rl
in

ks
em

be
dd

ed
in

to
H

T
M

L
pa

ge
s.

F7
:

Pr
io

ri
tiz

at
io

n
sh

ow
s

w
he

th
er

a
cr

aw
le

r
ca

n
pr

io
ri

tiz
e

th
e

tr
ig

ge
ri

ng
of

ce
rt

ai
n

ev
en

ts
to

ac
hi

ev
e

a
sp

ec
ifi

c
go

al
,s

uc
h

as
im

pr
ov

in
g

co
ve

ra
ge

.
F8

:
Fi

lli
ng

fo
rm

s
is

re
qu

ir
ed

in
so

m
e

Ja
va

Sc
ri

pt
ap

pl
ic

at
io

ns
,w

he
re

us
er

s
en

te
r

da
ta

vi
a

fo
rm

s.
T

hi
s

fe
at

ur
e

sh
ow

s
w

he
th

er
th

e
cr

aw
le

r
is

ab
le

to
fil

l
su

ch
fo

rm
s.

F9
:

B
yp

as
si

ng
gu

ar
ds

in
th

e
co

de
is

re
qu

ir
ed

to
ex

pl
or

e
ap

pl
ic

at
io

ns
de

ep
ly

an
d

re
ac

h
sp

ec
ifi

c
lo

ca
tio

ns
in

th
e

pr
og

ra
m

.S
tr

in
g

co
ns

tr
ai

nt
so

lv
in

g
is

a
po

pu
la

r
te

ch
ni

qu
e

us
ed

to
ge

ne
ra

te
su

ch
in

pu
ts

.
F1

0:
H

an
dl

in
g

no
nd

et
er

m
in

is
m

is
re

qu
ir

ed
w

he
n

th
e

st
at

e-
aw

ar
e

cr
aw

le
r

ca
nn

ot
go

to
a

pr
ev

io
us

ly
vi

si
te

d
st

at
e,

or
ge

ts
tr

ap
pe

d
in

on
e

st
at

e
an

d
ca

nn
ot

m
ak

e
pr

og
re

ss
du

e
to

us
ag

e
of

tim
e

st
am

ps
,r

an
do

m
iz

at
io

n
an

d
be

in
g

de
pe

nd
en

t
on

th
e

ex
is

te
nc

e
of

ce
rt

ai
n

be
ha

vi
or

s
th

at
ch

an
ge

ov
er

tim
e.

F1
1:

Se
cu

ri
ty

an
al

ys
is

re
fe

rs
to

ha
vi

ng
su

pp
or

t
fo

r
cl

ie
nt

-s
id

e
vu

ln
er

ab
ili

ty
de

te
ct

io
n

te
ch

ni
qu

es
,s

uc
h

as
D

O
M

-b
as

ed
X

SS
de

te
ct

io
n.

F1
2:

G
ui

di
ng

to
w

ar
ds

si
nk

s
is

a
fe

at
ur

e
th

at
al

lo
w

s
a

cr
aw

le
r

to
dr

iv
e

a
se

cu
ri

ty
an

al
ys

is
m

or
e

ef
fic

ie
nt

ly
an

d
ef

fe
ct

iv
el

y.
F1

3:
Tr

ig
ge

ri
ng

sp
ec

ifi
c

fu
nc

tio
na

lit
ie

s
th

ro
ug

h
a

se
qu

en
ce

of
ev

en
ts

is
re

qu
ir

ed
by

so
m

e
cl

ie
nt

-s
id

e
ap

pl
ic

at
io

ns
th

at
pr

ov
id

e
co

m
pl

ex
fu

nc
tio

na
lit

ie
s.

F1
4:

Im
pr

ov
in

g
co

ve
ra

ge
is

of
te

n
th

e
go

al
of

al
lt

he
cr

aw
le

rs
.C

ov
er

ag
e

us
ua

lly
is

m
ea

su
re

d
in

te
rm

s
of

th
e

nu
m

be
r

of
de

te
ct

ed
hy

pe
rl

in
ks

or
th

e
am

ou
nt

of
ex

ec
ut

ed
Ja

va
Sc

ri
pt

co
de

.
F1

5:
Su

pp
or

tf
or

m
od

er
n

lib
ra

ri
es

an
d

fr
am

ew
or

ks
is

re
qu

ir
ed

fo
r

m
os

to
f

th
e

m
od

er
n

Ja
va

Sc
ri

pt
ap

pl
ic

at
io

ns
th

at
ar

e
bu

ilt
on

to
p

of
co

m
pl

ex
fr

am
ew

or
ks

,s
uc

h
as

R
ea

ct
[?

],
K

no
ck

ou
t.j

s
[1

9]
.

2

Given the large search space, our key insight is that a
crawler needs to be guided to accelerate a target dynamic
analysis to solve a problem. We propose a hybrid analysis
of JavaScript applications that is feedback-driven to direct
crawlers towards reaching program locations of interest, such
as DOM-based XSS sinks and REST calls.

Once the crawler identifies endpoints and drives the execu-
tion to reach them, a security analysis runs to report security
vulnerabilities. In this work, we focus on DOM-based XSS and
reflected XSS vulnerabilities. The DOM-based XSS analysis,
in particular, requires a practical dynamic taint analysis to
work on real-world applications. Being able to analyze modern
real-world applications as our main objective, we propose a
novel staged taint inference analysis to detect DOM-based XSS
vulnerabilities. Compared to the state-of-the-art dynamic taint
analysis tools [36], [49], [53], [34], [42], [43], our solution has
better recall and is less intrusive, which makes our analysis less
likely to break the semantics of the applications.

The rest of the paper is organized as follows: Sec. II
summarizes the closely related works and how they compare
against GELATO. Sec III describes the design of our feedback-
driven and guided crawler, and the input value generation to
bypass guards in the program. Sec. IV explains the staged
taint inference analysis used to detect DOM-based XSS vul-
nerabilities. Sec. V provides details on the implementation
of GELATO and Sec. VI explains the experimental setup,
evaluation results on various benchmarks and applications,
and comparison against state-of-the-art tools. Finally, Sec. VII
concludes the paper. In summary, we make the following
contributions:

• a new crawler that can be guided towards program
locations of interest using a call graph.

• a feedback-driven analysis that enables our guided
crawler to support modern client-side JavaScript li-
braries and frameworks instead of using manually
crafted models.

• a novel staged taint inference analysis that detects
potential DOM-based XSS vulnerabilities with high
accuracy.

• an input generator that supports both event and data
value generation to increase the coverage of security
analyses.

II. RELATED WORK

Client-side web application analysis has a large body of
literature, and over the past decade, many crawling and security
analysis techniques have been developed. In this section, we
compare GELATO against the related works in terms of the
crawling technology and taint analysis.

A. Client-side web application crawling

Crawljax [44] is a state-aware crawler that explores AJAX-
based client-side applications using dynamic analysis. It com-
putes the edit distance of the string representation of DOM
trees to compare states, and performs both depth-first and
breadth-first search strategies. Compared to Crawljax, our
approach is targeted and aims to increase coverage for a set of

program locations of interest. We combine static and dynamic
analysis and also generate data values as inputs to guide the
runtime execution.

jÄk [50] is designed to analyze modern web applications
to find server-side security vulnerabilities. The main goal
of this work is to increase code coverage and trigger all
interaction points in the client-side program to be able to find
more vulnerabilities on the server side. For this purpose, it
uses dynamic analysis of the client-side JavaScript program
to detect dynamically generated URLs, the registration of
events, etc. The dynamic analysis is combined with crawling
to interact with the application and infer a navigational model.

Similar to jÄk, we perform dynamic analysis to collect
runtime values, traces and to capture events that are difficult
to detect statically. Additionally, we use static analysis to guide
the crawler to specific locations in the program to avoid the
state explosion problem. Moreover, we integrate input value
generation to our crawling technique to increase the coverage
of relevant parts of the program.

FEEDEX [46] uses a state-aware feedback-directed crawl-
ing technique to derive a test model for client-side web
applications. The main focus of FEEDEX is to reduce the
test model size and enhance coverage in three aspects of a
test model: functionality, navigation and page structure. As
FEEDEX crawls the web application, the coverage of these
three aspects is fed back to the tool to prioritize next states
and events. Compared to FEEDEX, our technique focuses on
guiding the crawler towards specific locations in the program.
We guide the analysis by combining static analysis, link
extraction, state-aware crawling and input value generation.
To analyze modern web applications that heavily use complex
libraries for which static analysis is difficult, our feedback-
directed analysis refines the static analysis results using the
runtime execution. This novel design allows us to use the
crawler to improve coverage of security analyses, such as
DOM-based XSS detection and black-box REST fuzzing.

WATEG [55] takes a rule-directed test-case generation
approach that focuses on increasing the coverage of business
rules (functionalities) provided as specifications. As the pro-
gram executes, WATEG checks whether the invariants derived
from business rules are not violated. In this work, the crawler
is directed towards pre-determined functionalities (business
rules) using a two-phase approach: (1) uses coarse state com-
parison to create STD (abstract state transition diagram) and
to determine the portions of the state space that are relevant;
(2) uses a more fine-grained state comparison for the relevant
parts. The abstract paths of STD are used in the second phase
as starting points and refined to traversable paths that lead to
triggering the pre-determined functionalities.

Even though our technique also guides the execution
of the program, its goal is different. Unlike WATEG, our
technique guides the execution towards specific locations in
the JavaScript code or events and not to cover pre-defined
business rules. Therefore, we analyze the JavaScript code and
use program analysis techniques to prioritize the event and
state prioritization.

In what follows, we provide an overview of other related
works (not closely related) in the literature and compare
against our technique.

3

1) Scoped and guided crawlers: Scoped crawling [48] of
client-side web applications proposes strategies to limit the
scope of the exploration based on textual content, such as
topic, geography, language, etc. However, our approach uses
program analysis techniques to guide the execution towards
specific program locations.

Guided crawling aims to guide the exploration to achieve
a particular goal, such as increasing code, functionality or
navigation coverage [31], [46], [55]. Our crawling technique
is also guided because it uses prioritization strategies to guide
the execution. However, it aims to increase coverage of specific
program locations to drive a target analysis.

[32] guides the exploration of the application, aiming to
discover as many states as possible in a given amount of
time. Compared to [31], [46], [55], which focus on increasing
the diversity of crawled pages, this work mainly focuses on
increasing efficiency for an anticipated model. Our crawling
technique also improves efficiency for reaching program loca-
tions of interest without requiring a crawling model, and uses
different analysis techniques to make it targeted.

Recently, guided fuzzing techniques have been proposed
for C/C++ programs [33], [51]. Similar to our approach,
AFLGo [33] uses call graph distance from target locations
in the program as a metric to prioritize input generation.
However, our approach goes one step further and also allows
on-the-fly refinement of the statically constructed call graph
to add missing and remove false positive edges in the call
graph. Moreover, we analyze JavaScript applications that have
a highly dynamic nature and require support for both events
and input values.

2) Traditional crawlers: Many of the traditional web ap-
plication crawlers available in the industry are not state-
aware, and rely only on static link extraction over the HTML
pages [3], [24], [28]. To be practically useful for vulnerability
detection, security analysts need to manually interact with the
application to take the browser to the desired states. However,
our technique is fully automatic, and combines static and
dynamic analysis of JavaScript code to guide the crawler
towards target (security-sensitive) locations in the program.

3) Data input generation: In addition to event-based in-
puts (e.g., clicking), client-side web applications also accept
input value in URLs and form elements such as input fields.
Therefore, to explore a client-side application deeply enough,
input value generation is required. For input fields, existing
approaches mostly provide random data if no custom data is
available [45]. More heavyweight analyses such as symbolic
execution have also been proposed [52], [54], which are known
to be prone to scalability issues. In contrast, we propose a
lightweight data input generation technique based on taint
inference that starts with random or custom data, but generates
new inputs to bypass validation routines and reach target
locations (sinks) in the program.

Autogram is a recent work that explores input generation
by mining grammars [38]. It uses dynamic taint tracking to
trace the data flow of each input character for a set of sample
inputs. By grouping input fragments that are handled by the
same functions, it produces a context-free grammar that can
be combined with fuzzers to generate inputs. In contrast, our
input generation assumes that the input grammar is known

(e.g., URL) and tries to bypass the validation routines using
taint inference.

B. Taint Analysis

In this section, we compare our approach against existing
taint analysis techniques used for finding vulnerabilities in web
applications.

Several static analysis techniques have also been proposed
to analyze JavaScript applications [40], [37], [41]. However,
the lack of static predictability and presence of dynamic typing
in JavaScript as well as the asynchronous and event-based
nature of web applications can be highly problematic for
determining taint flows using static analysis techniques.

Dynamic analysis of JavaScript programs requires instru-
mentation. Two types of instrumentation techniques are used
for dynamic analysis of web applications: engine-level instru-
mentation [42], [56], [43], and code-rewriting [53], [49], [17],
[36]. Engine-level instrumentation involves adding hooks to
the JavaScript engine. While this design can have performance
benefits from being compiled into the engine itself, it is not
portable across different engines and requires considerable
effort to maintain [42].

On the other hand, source code-level instrumentation [14],
[34] involves replacing and/or appending code to the existing
program’s source-code so that the runtime behavior can be
analyzed without affecting the original behavior. This method
has drawbacks in performance, but is often easier to write and
test, and can be engine-agnostic.

Dynamic taint analysis involves tracking taint labels in
a program during its execution. DexterJS [49] carries out
character-level taint tracking using code-rewriting to discover
potentially vulnerable taint flows. This approach involves
tracking each character originating from a taint source individ-
ually. Even a single character reaching a sink can be detected,
provided that it is propagated from the tainted value. DexterJS
attaches taint labels to primitive values by wrapping (boxing)
them. Because built-ins, browser APIs and DOM functions
cannot be instrumented, DexterJS requires hard-coded models.
However, coming up with models that capture all runtime
behavior is very challenging. In fact, our experiments with
DexterJS [49] show that incomplete models for built-ins result
in missing valid taint flows.

Linvail [34] is a dynamic shadow execution framework
based on source-code-level instrumentation that can be used
to implement dynamic taint tracking. To make sure the an-
alyzed program is not affected by wrapped values, Linvail
permanently unwraps and wraps values around calls and uses
JavaScript proxies to intercept object accesses from non-
instrumented code. However, in order to handle side-effects
and keep track of taint labels in non-instrumented code, it
relies on an oracle of hard-coded models. Providing a complete
oracle that preserves the semantics of the program is known
to be very challenging.

Jalangi1 [53] (not maintained anymore) is another dynamic
analysis framework based on source code-level instrumentation
that provides shadow execution to run different types of
analysis, e.g., dynamic taint tracking. To support primitive
values in the shadow execution, it has hard-coded wrapping

4

and unwrapping operations for language-level operations, e.g.,
assignments. For external code that is not instrumented, its
partial solution handles built-in calls that expect primitive
values but receive wrapped values instead. However, it might
break the semantics of the program when wrapped objects
reach non-instrumented code. Also, during the offline mode
in Jalangi1, external calls are replaced with concrete values,
thereby ignoring side-effects and potentially deviating from
the dynamic execution. Unlike Jalangi1, Jalangi2 [14] only
provides syntactic traps to implement dynamic analyses to
avoid the existing problems in Jalangi1.

Compared to the dynamic taint tracking approaches, our
taint inference analysis is based on source code-level instru-
mentation. We use Jalangi2 to instrument JavaScript programs
with our analysis code because it is easy to maintain and
can work across different JavaScript engines. Our analysis
is lightweight and can deal with the non-instrumented parts:
built-ins, browser APIs and DOM functions.

Affogato [36] is an instrumentation-based dynamic taint
inference analysis tool for Node.js applications. Similar to
GELATO, it finds injection vulnerabilities by detecting flows
of data from untrusted security-sensitive sources to sinks at
runtime using a non-intrusive grey-box taint inference analysis.
GELATO goes one step further and improves the precision by
introducing a multi-staged approach.

III. FEEDBACK-DRIVEN, GUIDED, AND SECURITY-AWARE
CRAWLING OF MODERN WEB APPLICATIONS

Most of the existing crawlers are designed as standalone
drivers to interact with an application with the goal of getting
maximum coverage of the executed code or discovered hyper-
links. However, the search space in modern web applications
is simply too large for such a coarse-grained approach to be
useful in practice. As a result, based on a target analysis, the
security analysts often need to manually identify which parts of
the application should be prioritized and explored more deeply
to find security vulnerabilities.

In this work, we take the first step to automate guiding a
state-aware crawler based on the requirements of a target se-
curity analysis using a feedback-driven approach. Algorithm 1
shows the main feedback loop of our crawler. This algorithm
takes as input the URL of a web application, a target security
analysis, TA, and a set of program locations, Loc, that the
crawler should be guided towards. The loop continues until the
crawler reaches a fixpoint and there are no more new states to
visit, and the results of the target analysis (Results) is reported
as output.

At each iteration, we run a target security analysis, TA,
over the JavaScript and HTML code in the given state, S, and
collect results. At the same time, we run an approximate call
graph analysis [35] on the newly discovered JavaScript code,
and collect the execution trace using lightweight instrumen-
tation. The execution trace helps us to determine the actual
(true positive) function calls, thereby removing false positive
call graph edges, and adding newly discovered ones to the
ACG, which contains the call graph for the explored parts of
the application. PrioritizeEvent(S,ACG) determines which
event should be triggered next based on the metrics described
in Sec. III-D that are computed using ACG and the current

state S. In Sec. IV, we describe a novel taint inference anal-
ysis to detect DOM-based XSS vulnerabilities as an example
security analysis that fits well in our approach.

Algorithm 1 Feedback-driven and guided security-aware
crawler

1: inputs: web application URL, target analysis TA, target
program locations Loc

2: output: Results
3: ACG← ∅
4: browser.goto(URL)
5: while browser.newStateExists() do
6: S ← browser.getNewState()
7: Results← Results ∪ ANALYZE(S, TA) // See Algo-

rithm 2
8: cg ← computeACG(S)
9: trace← getExecutionTrace(S)

10: ACG← refineACG(ACG, cg, trace)
11: e← prioritizeEvent(S,ACG)
12: browser.goto(e)
13: end while
14: report(Results

A. State representation and comparison

The first key challenge in designing a state-aware crawler
is to come up with a suitable state representation. Ideally, we
would like to store the entire browser and server state to be
able to switch back and forth between the states gracefully.
However, keeping such a huge amount of information in each
state is unrealistic. To address this challenge, we try to keep
the size of the states minimal by storing only: (1) URL; and
(2) DOM tree, which we have found to be the most crucial
elements. We also record references to the parent and child
states to be able to replay the sequence of events that have
been triggered to reach the current state.

We determine whether a state has been visited before using
the following heuristics: (1) the path segment of the URL
is the same; (2) the size of the DOM tree has not changed
dramatically (less than a threshold); (3) the hash computed for
the DOM tree is exactly the same, or the difference in DOM
tree structure is less than a threshold.

B. Search strategy

We perform Depth First Search (DFS) on the crawler state
graph to explore the states. However, because we do not keep
the entire browser state, it is not possible to directly backtrack
and take the browser to a previously visited state. One way
to go back to a visited state is to replay event sequences
all the way from the root to reach a particular state. This
approach requires triggering many unnecessary events that can
significantly affect the efficiency of the crawler.

To deal with this challenge, we apply heuristics to take the
browser to a previously visited state: (1) check whether the
target state can be reached by triggering another event from
the current state; and (2) compute the shortest path in the state
graph to reach the target state.

5

1 <!DOCTYPE html>
2 <html lang=’en’>
3 <script src=’./knockout-min.js’></script>
4 <script>
5 function event_handler() {
6 fetch(’’);
7 }
8 </script>
9 <body>

10 <button id=’knockout_data_bind_1’ data-bind=’click:
button_click’>knockout_data_bind</button>↪→

11 <script>
12 function KnockoutViewModel() {
13 this.button_click = function() {
14 event_handler();
15 };
16 this.button_text = ’knockout_data_bind’;
17 }
18 ko.applyBindings(new KnockoutViewModel());
19 </script>
20 </body>
21 </html>

Listing 1: An example framework code that is hard for ACG to analyze soundly, and
misses a critical call graph edge. Our call graph refinement approach, however, is able
to detect and add it to the call graph.

C. Call graph refinement

ComputeACG in Algorithm 1 generates an approximate
call graph using ACG [35] for the JavaScript code executed
in the state S. Note that the call graph construction is initially
performed statically. As the crawler interacts with the user
interface, we collect the function calls as part of the execution
trace. This execution trace is next processed to examine
whether an edge in the call graph is missing or is a false
positive. The call graph is updated with this new information.
An edge from node a to node b in the call graph is considered
as a false positive if visiting a does not result in visiting b.
And an edge from node a to node b is missing if the call
graph does not include such an edge but the execution trace
does. Listing 1 is a code-snippet from the knockout.js [19]
framework. Due to a complex event delegation mechanism,
ACG fails to find the edge from the click event in the
button element to event_handler function. However, once
the crawler clicks on this button, the execution trace records
that event_handler gets triggered. This newly found edge
is added to the call graph, ACG.

D. Prioritization

We prioritize a state that is visited for the first time (not
similar to any of the previously visited states) if it contains
a target program location (Loc in Algorithm 1). For partially
expanded states, we use a prioritization heuristic to choose the
next event in the state that should be triggered by the browser.
To guide the crawler towards target program locations, we
prioritize an event if it has the minimum distance from the
handler (registered to handle it) to a target location in the call
graph.

E. Input value generation

While the state-aware crawler interacts with the JavaScript
application, we analyze (line 7 in Algorithm 1) the JavaScript
code returned from the server side1, generating input values to
bypass guards and increase coverage. There are several ways to

1The JavaScript code is stored in the crawler state.

provide input values into a client-side JavaScript application:
forms, URLs, cookies, local storage, etc. In this section, we
show how we integrate input value generation for URLs to
our state-aware crawler for simplicity. However, the same
algorithm can be used for other sources of input values.

The input value generation is performed only on the states
that are candidates to be analyzed by the target analysis (TA in
Algorithm 1). A state is analyzed if its code contains a target
program location. Algorithm 2 shows how we generate input
values.

At high level, to bypass the guards on the execution path
we collect runtime values of interest during the execution,
construct path constraints, and solve them to generate inputs
(generateNewURLs at line 19). The guards that we aim
to bypass are validation routines that must be satisfied to let
the analyzer reach the deeper parts of the program. Example
runtime values of interest are operands in conditional state-
ments (e.g., if statement) and arguments in string function
calls (e.g., the string.substring built-in function) that are
triggered on the execution path. We use such logged values in
constraint generation if they are tainted (the taint analysis is
explained in detail in Sec. IV). These constraints are used to
replace tainted characters of input values that are compared in
a conditional statement.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <button id="button1" onclick=safe()> Button 1 </button>
5 <button id="button2" onclick=unsafe()> Button 2 </button>
6 <textarea id = ’text1’ style="display:none;">This is

safe! </textarea>↪→
7 <script>
8 function safe(){
9 document.getElementById("text1").style =

"display:true;";↪→
10 }
11 function unsafe(){
12 var loc = document.location.hash //url is

"http://example.com#action"↪→
13 if (loc.indexOf("show")!=-1) {
14 document.write("You are visiting site: " +

document.location.href + ".");↪→
15 }
16 }
17 </script>
18 </body>
19 </html>

Listing 2: An example of HTML/JavaScript code with constraints on input value.

We explain the input value generation in Algorithm 2
through an example. Listing 2 shows a simplified application
that is vulnerable to DOM-based XSS attack. In a DOM-
based XSS attack, the attacker-controllable input (e.g., URL) is
loaded in the victim’s browser and the injected payload flows
to a DOM manipulation statement that results in running the
malicious payload, such as stealing cookies, under the victim’s
session. In this example, a value obtained from the URL at
line 12 is written to the document object at line 14, which
modifies the DOM and allows to run the attackers malicious
payload. However, the original URL used to load the page is
"http://example.com#action", which does not contain
"show". Therefore, line 14 is not executed when the original
input value is used. Next, we show how we generate an input
(URL) that bypasses the validation at line 13 and allows the
execution to reach line 14.

6

Initially, the execution path (π) in Algorithm 2 is empty
and the test input queue, InputQ, contains the original URL.
Our input generator continues generating new test inputs until
InputQ is empty. In each iteration, an input is removed from
InputQ and passed to the runTargetAnalysis function,
which runs the target analysis (TA) determined by the analyst.
Before running the target analysis, we take the browser to
state S by obtaining and triggering the corresponding event
sequence (eventSeq(S)).

As the target analysis is performed at line 7, the condi-
tional statements (e.g., if statements) are logged in π, which
are used to generate path constraints and new test inputs
at line 8. Going back to the example in Listing 2, when
analysis executes line 13, we record the if statement together
with the following runtime values in π: "show", -1 and
"http://example.com#action" (value of loc variable).

The V alueInputGen function in Algorithm 2 generates
new inputs using the values recorded in the execution path,
π. If a value in a conditional statement or string func-
tion call is identified to be tainted by taint analysis (See
Sec. IV for details), the tainted characters and the value that
they are compared against are recorded in the Constraints
map. For instance, the value of loc at line 13 in Listing 2
is inferred to be tainted by taint analysis, and the tainted
characters are "action". Therefore, "action" is added to
Constraints[3].taintedV al at line 15 in Algorithm 2. We
also record "show", which is the value that the tainted value
is compared against.

Finally, the genConstraint function at line 16 in the
algorithm generates the loc == "show" constraint and stores
it in the Constraints map. The generateNewURLs function
at line 19 replaces "action" with "show" in the original
URL2 and generates a new input3. If the target analysis is
DOM-based XSS detection, once the new URL is loaded and
analyzed at line 6 in Algorithm 2, line 14 in Listing 2 is
executed and a DOM-based XSS vulnerability is reported.

F. Support for other features

In this section, we elaborate on the remaining features
mentioned in Table I that are supported by GELATO.

Dynamic event handler registration. We perform dynamic
analysis to collect runtime values, traces and to capture events
that are difficult to detect statically. To perform the dynamic
analysis, we instrument the JavaScript code to collect traces
and hook into the event handlers to capture the events that
otherwise cannot be found at runtime.4 There are also many
cases where the event registration is done in a library through a
complex mechanism that is not straightforward (e.g., the event
delegation mechanism in jQuery [15]). In such cases, we use
models for the common libraries and frameworks that allow
us to extract the required information from their internal data
storage.

Static link extraction. Similar to most of the existing crawlers,
we statically extract links from the HTML pages. In addition,
we integrate static link extraction to the state prioritization,

2http://example.com#action
3http://example.com#show
4These are the events that are registered using addEventListener

Algorithm 2 Input value generation

1: function ANALYZE(S, TA)
2: π ← ∅ // JavaScript execution path
3: InputQ← URL //initial seed input value
4: while notInputQ.isEmpty() do
5: v ← InputQ.pop()
6: browser.Goto(eventSeq(S)
7: π ← runTargetAnalysis(v, TA)
8: InputQ.add(VALUEINPUTGEN(π))
9: end while

10: end function
11: function VALUEINPUTGEN(π)
12: Constraints← ∅
13: for n in π do
14: if taintAnalysis(n.val) then
15: Constraints[n.loc].taintedV al =

taintedV al(n.val)
16: Constraints[n.loc].cons =

genConstraint(n)
17: end if
18: end for
19: Return generateNewURLs(Constraints, URL)
20: end function

as follows. Before the state-aware crawling starts, GELATO
statically extracts links from HTML pages starting from URL.
This step allows us to retrieve a partial and coarse-grained
structure of the web application. We also build call graphs
statically for the JavaScript code of the extracted pages and
prioritize them for the state-aware crawling if they contain
user-specified target locations (Loc in algorithm 1).

Filling forms. GELATO fills forms with payloads provided as
configuration. Furthermore, we use the input value generation
technique described in Sec. III-E to fill form fields.

IV. TARGET SECURITY ANALYSIS: DOM-BASED XSS
DETECTION

In this section, we describe a novel DOM-based XSS
detection technique as an example security analysis that can
be integrated into our guided crawler to detect vulnerabilities
in real-world JavaScript applications. For DOM-based XSS
analysis, the crawler needs to be guided towards DOM manipu-
lation locations, which are marked as sinks. Once the crawler
reaches the states that contain such sinks, we perform taint
analysis as described below to detect vulnerabilities.

Dynamic taint analysis is a common technique to detect
injection vulnerabilities in applications written in dynamic
languages. In practice, however, several technical challenges
must be addressed to implement a dynamic taint analysis that
will be able to analyze real-world applications. In this section,
we first elaborate on the technical challenges that must be
addressed to implement a dynamic taint analysis for JavaScript.
Then we present our dynamic taint inference approach that
overcomes or circumvents these challenges.

Dynamic analysis for JavaScript has a short but rich
history [30] and we can already extract valuable lessons from
existing work. This type of analysis requires instrumentation

7

either at JavaScript engine [42], [56] or source-code level [53],
[49], [17] to be carried out. An engine-level instrumentation-
based analysis would require substantial effort in order to
support multiple engines and to be maintained in the long-
term. Being engine-agnostic is important for security analysis
because it is possible for an attack to work on one engine but
not on another one [49]. The dynamic taint analysis should
find taint flows regardless of the engine it is running on.

Previous works show that source-code level
instrumentation-based dynamic taint analysis for JavaScript
will face the following challenges:

1) Tracking taint through non-instrumented code.
2) Attaching taint labels to primitive values.

Because modern JavaScript engines are typically imple-
mented in low-level languages (C, C++), an instrumentation-
based dynamic analysis will not be able to instrument all built-
in functions (e.g., array modification, and string operations).
Furthermore, for efficiency reasons, it is often desirable not
to instrument an entire application to leave some modules
uninstrumented. Consequently, the analysis needs to model
what happens in non-instrumented code and update taint
labels accordingly. A common approach to deal with non-
instrumented code is to use manually created models [34], [49],
[17]. Unfortunately, our experience with these tools suggests
that their models contain bugs and are incomplete.

Finally, because primitives cannot be extended with ad-
ditional properties, instrumentation-based approaches need to
wrap primitives in an object that will have a property repre-
senting the taint label of the primitive value – aka, boxing.
Because wrapping primitives is an intrusive process that alters
the execution of the original program, care must be taken
not to alter its semantics. However, empirical evidence from
previous work [34], [49], [53] suggests that wrapping primi-
tives while preserving the semantics of the original program
is extremely challenging. In general, wrapped primitives must
be unwrapped before they exit the instrumented code, and
wrapped before they enter the instrumented code. We suspect
that because of these difficulties primitive wrapping has been
dropped in the new version of Jalangi (Jalangi2) [14].

To highlight the challenges encountered by existing dy-
namic taint tracking solutions, consider the code-snippet in
Listing 3. This example shows a JavaScript program that con-
tains a vulnerable taint flow from the source, location.hash
at line 1, to the security sensitive sink, document.write at
line 5. In this example, the string value #payload is injected
in the URL as the fragment identifier (i.e., the part of the
URL following the # sign). DexterJS [49] fails to report the
vulnerable taint flow due to an incorrect model used for the
uninstrumented built-in function, substring at line 2. On the
other hand, Linvail [34] and Chromium Taint Tracking [42]
report two taint flows at both lines 4 and 5, even though
document.write at line 4 is not tainted.

A. Dynamic Taint Inference

To address the challenges listed above, we developed a
non-intrusive, dynamic taint inference analysis based on source
code-level instrumentation. Our analysis infers tainted flows
by correlating values at sources and sinks, and observing the

1 var tmp = document.location.hash; // tmp = "#payload"
2 tmp = tmp.substring(3,7); // tmp = "yloa"
3 tmp = tmp + "123"; // tmp = "yloa123"
4 document.write(tmp.substring(5)) // "23" is written to

DOM↪→
5 document.write(tmp); // "yloa123" is written to

DOM↪→

Listing 3: Example JavaScript program that contains a vulnerable taint flow.

Fig. 1: Flow diagram of our staged dynamic taint flow inference technique.

behavior of the program instead of attaching and tracking taint
labels.

Fig. 1 shows our staged approach to discover correlations
between values at taint sources and sinks. The stages, rep-
resented as diamonds in Fig. 1, act as increasingly complex
filtering steps that aim to maximise the precision of our
approach.

1) Stage 1: Substring: The first stage looks for an exact
substring match of length ≥ θ between string values observed
at sources and sinks, i.e., whether either string is a substring
of the other. If a match of length ≥ θ is found, a taint
flow is immediately reported. Otherwise, the remaining three
stages (shown in the grey box) are used to infer taint flows
when the values at sources and sinks approximately match.
The remaining three stages will be described in the following
sections using the symbols outlined below.

• A = a source (identified by location in source-code)

8

• B = a sink (identified by location in source-code)

• Av = string value at source A

• Bv = string value at sink B

• F = a taint flow detected by our analysis

2) Stage 2: Edit Distance: If neither Av or Bv is a
substring of the other (i.e., the substring stage does not report a
match), the edit distance filter performs approximate matching
of Av and Bv . Specifically, this stage computes the longest
common subsequence (LCS) [47] between Av and Bv , extracts
Di and Dd, the number of insertions and deletions required to
compute the LCS, computes a similarity score, and compares
it to a threshold η, as shown in Algorithm 3. The source-sink
(A, B) pairs that pass this test in this stage are recorded and
processed in the next stages to filter out false positives (FPs).

Algorithm 3 Edit Distance Stage

1: function EDITDISTANCE(Av , Bv , η)
2: Let Di, Dd = LCS(Av, Bv)
3: Let L = max(len(Av), len(Bv))

4: if L−(Di+Dd)
L ≥ η then

5:
6: return "Yes"
7: end if
8:
9: return "No"

10: end function

3) Stage 3: Sink Check: According to the flow diagram
in Fig. 1, when a source-sink pair (A, B) reaches the sink
check stage, we know that there is no exact substring match but
that the two strings are similar. To weed out cases where the
similarity happens by chance (i.e., there is no taint flow from
A to B), the sink check stage mutates Av into A′v by changing
a few characters randomly, running the program again with the
new source input, and observing B′v . There are three possible
outcomes, as shown in Algorithm 4:

1) Sink B is not reached (B′v is NULL). The execution
path triggered by A′v has diverged from the execution
path triggered by Av . The pair (A, B) proceeds to the
next stage.

2) B′v is different from Bv , indicating that the value at
A has an impact on the value at B. The pair (A, B)
proceeds to the next stage.

3) B′v is identical to Bv , indicating that the value at A
probably has no impact on the value at B. The pair
(A, B) does not proceed to the next stage.

Algorithm 4 Sink Check Stage

1: function SINKCHECK((A,B))
2: Let A′v = mutate(Av)
3: B′v = runApplication(A′v)
4: if B′v is NULL then
5:
6: return "Proceed to next filter"
7: else if B′v 6= Bv then
8:
9: return "Proceed to next filter"

10: else if B′v == Bv then
11:
12: return "No taint flow from A to B"
13: end if
14: end function

4) Stage 4: Trace Check: Trace Check is the final and
most expensive stage of our taint flow inference process. It
aims at detecting real taint flows with high precision. This
step involves recording the JavaScript execution trace and
analyzing the string manipulation operations performed on Av

to determine whether Bv is derived from Av (i.e., there is a
taint flow from A to B).

Algorithm 5 shows our trace check stage. Given a source
value Av , a number of insertions Di, a number of deletions Dd,
and the execution trace seeded with Av , the TRACECHECK
procedure determines whether the string operations in the
trace can possibly transform Av into Bv . The sub-procedure
ISOPTAINTED in Algorithm 5 re-uses the Substring and Edit
Distance stages, parameterised with θ and η, to determine
whether the base variable or any argument of a string operation
matches Av . If the base variable or any argument matches Av ,
ISOPTAINTED returns true.

Algorithm 5 Trace Check Stage

1: function TRACECHECK(Av , Di, Dd, trace)
2: Let Dti = 0 and Dtd = 0
3: for each stringop in trace do
4: if ISOPTAINTED(stringop, θ, η, Av) then
5: if ISOPINSERTION(stringop) then
6: Dti += 1
7: else if ISOPDELETION(stringop) then
8: Dtd += 1
9: end if

10: end if
11: end for
12: if (Di > 0 && Dti == 0) || (Dd > 0 && Dtd == 0)

then
13:
14: return "Trace does not match"
15: else
16:
17: return "Trace matches"
18: end if
19: end function

The trace check stage counts the number of tainted string
operations that are insertions (Dti), and deletions (Dtd) in
the trace. Then, it weeds out traces where either no insertion
happens while Di > 0 or no deletion happens while Dd > 0.

9

We now revisit the example in Listing 3 to show how our
taint inference technique correctly reports an inferred taint flow
at line 5 and does not report any flows at line 4. For the sink at
line 4, the observed values are Av = "#payload" and Bv =
"23". Since Av and Bv do not pass the check at Substring
stage, they are passed to the Edit Distance stage. As these
values also fail to pass the Edit Distance check, the analysis
does not infer any taint flows.

For the sink at line 5 in this example, Av = "#payload",
Bv = "yloa123", Di = 3, Dd = 4. Inspecting the trace
between line 1 and 4 in this example, the Trace Checking
filter is able to determine that one string concatenation and
two substring operations occurred. Because both of these
operations are performed on the tmp base variable with the
string values "#payload", "yloa" and "yloa123", they
pass the ISOPTAINTED check at line 4 in Algorithm 5 that
compares them against the source value #payload. The trace
check algorithm then computes Dti = 1, and Dtd = 2 and
concludes that the trace matches at line 15 in Algorithm 5.

V. IMPLEMENTATION

We implemented our security-aware guided crawler in a
tool called GELATO. To guide our input generator towards tar-
get locations, we use the pessimistic mode in the approximate
call graph construction [35] to statically build call graphs. We
have developed a new lightweight instrumentor to carry out
the dynamic analysis of JavaScript code for dynamic event
handler registration and call graph refinement. The dynamic
analysis finds dynamically registered events, new pages and
missing edges in the call graph at runtime. The lightweight
instrumentor is also used to collect runtime values and generate
constraints for creating new input values.

The source-sink identification, Substring and Edit Distance
checkers in the taint flow inference system are implemented
as an analysis written in JavaScript on top of the Jalangi2 [14]
analysis framework. The Response Check and Trace Check
components are written in Python, using WebSocket to com-
municate with the JavaScript part of the system. The taint
flow reporting, crawler and event generator are implemented
in Python using bindings for Pyppeteer [25], a browser au-
tomation framework.

The taint flow inference framework requires a list of
sources and sinks to begin with. The same sinks are used
to guide the crawler for DOM-based XSS detection. These
JavaScript methods and property read/write statements are
intercepted using Jalangi to record and analyze their values.

VI. EVALUATION

The experiments are performed in Google Chrome browser
version 55.0.2883.87 and ChromeDriver version 2.27.440175
on Ubuntu 16.04 running on VirtualBox 6.0, Intel i7-7700
CPU @ 3.60GHz x 4 (4 cores assigned to VM) with 4096
MB memory. To evaluate our feedback-driven edge addition
technique, we have manually created models for complex
libraries, jQuery [15], Knockout.js [19], and React.js [26] that
help find missing edges in the call graph to improve coverage
of target locations. We compare the results of our edge
addition technique with these manually created models. In our
experiments we answer the following research questions:

• RQ1: How effective is GELATO’s feedback-driven and
guided crawling technique in terms of coverage and
performance?

• RQ2: How does GELATO compare against other tools
for the number of discovered URLs?

• RQ3: How effective is GELATO’s DOM-based XSS
detection technique compared to the state-of-the-art
taint analysis techniques in terms of precision and
recall?

A. Choosing benchmarks

One of the challenges we have faced for evaluating
GELATO is choosing benchmarks. Existing taint analysis works
often evaluate on Alexa top [1] websites, however, we are
constrained to fuzz and analyze websites and applications that
are published as open-source projects for comparing analysis
tools. Therefore, we have gathered deliberately vulnerable
open-source applications, vulnerable libraries, our in-house
applications, and micro-benchmarks. Our criteria for choosing
benchmarks are to:

• be realistic, diverse, and use modern technologies

• use complex libraries and show the capability to detect
known CVEs

• include both single-page and multi-page applications

• show the accuracy of the analysis by evaluating on
relevant micro-benchmarks

• be tested by the related works if possible

We evaluate GELATO on two target analyses, for which we
have collected different benchmarks. The first target analysis
reports the AJAX calls and URLs found during exploring
the client-side web application, which can be used for REST
API testing of the server side. The second target analysis is
DOM-based XSS detection using taint inference, as descibed
in Sec. IV. Details of each set of benchmarks are described in
the following sections.

B. RQ1: effectiveness of our feedback-driven and guided
crawling technique

First we evaluate the effectiveness of our feed-back driven
and guided crawling technique by measuring the performance
and coverage of AJAX calls on two internal Oracle applica-
tions, WebScanTest [29], which is the live instance of a pro-
gram used to evaluate crawlers, and Juice Shop v8.3.0 [18], a
modern and sophisticated deliberately vulnerable web applica-
tion. We decided to use these applications for our experiments
because they make use of various modern technologies and
libraries, such as jQuery [15], Knockout.js [19], React.js [26],
and AngularJS [2]. To compare the overall coverage of our
approach with other crawlers, we ran well-known crawlers
on open-source applications that are also used as benchmarks
in [50].

Fig. 2 shows how our guided crawling strategy compares to
a non-guided random crawling strategy. Note that the random
strategy still benefits from our dynamic analysis techniques

10

0 5 10 15 20
0

5

10

15

20

Minutes Crawled

N
um

be
r

of
U

ni
qu

e
A

JA
X

R
eq

ue
st

s
WorkBetter (OJET)

Random
ACG + Models

ACG + EA
ACG + Both

0 20 40 60 80 100 120
0

20

40

60

80

100

Minutes Crawled

N
um

be
r

of
U

ni
qu

e
A

JA
X

R
eq

ue
st

s

Archivist

Random
ACG + Models

ACG + EA
ACG + Both

0 5 10 15 20
0

20

40

60

80

Minutes Crawled

N
um

be
r

of
U

ni
qu

e
A

JA
X

R
eq

ue
st

s

WebScanTest

Random
ACG + Models

ACG + EA
ACG + Both

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Minutes Crawled

N
um

be
r

of
U

ni
qu

e
A

JA
X

R
eq

ue
st

s

Juice Shop

Random
ACG + Models

ACG + EA
ACG + Both

ACG + Random

Fig. 2: Evaluating guided crawling against random crawling.

and only replaces the state and event prioritization functions
in Algorithm 1 with random selection.

In this experiment, we count the number of distinct AJAX
calls made by each strategy over time. The timeout for this
experiment is 120 minutes, but we don’t show the results
once all the strategies start to plateau or they reach a fixpoint,
i.e., finish running, before the timeout. We evaluate three
versions of our guided crawling technique: (1) ACG + Models,
which uses manually crafted models for libraries, such as
jQuery when the approximate call graph fails to analyze them
effectively; (2) ACG + EA, which is our feedback-driven edge
addition technique to refine the statically generated call graph
during runtime execution and add newly found edges; and (3)
ACG + BOTH, which uses both Models and EA. By comparing
these three versions, we evaluate the effectiveness of our novel
ACG Edge Addition technique, which is fully automatic and
can be used when manually crafted models for libraries are
not available.

Archivist: Archivist is a highly interactive application for doc-
ument management that uses the AngularJS [2] framework and
jQuery [15] library. The random strategy performs significantly
worse than our ACG guided strategies consistently. The ACG
+ EA is not as effective as the manually crafted models for
this application but the gap between them is small. Therefore,
replacing the manual models with the edge addition technique
can be promising.

WorkBetter: WorkBetter is a tutorial application used to
demonstrate the OJET [22] framework. Apart from OJET, it
also uses the Knockout.js [19] framework and jQuery library.
All of the ACG guided strategies outperform the random
strategy on this application. Among the ACG strategies, ACG
+ BOTH outperforms the others and the EA is more effective
than the manually crafted models. The results on this appli-
cation show that not only EA can replace the manual models
but also achieves better coverage within the same amount of
time.

11

WebScanTest: The ACG Edge Addition strategy for this
benchmark outperforms the two other strategies for the AJAX
call detection experiment. The ACG Model finds almost the
same number of AJAX calls as the random strategy. ACG +
Both outperforms the other strategies and EA is more effective
than the manually crafted models towards the end.

Juice Shop v8.3.0: Unlike the other applications in this
experiment, the ACG strategies do not outperform Random,
ACG + Both catching up with Random only after 40 minutes
of crawling. Juice Shop is a highly AJAX-driven application
and many of the events result in triggering an AJAX call.
Therefore, even a Random strategy can be effective due to
the nature of the application. In fact, our closer investigation
revealed that ACG strategies overprioritize certain events in
this case, leaving few chances for other events to be triggered.
To further understand this behaviour, we experimented with a
hybrid strategy (ACG + Random), where one in five events
is chosen randomly and the rest of the events are prioritized
based on the call graph distance metric. The result shows that
this hybrid strategy significantly outperforms the pure ACG
strategies after 45 minutes. In future, we plan to experiment
with such hybrid strategies for applications that are similar in
nature to Juice Shop.

In summary, we show that our guided crawling strategy
finds AJAX calls more quickly than the random strategy in
all three applications, which make use of modern technologies
and are non-trivial to crawl. Moreover, our feedback-driven
edge addition (ACG EA) technique is shown to be effective:
the number of AJAX calls found by this technique are in the
same ballpark as the carefully constructed manual models.

In addition to the guided crawling strategy, we integrate
dynamic analysis of JavaScript, link extraction and state-aware
crawling in a novel way. We compare this novel design against
state-of-the-art crawlers on open-source applications that are
also used as benchmarks in [50]. Table II shows the total
number of URLs and AJAX calls recorded by each tool. The
results show that our crawler records more URLs and AJAX
calls than other tools except for Wivet benchmark (Arachni
finds six more URLs).

TABLE II: Comparing our crawler against state-of-the-art crawlers for number of URLs
and AJAX calls.

Crawlers Tested Web Applications
Public firing range DVWA Wivet WebGoat

Our prototype 268 76 77 85
Arachni [3] 257 27 83 3

Crawljax [44] 83 20 15 2
Htcap [13] 160 63 68 65
jÄk [50] 257 34 76 83

C. Results for DOM-based XSS detection

For the second target analysis, DOM-based XSS detection,
first we evaluate the effectiveness of our staged taint inference
techniques on micro benchmarks and libraries with known
DOM-based XSS vulnerabilities. We use two open-source
micro benchmarks designed to evaluate DOM-based XSS
detection tools: Firing Range [10]5 from Google, and IBM

5For the Firing Range benchmark, we evaluate only against the DOM-
related test cases: address tests [8], urldom tests [11] and dom tests (toxic-
dom) [9].

benchmarks [20]. We also compare our taint inference tech-
nique against dynamic taint tracking in DexterJS [49], and CTT
(Chromium Taint Tracking) [42], the state-of-the-art DOM-
based XSS detection tools. Next, we evaluate the effectiveness
of our guided crawling strategy and input generation technique
for DOM-based XSS detection analysis.

1) Taint flow inference on microbenchmarks: The inputs
to a DOM-based XSS vulnerability are often provided in the
URLs, which can easily be controlled by attackers. While some
of the test cases in the Firing Range and IBM benchmarks
contain a valid flow from a source to a sink, the value at
the source cannot be directly tainted through URLs, e.g.,
sessionStorage. Table III considers only test cases that can
be triggered through a user-controlled URL, effectively also
omitting the test cases for which DexterJS and CTT report
false positives. The criteria used to label test cases as being
controllable are as follows:

• Contains at least one valid URL-controllable input
(source) that enters the JavaScript program.

• Contains at least one valid sink.

TABLE III: Vulnerability detection on microbenchmarks – URL-controllable test cases

Benchmark Firing Range IBM
address tests urldom tests dom tests (toxicdom)

Test Cases 28 26 3 66
GELATO 23 22 3 60
DexterJS 21 6 3 53

CTT 18 10 3 54

Table III shows that our framework finds more taint
flows than DexterJS and CTT. This is particularly apparent
in urldom test cases, where our framework is able to de-
tect a significantly higher portion of the URL-controllable
test cases. In particular, we can report the taint flow in
Incorrect_Sanitizer/apollo_test_01.html test case
in the IBM benchmark, which is triggered if the URL has
topic= query parameter. GELATO successfully finds this query
parameter and reports the taint flow. This test case shows
the effectiveness of our value input generator and constraint
heuristics explained in Sec.III-E.

We investigated the results from the other tools further to
understand why they fail to report many valid taint flows. We
noticed that DexterJS does not handle all built-in functions,
sanitizations and browser APIs. On the other hand, CTT does
not handle property reads and writes, which result in false
negatives. We also noticed problems in the event-generation
component of DexterJS that leads to poor coverage and missing
valid taint flows. Because CTT does not have support for event
generation, it misses all the flows that require user interaction.
Also, the sources and sinks in some of the test cases are not
supported in these tools. However, our framework can handle
most of these test cases and successfully reports valid taint
flows.

Table IV shows how our framework outperforms the dy-
namic taint tracking used in the other tools for false positives.
These results show that the false positive reduction strategies
discussed in Sec. IV are very effective in lowering false
positive rate and improving precision. However, whether all
the 33 dom tests are actually false positives is debatable. The

12

TABLE IV: False positives detected on non URL-controllable test cases

Benchmark Firing Range IBM
address tests urldom tests dom tests (toxicdom)

Test Cases 1 0 33 70
GELATO 0 0 0 0
DexterJS 0 0 26 3

CTT 0 0 12 6

taint source in these test cases are not URL controllable and are
resources such as cookies and localStorage that are set by
the application if they are empty. Therefore, if they are not set,
the application sets them to benign values. Listing 4 shows an
example where the badValue item in the localStorage is
set to a constant value that is benign if it is not set before, hence
GELATO does not report any taint flows.6 CCT still considers
the benign values set to these resources as valid taint sources
(instead of killing the taint). Because the taint analysis in [42]
is followed up by an exploit generation step that confirms the
taint flows, their DOM-based XSS tool might not report them
as exploitable vulnerabilities.7

1 <html>
2 <head><title>Toxic DOM</title></head>
3 <body>
4 <script type="text/javascript">
5 if (!localStorage.getItem(’badValue’))
6 localStorage.setItem(’badValue’, ’false

positive’);↪→
7 document.write(localStorage.getItem(’badValue’));
8 </script>
9 </body>

10 </html>

Listing 4: An example of HTML/JavaScript code where the taint source is set by a benign
constant value if it is empty.

2) Taint flow inference on popular JavaScript libraries and
open-source applications : Table V reports the effectiveness
of our taint inference mechanism on some of the JavaScript
libraries that have known vulnerabilities, as reported in Re-
tireJS [27]. RetireJS documents vulnerabilities in “retired”
versions of JavaScript libraries. We have created test harnesses
for these libraries that trigger the DOM-based XSS vulnerable
paths. The payloads tested in these experiments are injected as
payloads for all the tools. GELATO is able to report taint flows
for all of these vulnerable libraries while DexterJS misses all
of them and CTT misses two. Dojo is an interesting library
in our benchmarks because its vulnerability can be found if
the analysis can bypass the input validation. The code-snippet
in Listing 5 shows a simplified version of the vulnerability in
this library. GELATO successfully reports the taint flow from
line 6 to 21 by appending theme as the query parameter in
the URL and bypassing the input validations at lines 5 and 20
using the constraint heuristics explained in Sec.III-E.

Table VI shows that GELATO can successfully detect
DOM-based XSS vulnerabilities in non-trivial modern web-
applications, while the other tools miss reporting them. To
detect the vulnerabilities in these applications a state-aware
crawler is needed that triggers the vulnerable path. In this
experiment, GELATO is the only tool that has an effective

6We do inject any payloads to any resources, such as cookies and
localStorage in any of the experiments in this paper.

7We did not have access to the exploit generation component to confirm.

TABLE V: Vulnerability detection on JavaScript libraries with known vulnerabilities.
Some of the payloads are injected into the fragment identifier part of the URLs: jQuery
1.11.1 does not require any specific payload to reach the vulnerable sink; <img src=/
onerror=alert(1)> is used for jQuery 1.6.1 and jQuery-migrate 1.1.1 and x"
onerror=alert(1) nothing for handlebars 1.0.0.beta.2 and mustache 0.3.0. The
payload for dojo is injected as a URL query parameter and needs a specific key:
?theme=payload, which is automatically generated by GELATO.

Benchmark GELATO DexterJS CTT
jQuery 1.11.1 [5] X × ×
jQuery 1.6.1 [4] X × X

jQuery-migrate 1.1.1 [16] X × X
handlebars 1.0.0.beta.2 [12] X × X

mustache 0.3.0 [21] X × X
dojo 1.4.1 [7] X × ×

state-aware crawler, successfully exploring the application and
triggering the vulnerable path.

TABLE VI: Open-source deliberately vulnerable applications.

Benchmark GELATO DexterJS CTT
Juice-shop 8.3.0 [18] X × ×

Damn Vulnerable Web App (DVWA) [6] X × ×

3) Effectiveness of guided crawler and data input gen-
eration for DOM-based XSS detection: We evaluate the ef-
fectiveness of guided crawling strategy for DOM-based XSS
detection analysis by comparing it with the random strategy.
The target locations in this experiment are DOM manipulation
operations in the program. Table VII shows that for both of our
microbenchmarks, the guided crawling helps find the DOM-
based XSS vulnerabilities faster than a crawler that uses a
random strategy.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <script>
5 if (window.location.href.indexOf("?") > -1) {
6 loc = window.location.href
7 var str = loc.substr(loc.indexOf("?") +

1).split(/#/);↪→
8 var ary = str[0].split(/&/);
9 for (var i = 0; i < ary.length; i++) {

10 var split = ary[i].split(/=/),
11 key = split[0],
12 value = split[1];
13 switch (key) {
14 case "theme":
15 theme = value;
16 break;
17 }
18 }
19 }
20 if (theme) {
21 document.write(’<link rel="stylesheet"

type="text/css" href="’ + theme + ’">’);↪→
22 }
23 </script>
24 </body>
25 </html>

Listing 5: A simplified snippet from the Dojo version 1.4 library that is vulnerable
to DOM-based XSS, where attacker-controllable input enters via theme URL query
parameter through the window.location.href property and is written to DOM at
line 21.

D. Threats to validity

While we aimed to select representative applications and
benchmarks that use modern technologies, the choice of bench-
marks might have affected the validity of the experiments

13

TABLE VII: Comparing our guided crawling strategy (ACG) with random strategy
(Random) for DOM-based XSS detection.

Benchmark Analysis Step ACG Random
Link Extraction 19m, 51s 19m, 39s

Firing Range State crawling 3m, 35s 10m, 12s
Taint inference 10m, 39s 40m, 18s

Total 34m, 31s 70m, 27s
Link Extraction 16m, 41s 16m, 56s
State crawling 7m, 6s 6m, 17s

IBM Taint inference 14m, 42s 52m, 42s
Total 38m, 58s 76m, 55s

presented in this paper. In the experiments we showed that the
DOM-based XSS detection in GELATO has a high accuracy for
the analyzed applications and libraries. However, depending
on the complexity of the taint manipulation operations in the
given program, the accuracy can vary.

VII. CONCLUSION

In this paper, we proposed GELATO, a dynamic analy-
sis tool that detects vulnerabilities in modern and complex
client-side JavaScript applications, which are often built upon
libraries and frameworks. We studied the state-of-the-art tools
and presented the most crucial features a security-aware client-
side analysis should be supporting. We proposed the first
security-guided client-side analysis that closes the gap between
state-aware crawling and client-side security analysis by taking
a feedback-driven approach that combines static and dynamic
analysis to analyze complex frameworks automatically, and
increase the coverage of security-sensitive parts of the program
efficiently. We evaluated GELATO on various applications and
benchmarks with different levels of complexity, and showed it
outperforms the existing crawlers. Finally, we proposed a new
lightweight non-intrusive client-side taint analysis that reports
non-trivial taint flows on modern JavaScript applications, and
has higher accuracy compared to the existing dynamic client-
side taint analysis tools.

REFERENCES

[1] Alexa top. https://www.alexa.com/topsites.
[2] AngularJS. https://angularjs.org/.
[3] Arachni Framework v1.4. http://www.arachni-scanner.com/blog/tag/

crawl/.
[4] CVE-2011-4969. http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2011-4969.
[5] CVE-2015-9251. https://nvd.nist.gov/vuln/detail/CVE-2015-9251.
[6] Damn Vulnerable Web Application (DVWA). http://dvwa.co.uk/.
[7] DOM-Based XSS in Dojo Toolkit SDK. https://bugs.dojotoolkit.org/

ticket/10773.
[8] Firing Range: Address DOM-based XSS. https://public-firing-range.

appspot.com/address/index.html.
[9] Firing Range: DOM tests (toxicdom). https://public-firing-range.

appspot.com/dom/index.html.
[10] Firing Range Test Bed. https://public-firing-range.appspot.com/.
[11] Firing Range: URL-based DOM-based XSS. https://public-firing-range.

appspot.com/urldom/index.html.
[12] Handlebars.js GitHub Issue #68. https://github.com/wycats/handlebars.

js/pull/68.
[13] Htcap v1.0.1. https://github.com/segment-srl/htcap/releases.
[14] Jalangi2. https://github.com/Samsung/jalangi2.
[15] jQuery. https://jquery.com/.
[16] jQuery Bug Tracker Issue #11290. https://bugs.jquery.com/ticket/11291.

[17] jsTaint. https://github.com/idkwim/jsTaint.
[18] Juice-shop 8.3.0. https://github.com/bkimminich/juice-shop.
[19] Knockout.js. https://knockoutjs.com/.
[20] LaBaSec: Language-based Security. http://m.ibm.com/http/researcher.

ibm.com/researcher/view group subpage.php?id=1598.
[21] Mustache.js GitHub Issue #112. https://github.com/janl/mustache.js/

issues/112.
[22] OJET. https://www.oracle.com/webfolder/technetwork/jet/index.html.
[23] OWASP DOM-Based XSS. https://www.owasp.org/index.php/DOM

Based XSS.
[24] OWASP ZAP. https://www.owasp.org/index.php/OWASP Zed Attack

Proxy Project.
[25] Pyppeteer. https://github.com/miyakogi/pyppeteer.
[26] React.js. https://reactjs.org/.
[27] Retire.js. http://retirejs.github.io/retire.js/.
[28] w3af v1.6.49. http://w3af.org/plugins/crawl.
[29] WebScanTest. https://www.webscantest.com/.
[30] Esben Andreasen, Gong Liang, Michael Pradel, Tu Darmstadt, Marija

Selakovic, and Koushik Sen. A Survey of Dynamic Analysis and Test
Generation for JavaScript. ACM Computing Surveys, 2017.

[31] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and
Frank Tip. A Framework for Automated Testing of JavaScript Web
Applications. In ICSE, 2011.

[32] Kamara Benjamin, Gregor Von Bochmann, Mustafa Emre Dincturk,
Guy-Vincent Jourdan, and Iosif Viorel Onut. A Strategy for Efficient
Crawling of Rich Internet Applications. In ICWE, 2011.

[33] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed Greybox Fuzzing. In CCS, 2017.

[34] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and
Coen De Roover. Linvail: A general-purpose platform for shadow
execution of JavaScript. In SANER, 2016.

[35] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and
Frank Tip. Efficient Construction of Approximate Call Graphs for
JavaScript IDE Services. In ICSE, 2013.

[36] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AF-
FOGATO: Runtime Detection of Injection Attacks for Node.Js. In
SOAP, 2018.

[37] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen
Teilhet, and Ryan Berg. Saving the World Wide Web from Vulnerable
JavaScript. In ISSTA, 2011.

[38] Matthias Höschele and Andreas Zeller. Mining Input Grammars with
AUTOGRAM. In ICSE-C, 2017.

[39] Casper Svenning Jensen, Anders Møller, and Zhendong Su. Server inter-
face descriptions for automated testing of JavaScript web applications.
In ESEC/FSE, 2013.

[40] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type
Analysis for JavaScript. In SAS, 2009.

[41] Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung
Ryu. SAFE: Formal specification and implementation of a scalable
analysis framework for ECMAScript. In FOOL, 2012.

[42] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later:
large-scale detection of DOM-based XSS. In CCS, 2013.

[43] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and
Limin Jia. Riding out DOMsday: Towards Detecting and Preventing
DOM Cross-Site Scripting. In NDSS, 2018.

[44] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-
Based Web Applications Through Dynamic Analysis of User Interface
State Changes. ACM Trans. Web, 2012.

[45] Ali Mesbah, Arie van Deursen, and Danny Roest. Invariant-Based
Automatic Testing of Modern Web Applications. IEEE Trans. Softw.
Eng., 2012.

[46] Amin Milani Fard and Ali Mesbah. Feedback-directed exploration of
web applications to derive test models. In ISSRE, 2013.

[47] S Needleman and C Wunsch. A general method applicable to the search
for similarities in the amino acid sequences of two proteins. In J. Mol.
Biol. 48, 1970.

14

[48] Christopher Olston and Marc Najork. Web Crawling. Found. Trends
Inf. Retr., 2010.

[49] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang,
Atul Sadhu, and Prateek Saxena. Auto-patching DOM-based XSS at
scale. In FSE, 2015.

[50] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian
Rossow. jÄk: Using Dynamic Analysis to Crawl and Test Modern Web
Applications. In RAID, 2015.

[51] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In NDSS, 2017.

[52] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen
McCamant, and Dawn Song. A Symbolic Execution Framework for
JavaScript. In SP, 2010.

[53] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework
for JavaScript. In ESEC/FSE, 2013.

[54] Ben Spencer, Michael Benedikt, Anders Møller, and Franck van
Breugel. ArtForm: A Tool for Exploring the Codebase of Form-based
Websites. In ISSTA, 2017.

[55] Suresh Thummalapenta, K. Vasanta Lakshmi, Saurabh Sinha, Nishant
Sinha, and Satish Chandra. Guided Test Generation for Web Applica-
tions. In ICSE, 2013.

[56] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christo-
pher Krügel, and Giovanni Vigna. Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In NDSS, 2007.

15

