
Testing Security Properties in Java ∗

Padmanabhan Krishnan
Oracle Labs

Brisbane, Australia

paddy.krishnan@oracle.com

Jerome Loh
ITEE

The University of Queensland,
Australia

Larissa Meinicke
ITEE

The University of Queensland,
Australia

l.meinicke@uq.edu.au

ABSTRACT
In this paper we describe our initial experience of using mutation
testing of Java programs to evaluate the quality of test suites from a
security viewpoint. Our focus is on measuring the quality of the test
suite associated with the Java Development Kit (JDK) because it
provides the core security properties for all applications. We define
security-specific mutation operators and determine their usefulness
by executing some of the test suites that are publicly available. We
summarise our findings and also outline some of the key challenges
that remain before mutation testing can be used in practice.

1. INTRODUCTION
The Java security model provides language-level access control

to security-sensitive resources and actions. Proper use of this model
is the responsibility of the programmer, and errors may arise in its
use. As there is no formal model of the desired security proper-
ties, techniques such as verification are not directly applicable. So
testing is one way to detect such errors. However, we cannot be
sure whether the tests themselves are thorough enough to catch all
errors in the use of the security model. So the aim is to determine
the quality of test suites that check for the security properties.

Mutation testing [8] can be used to measure the effectiveness
of a test suite. The general idea is to seed faults into the origi-
nal program to derive mutations and check whether the test suite
can distinguish the behaviour of each of the mutations against the
original program. The percentage of mutations that a test suite can
distinguish, called the mutation-kill ratio, can be used as a measure
of effectiveness of the test suite. As a result, a tester can deter-
mine the causes for not distinguishing a mutation to improve the
test suite.

King and Offutt [9] were the first to define a formal set of 22
mutation operators for Fortran. The mutation operators included
arithmetic operator replacement (e.g. ‘+’ to ‘-’), logical connector
replacement (e.g. AND to OR), variable replacement, and state-
ment deletion. However, such operators are not adequate for object-
oriented languages like Java. Mutation operators specific for object-
∗Java and JDK are registered trademarks of Oracle and/or its affil-
iates. Other names may be trademarks of their respective owners.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

oriented languages, such as deleting an overriding method, have
been proposed [1, 3].

As the number of potential faults in a program can be very large,
generating mutations that represent all the faults is not useful in
practice. In order to reduce the number of generated mutations,
one usually assumes a competent programmer hypothesis where
the possible mutations are derived from a set of typical errors a
competent programmer can make. For instance, not all variable
replacement operators may be relevant in a given situation. Other-
wise, mutations will, typically, not represent real faults [6].

In this paper, we outline the issues related to mutation testing
in the evaluation of test suites that are relevant for Java security.
We define mutation operators that are specific to Java security and
present some preliminary results. We then highlight the challenges
that remain before mutation testing can be used effectively by prac-
titioners.

In Section 2 we summarise the Java security model, and in Sec-
tion 3 we present our approach, including the operators and pro-
cesses to test the Java Development Kit (JDK). Finally, in Section 4
we summarise the lessons learned and describe the limitations that
need to be overcome.

2. BACKGROUND: JAVA SECURITY
The Java security model is one of access control—certain actions

are designated as security-sensitive, requiring some set of permis-
sions. Execution of these actions completes successfully only if
the calling code possesses the required permissions. The set of re-
quired permissions is specified programmatically by the developer
using permission checks. Errors could arise as the developer could
omit or add a permission check, check the wrong permission etc.
The set of permissions a class is granted is specified by a security
policy associated with the program. Such a security policy allows
the developer (or user) to grant permissions to classes depending
on where they are loaded from (i.e., its codebase) [5]. The desired
security policy is enforced by a security manager. When the pro-
gram executes the method checkPermission(Permission perm), all
classes on the call stack must have the permission. If this is the
case, the call returns normally, otherwise a security exception is
thrown.

Java also allows a class to grant some of the permissions it holds
to its caller. The doPrivileged block demands that only the im-
mediate caller of the the block has the requisite privileges—thus
the classes below the immediate caller on the call stack are not
checked. It is possible to pass an access control context (ACC) to
a doPrivileged block where the permissions given to the block are
derived by intersecting the permissions present in the various pro-
tection domains in the ACC. These protection domains represent
the permissions associated with the classes of a potential call stack.

The ability to pass an ACC to a doPrivileged call allows a class to
save a context and reuse it when executing some code. Such reuses
are typically useful when handling callbacks where the context of
callback execution must match the context of callback creation.

3. MUTATION TESTING OF THE JDK
The principal aim of this project is to develop a system to mea-

sure the quality of test suites for the JDK. The JDK is a library that
provides the key security mechanisms that numerous applications
rely on. Any security defect in the JDK has the potential to affect
all these applications. We also intend to use the results of mutation
testing to provide guidance to the test developer to develop new
tests and deprecate unnecessary tests. So we focus only on mutat-
ing the code in the JDK, and do not consider mutating policy files
that are part of the applications.

As the JDK is a library, the test suite has programs that invoke
various API JDK calls. For security testing, the test suite will also
set up the policy files granting permissions to the codebase. Note
that we mutate only the JDK; not the code associated with the tests.

In a security context, mutation testing has been applied to detect
string formatting and buffer overflow vulnerabilities in C programs
[14, 13]. But these mutation operators are not related to any secu-
rity model. Martin and Xie [12] as well as Traon et al. [15] have
also extended mutation testing to testing access control policies.
Both studies utilise a system based on rules that either permit or
deny sensitive actions based on the caller’s identity, or role. The
mutation operators add or remove rules from a policy, and change
the action and targets associated with a rule. Conceptually, these
mutation operators are similar to what is desired for Java. How-
ever, we need operators that directly manipulate the Java constructs
that deal with security.

Semantically, the mutation operators we consider can be classi-
fied as either narrowing or widening the set of permissions. The
narrowing operators either check for more permissions or remove
permissions that are available to the code. One can check for more
permissions by replacing the permission in a checkPermission call
(say p) with q such that q implies p. One can remove permis-
sions by adding a more restrictive frame to the ACC given to a
doPrivileged call. The widening operators either check for fewer
permissions or grant more permissions to the code.

Replacing a permission p in a checkPermission call with a per-
mission q such that p implies q results in widening, as does remov-
ing a restrictive frame from the ACC given to a doPrivileged call.
Note that it is possible to have mutation operators that widen a nar-
rowing (or narrow a widening) but they are not considered in our
preliminary study.

We now describe the specific mutation operators that we have
implemented towards the evaluation of some of the test suites from
the OpenJDK distribution.

The mutations of a checkPermission call fall into one of the fol-
lowing categories.

• Delete the checkPermission call. This operation is a form of
widening because it is as if the application has been granted
the elided permission.

• Replace the argument of a checkPermission with another per-
mission. Technically, this operator can generate many mu-
tants, depending on the class of permissions considered. To
simplify the initial experimentation, we replace the argument
with only AllPermission. Because we are checking for more
permissions than originally present, this mutation represents
permission narrowing.

The mutations of a doPrivileged call fall into one of the following
categories.

• If the original doPrivileged call has only one parameter (i.e.,
equivalent to a call with a null ACC), it has all the privileges
of the immediate caller. So in this case, only permission nar-
rowing is possible. The narrowing can be achieved by either
converting the call to a two parameter version where an ex-
plicit ACC is provided, or to a var-args version where an ex-
plicit ACC along with an array of permissions is provided.
As there are a large number of possible ACCs we consider
only an ACC which has no permission. This transforma-
tion effectively treats the code in the doPrivileged block as
unprivileged, and thus any checkPermission performed will
fail. We consider only one explicit permission for the var-
args version.

• If the original doPrivileged call has two parameters, i.e., the
privileged action and an ACC, one can mutate it in the fol-
lowing ways:

– Convert it to a var-args version with an explicit list of
permissions that is demanded. For example, the call
doPrivileged(act, acc) is converted to the var-args call
doPrivileged(act, acc, p) where the specific permission
p is demanded. Concretely, we use only the permission
PropertyPermission("∗", "read") for p. This conversion
represents permission narrowing.

– Replace the given ACC with another independently cre-
ated ACC. Again, for tractability we consider only an
ACC which has no permission as the replacement. This
replacement is also a permission narrowing.

– The third option is to replace the given ACC with an
ACC that is derived from the provided one by eliding
one of the protection domains. More specifically, we
drop only the first protection domain although in gen-
eral, we could drop any. Dropping a protection domain
from the list of protection domains in the ACC can po-
tentially widen the permissions available to the code.
We call this mutation operator truncating the ACC.

3.1 Preliminary Results
We summarise the results of the experiments run on selected

classes of the OpenJDK8-u66. As none of the existing tools were
suitable for our experimentation, we adopted a manual process. Al-
though the manual process was time consuming, the aim was to
determine whether the mutation operators identified limitations in
existing test suites. For each relevant class, we edit the source and
replace each occurrence of the relevant construct with its mutation,
and compile the modified source. The original rt.jar is then up-
dated by replacing the original class with the compiled mutated
class. The tests for the modified class are then executed using the
jtreg infrastructure. If jtreg reports a difference between the num-
ber of tests that passed in the original and in the mutant, the mutant
is considered killed; otherwise, it is considered to have lived.

We chose the following for the experimentation:

• java.security, which is the core of the access control model,

• javax.security.auth, which provides an authentication frame-
work,

• Classes from java.lang, java.io and java.net, which make use
of security-sensitive operations.

• Randomly chosen classes from java.util, java.nio.file, java.
nio.charset.spi, java.nio.channels, and javax.swing.

An important limitation of these results that must be stressed is
that the tests used are only those that are publicly available in the
OpenJDK. Hence, the actual mutation-kill ratio is not directly use-
ful; rather, patterns of mutations that have not been killed are useful
to identify the type of tests that are essential to improve the quality
of the testing process.

Table 1 presents the number of mutations generated by our oper-
ators and the number of mutations killed by the test suites.

Mutation Operator Total Mutants Mutations Killed

Deleting
checkPermission

15 6

Checking
AllPermission

59 21

No-permission
ACC

20 8

Use of
PropertyPermission

19 4

Truncating the
ACC

15 0

Total 128 39

Table 1: Results

Table 2 presents the mutation-kill results for each test suite. The
two security specific classes of javax.security.auth and java.security
kill around 38% of mutations which is similar to the java.io package
which also has many security-sensitive operations. Similarly, the
tests associated with java.lang.Class kill 50% of the, admittedly,
small number of mutations. But other classes, such as from the
java.net package, kill just one mutant each. The low mutation-kill
ratio is because the OpenJDK test suite does not focus on security.

Test Suite Relevant Mutants Mutations Killed

javax.security.auth 41 13

java.io 30 11

java.security 19 10

java.net 13 1

java.lang.Class 6 3

All others 14 1

Total 123 39

Table 2: Test outcomes from running mutants over relevant
OpenJDK test suites

We summarise the key reasons that some of the mutants are not
killed by the test suites. For this we do not consider equivalent mu-
tants. Only five mutants (out of the 128 generated) were equivalent
to the original program. All of them are from doPrivileged invoca-
tions. Two of the mutations are equivalent because the doPrivileged
invocation occurs in a static initialisation block that is already privi-
leged. Hence no difference in behaviour can be detected. The other
three mutants are equivalent because the privileged action requires
only one permission, which happens to be one that was granted.

The first predominant reason is that the mutant is not executed.
That is, the test suites did not have the code coverage necessary

to execute the mutation. The second reason is that some of the
tests do not install a security manager. In such cases, removing the
checkPermission calls has no effect. The third reason is that the
tests considered do not consider the various combinations over per-
missions, and thus are unable to detect the checking of the wrong
permission or missing permission checks. Some tests that detect
security violations are reported as having failed as the output gen-
erated by the program is not different. For instance, security ex-
ceptions are caught but not reported. So the jtreg harness can-
not report on the mutation being killed. Table 3 summarises the
number of live mutants for each of the above reasons where CP-
mutants and DoP-mutants refer to the mutants generated by altering
checkPermission and doPrivileged calls respectively.

Reason Number of Live
CP-mutants DoP-mutants

Mutation code not executed 29 13

Lack of security manager 7 5

Insufficient permission coverage 18 12

Table 3: Reasons for live mutants

4. OPEN ISSUES
The 128 mutants (123 non-equivalent ones) that we have gener-

ated has shown the potential merit of the idea. However, a number
of challenges remain. We outline some of the issues that might limit
the adoption of mutation testing for this type of security testing.

4.1 Replacement Options
The first issue is related to permissions and ACCs. In our experi-

mentation we have chosen a small set of constant permissions, e.g.,
AllPermission or PropertyPermission("∗", "read"). We have not
considered permissions of different types, such as FilePermission
or SocketPermission. Because the parameters to a permission ob-
ject can be created with any possible string, the set of possible
mutation options is prohibitive. One needs an algorithm to iden-
tify a relevant set of interesting permissions. For example, the set
of interesting permissions can be from the set of permissions that
are checked in the entire JDK. Thus no new permissions are intro-
duced; however, considering only permissions in the JDK has the
limitation that a defect caused by a permission that is relevant but
not used by the developer will not be detected.

Similarly, there are numerous ACCs that can replace a given
ACC. Here we have considered only a ACC with no permissions
or an ACC derived by removing the first protection domain. In
general it is possible to use a variety of values to create the pro-
tection domains. So there are any number of options for both the
parameters to a ProtectionDomain and the number of elements in
the ACC.

In general, because the number of potential replacements for a
given mutation operator is very large, exploring all of them is im-
practical. A more precise formulation of the competent program-
mer hypothesis will help in identifying the set of relevant permis-
sions or ACCs.

4.2 Equivalence and Minimal Mutations
Although our initial choice of mutation operators does not re-

sult in many equivalent mutants, extending the mutation operators
might influence the number of equivalent mutants.

Even if the mutants are not equivalent, the number of test cases
required to distinguish the various mutants might not be practical.

For example, replacing permission p with q such that either p im-
plies q or vice-versa will demand that the test suite must detect
“equivalence” of permissions. Such demands might be too strong.
So it is better to handle the issue in the mutation generation process.

As noted in our results, tests that detect the security violation but
do not report it result in mutations not being killed. One option is
to install a custom security manager that logs all the method calls.
If the logs are different, the test outcomes will be different and the
mutation will be marked as killed.

Other related issues include finding the minimal set of distinct
mutations [2] and thus eliminating mutations which are themselves
equivalent or those that are subsumed by other mutations. As they
note, the problem of reducing the set of mutations is NP-complete
and thus approximations of the minimal set will be required.

4.3 Other Mutation Operators
One needs to explore other mutation operators. For example,

one can either introduce or elide the ACC associated with a specific
checkPermission call. That is, sm.checkPermission(p, acc) can be
replaced by the call sm.checkPermission(p) which in turn can be re-
placed by sm.checkPermission(p, acc) where the value acc is some
artificially created ACC.

4.4 Automation and Tool Support
While our manual process is sufficient for exploratory work, tools

that can handle many mutants as well those that integrate with the
testing scripts are necessary. Our manual approach modifies the
source code, which requires one to compile each class separately
and replace the class in rt.jar to run the test. This is very time
consuming as the compilation and class replacement has to occur
for each mutant. A semantically equivalent but more efficient tech-
nique is required, especially if the approach has to scale to the entire
JDK. For example, a tool that can edit the byte code (for instance,
similar to BCEL described in the book by Horstmann and Cornell
[7]) might be useful. A mechanism to have different versions of the
same class within one test cycle would also be useful.

Although there are tools such as muJava1, [11] Jumble2 and
PIT3, none of them were suitable for security testing. For instance,
muJava’s method-level operators allow deletion of statements, but
changes to the tool are required to specify deletion of only the
checkPermission calls. Otherwise, the tool generates too many
non-security specific mutations. A comparison of various tools [4]
focuses on general mutation testing and is not directly applicable
for security specific testing. Similarly, [10] show that PIT does
not capture many of the mutants created by experts. The ability to
configure existing mutation tools to be able to select the mutation
operators as well as the locations where they need to be applied is
essential. In other words, the ability to specify the competent pro-
grammer hypothesis will enable the user to generate only relevant
mutations.

5. CONCLUSION AND FUTURE WORK
In this paper we have identified a set of security-focused mu-

tation operators. Initial investigation indicates that these targeted
operators produce few equivalent mutants and are useful for mea-
suring the quality of a test suite.

The ultimate measure is the ability to run all the tests (open and
otherwise) on the relevant mutations generated from all the classes
in the JDK. Such an experiment will provide a more useful insight

1https://cs.gmu.edu/ offutt/mujava/
2http://jumble.sourceforge.net/
3http://pitest.org/

into the strengths and limitations of using mutation testing as a
quality measure and also help identify the improvements necessary
for security testing.

6. REFERENCES
[1] R.T. Alexander, J.M. Bieman, S. Ghosh, and B. Ji. Mutation

of Java objects. In Proceedings of the 13th International
Symposium on Software Reliability Engineering, 2002
(ISSRE ’02), pages 341–351, 2002.

[2] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing
theoretical minimal sets of mutants. In IEEE International
Conference on Software Testing, Verification and Validation
(ICST), pages 21–30, 2014.

[3] P. Chevalley and P. Thévenod-Fosse. A mutation analysis
tool for Java programs. International Journal on Software
Tools for Technology Transfer, 5(1):90–103, 2003.

[4] M. Delahaye and L. du Bousquet. A comparison of mutation
analysis tools for Java. In 13th International Conference on
Quality Software, 2013 (QSIC ’13), pages 187–195, 2013.

[5] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2
Platform Security. The Java Series. Addison Wesley, 2003.

[6] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close
are they to real faults? In Proceedings of the IEEE 25th
International Symposium on Software Reliability
Engineering, 2014 (ISSRE’14), pages 189–200, 2014.

[7] C. S. Horstmann and G. Cornell. Core Java, Volume
II–Advanced Features. Prentice Hall, 9th edition, 2013.

[8] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

[9] K. N. King and A. J. Offutt. A Fortran language system for
mutation-based software testing. Software – Practice &
Experience, 21(7):685–718, 1991.

[10] T. Laurent, A. Ventresque, M. Papadakis, C. Henard, and
Y. L. Traon. Assessing and improving the mutation testing
practice of PIT. CoRR, abs/1601.02351, 2016.

[11] Y-S. Ma, J. Offutt, and Y-R. Kwon. MuJava : An automated
class mutation system. Journal of Software Testing,
Verification and Reliability, 15(2):97–133, 2005.

[12] E. Martin and T. Xie. A fault model and mutation testing of
access control policies. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pages 667–676, 2007.

[13] H. Shahriar and M. Zulkernine. Mutation-based testing of
buffer overflow vulnerabilities. In Computer Software and
Applications, 2008 (COMPSAC ’08), pages 979–984, 2008.

[14] H. Shahriar and M. Zulkernine. Mutation-based testing of
format string bugs. In High Assurance Systems Engineering
Symposium, 2008 (HASE ’08), pages 229–238, 2008.

[15] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security
policies: going beyond functional testing. In Proceedings of
the 18th IEEE International Symposium on Software
Reliability, 2007 (ISSRE’07)., pages 93–102, 2007.

	Introduction
	Background: Java Security
	Mutation Testing of the JDK
	Preliminary Results

	Open Issues
	Replacement Options
	Equivalence and Minimal Mutations
	Other Mutation Operators
	Automation and Tool Support

	Conclusion and Future Work
	References

