ORACLE

Polyglot Native: Scala, Kotlin, and Other JVM-Based
Languages with Instant Startup and low Footprint

Vojin Jovanovic
VM Research Group, Oracle Labs

Github: @vjovanov
Twitter: @vojjov

O c ®
R Cl_e CCCCC ight © 2016 , Oracle and /or its affiliates. All rights reserved .

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

O c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 3

Oracle Labs: GraalVM d
nede @ C

JS Sulong (LLVM)

Truffle Framework

é;]avam F scala ‘m’

JVM Compiler Interface (JVMCI) JEP 243

Graal Compiler

Java HotSpot Runtime Substrate VM Runtime

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Managed Runtimes: Slow Startup and High Footprint

* Slow startup and high footprint
— Class loading
— Bytecode interpretation or baseline compilation
— Just-in-time compilation

Program Time Instructions
“Hello, World!” in C 0.005s 154,127
“Hello, World!” in Java 0.109s 162,673,275
“Hello, World!” in JS on the JVM | 1.268s 3,272,118,178

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

)
O
o
O
(<))
>
=
(©
2

Java AOT (JEP 235) and Project Panama

* Java AOT addresses startup performance on the JVM
— Ahead-of-time compiles Java bytecode
— Code is JIT compiled with profiling information
— Ahead-of-time compiled code contains additional instructions for profiling

* Project Panama

— Makes it faster and easier to call native code from Java
— Allows changes the Java object layout for native code
— JVM still can not be easily embedded in native projects

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWAREF Info
All classes from Reachable methods, Application running
the user application, fields, and classes without dependency on JDK
all language runtimes, and without Java class loading

and Substrate VM

R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The Substrate VM is ...

ORACLE

. an embeddable VM

for, and written in, a subset of Java
optimized to execute Truffle languages

ahead-of-time compiled using Graal

integrating with native development tools.

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

Substrate VM Building Blocks

* Reduced runtime system, all written in Java
— Stack walking, exception handling, garbage collector, deoptimization
— Graal for ahead-of-time compilation and dynamic compilation

* Points-to analysis
— Closed-world assumption: no dynamic class loading, no reflection
— Using Graal for bytecode parsing
— Fixed-point iteration: propagate type states through methods

» Systemlava for integration with C code
— Machine-word sized value, represented as Java interface, but unboxed by compiler
— Import of C functions and C structs to Java

* Substitutions for JDK methods that use unsupported features
— JNI code replaced with SystemJava code that directly calls to C library

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

10

Chunked Heap for Low Footprint

Chunked Heap

ORACLE

Monolithic Heap

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

11

Chunked Heap for Low Footprint

Chunked Heap after GC Monolithic Heap after GC
ﬂ Reclaimed by g
the OS
Reclaimed by
the OS

: : -
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWARF Info
All Java classes from Reachable methods, Application running
Truffle language fields, and classes without dependency on JDK
(or any application), and without Java class loading

JDK, and Substrate VM

R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

13

Points-To Analysis

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

14

Graal as a Static Analysis Framework

* Graal and the hosting Java VM provide
— Class loading (parse the class file)
— Access the bytecodes of a method
— Access to the Java type hierarchy, type checks
— Build a high-level IR graph in SSA form
— Linking / method resolution of method calls

* Static points-to analysis and compilation use same intermediate representation
— Simplifies applying the analysis results for optimizations

* Goals of points-to analysis

— ldentify all methods reachable from a root method
— ldentify the types assigned to each field
— ldentify all instantiated types

* Fixed point iteration of type flows: Types are propagated from sources (allocations) to usages

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

15

Example Type Flow Graph

Object f;

void foo() {
allocate();
bar();

¥

Object allocate() {
f = new Point()
}

int bar() {
return f.hashCode();

}

Analysis is context insensitive:
One type state per field
ORACLE

allocate

new Point

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Point.hashCode

16

Example Type Flow Graph

new Point

Object f; £ = "abc"; [Point]

[String]

void foo() {
allocate();
bar();

¥

Object allocate() {
f = new Point()

[Point]

bar

[Point, String]

}
[Point, String]
int bar() { . .
return f.hashCode(); [Point, String]
}

Point.hashCode

Analysis is context insensitive:
One type state per field

String.hashCode

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWARF Info
All Java classes from Reachable methods, Application running
Truffle language fields, and classes without dependency on JDK
(or any application), and without Java class loading

JDK, and Substrate VM

R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

18

Polyglot Native Startup

* Slow startup and high footprint

— Class loading

— Bytecode interpretation

— Just-in-time compilation

— Monolithic heap

Program Time Instructions
“Hello, World!” in C 0.005s 154,127
“Hello, World!” in PN 0.006s 232,122
“Hello, World!” in JS with PN 0.028s 915,461

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

19

Demo: Instant Startup of JVM Code

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Benchmarks: Scala Native vs SystemJava

7

6.36

i scala-native

i scala-svm

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

21

SystemlJava

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

22

SystemlJava

Call Java from C

>

Preexisting

C Code <€

Legacy C Code
Integration

Legacy Java Code
Integration

* Legacy C code integration
— Need a convenient way to access preexisting C functions and structures

* Legacy Java code integration
— Leverage preexisting Java libraries
— Example: JDK class library

e Call Java from C code
— Entry points into JVM code

OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

23

SystemlJava vs. JNI

* Java Native Interface (JNI)
— Write custom C code to integrate existing C code with Java
— C code knows about Java types
— Java objects passed to C code using handles

* SystemlJava
— Write custom Java code to integrate existing C code with Java
— Java code knows about C types

o c ®
R CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

24

Word Type for Low-Level Memory Access

* Requirements

— Support raw memory access and pointer arithmetic

— No extension of the Java programming language

— Pointer type modeled as a class to prevent mixing with, e.g., long
— Transparent bit width (32 bit or 64 bit) in code using it

* Base interface Word

— Looks like an object to the Java IDE, but is a primitive value at run time

— Graal does the transformation

* Subclasses for type safety
— Pointer: Cequivalent void*
— Unsigned: Cequivalentsize t
— Signed: Cequivalentssize t

ORACLE

public static Unsigned strlen(CharPointer str) {
Unsigned n = Word.zero();
while (str.read(n) != 0) {
n = n.add(1);
}

return n;

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

25

Java Annotations for C Interoperability

@CFunction static native int clock_gettime(int clock_id, timespec tp);

int clock_gettime(clockid t _ clock_id, struct timespec *_tp)

@CConstant static native int CLOCK_MONOTONIC();

#define CLOCK_MONOTONIC 1

@CStruct interface timespec extends PointerBase {
@CField long tv_sec();
@CField long tv_nsec();

}

struct timespec {
__time_t tv_sec;
__syscall slong_t tv_nsec;

};

@CPointerTo(nameOfCType="int") interface CIntPointer extends PointerBase {
int read();
void write(int value);

}

int* pint;

@CPointerTo(CIntPointer.class) interface CIntPointerPointer ...

int** ppint;

@CContext(PosixDirectives.class)

#include <time.h>

@CLibrary("rt")

-1rt

Implementation of System.nanoTime () using SystemJava:

static long nanoTime() {
timespec tp = StackValue.get(SizeOf.get(timespec.class));
clock_gettime(CLOCK_MONOTONIC(), tp);
return tp.tv_sec() * 1_000_000_000L + tp.tv_nsec();

}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

26

SystemlJava from JVM Languages

* SystemJava extracts semantics from bytecode

* For all static JVM languages:
— Function calls are propagated
— Java annotations are propagated to bytecode

* Possible extension to language idiomatic interface
— In Scala sizeOf[CCharPointer] would be preferred to SizeOf.get(CCharPointer.class)

SizeOf.get(CCharPointer.class) SizeOf.get(classOf[CCharPointer]) SizeOf.get(CCharPointer::class)
StackAlloc.get(...) StackAlloc.get(...) StackAlloc.get(...)
@CStruct interface AStruct {...} @CStruct trait AStruct{...} @CStruct interface AStruct {...}

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

27

Managed Objects in Native Code

* Managed objects are different than native objects

—in layout, as every object has a header
—memory location, they can, at any time, be moved by the garbage collector

* To avoid these issues, when passing objects to native code

— use handles when native code only holds a reference
— pin objects and ignore their header when native code reads the object

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

28

Demo: Sentiment Analysis of Tweets

c ®
OR CI_E Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Limitations

* Java reflection can not be fully supported

— Dynamic class loading is not possible

* Currently not implemented

— Reflective access to Java fields, methods, and types

o c ®
R CI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

30

Take Polyglot Native for a Spin

* Download GraalvVM

http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

* The Tweet Sentiment Analysis Demo

https://github.com/vjovanov/polyglot-native-demo

: ‘ CI-E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

31

Acknowledgements

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynes
Gilles Duboscq
Martin Entlicher
Bastian Hossbach
Christian Humer
Mick Jordan

Vojin Jovanovic
Peter Kessler
David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez

ORACLE

Oracle (continued)
Roland Schatz

Chris Seaton

Doug Simon

Sté&pan Sindelar
Zbynék Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas WoR
Thomas Wirthinger

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

JKU Linz

Prof. Hanspeter M&ssenbdck

Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine
Prof. Michael Franz

Gulfem Savrun Yeniceri

Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis
Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland
Prof. Walter Binder

Sun Haiyang

Yudi Zheng

32

Integrated Cloud

Applications & Platform Services

c ®
OR Cl_e CCCCC ight © 2016 , Oracle and/or its affiliates. All rights reserved .|

ORACLE

