

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Polyglot	NaAve:	Scala,	Kotlin,	and	Other	JVM-Based	
Languages	with	Instant	Startup	and	low	Footprint	

Vojin	Jovanovic	
VM	Research	Group,	Oracle	Labs	
	
Github:	@vjovanov	
TwiUer:	@vojjov	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	informaAon	purposes	only,	and	may	not	be	incorporated	into	any	
contract.		It	is	not	a	commitment	to	deliver	any	material,	code,	or	funcAonality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	The	development,	release,	and	
Aming	of	any	features	or	funcAonality	described	in	connecAon	with	any	Oracle	product	or	
service	remains	at	the	sole	discreAon	of	Oracle.		Any	views	expressed	in	this	presentaAon	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.	

3	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 4	

Oracle	Labs:	GraalVM	

Java	HotSpot	RunAme	

JVM	Compiler	Interface	(JVMCI)	JEP	243	

Graal	Compiler	

Truffle	Framework	

Sulong	(LLVM)	

Substrate	VM	RunAme	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 5	

Managed	RunAmes:	Slow	Startup	and	High	Footprint	
•  Slow	startup	and	high	footprint	

– Class	loading	
– Bytecode	interpretaAon	or	baseline	compilaAon	
– Just-in-Ame	compilaAon	

Program	 Time	 InstrucAons	

“Hello,	World!”	in	C	 0.005s	 154,127	

“Hello,	World!”	in	Java	 0.109s	 162,673,275	

“Hello,	World!”	in	JS	on	the	JVM	 1.268s	 3,272,118,178	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 6	

JVM	

Na9ve	Code	
Process	Boundary	

Complexit
y	of	JN

I	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	AOT	(JEP	235)	and	Project	Panama	
•  Java	AOT	addresses	startup	performance	on	the	JVM	

– Ahead-of-Ame	compiles	Java	bytecode	
– Code	is	JIT	compiled	with	profiling	informaAon	
– Ahead-of-Ame	compiled	code	contains	addiAonal	instrucAons	for	profiling	

• Project	Panama	
– Makes	it	faster	and	easier	to	call	naAve	code	from	Java	
– Allows	changes	the	Java	object	layout	for	naAve	code	
– JVM	sAll	can	not	be	easily	embedded	in	naAve	projects	

7	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Polyglot	NaAve:	ExecuAon	Model	

8	

Ahead-of-Time
Compilation

Points-To Analysis

Substrate	VM	

Polyglot	JVM	Program	

Language	RunAmes	

Reachable	methods,		
fields,	and	classes	

Machine	Code	

IniAal	Heap	

All	classes	from		
	the	user	applicaAon,		
all	language	runAmes,	
	and	Substrate	VM	

ApplicaAon	running		
without		dependency	on	JDK		
and	without	Java	class	loading	

DWARF	Info	

ELF	/	MachO	Binary	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Substrate	VM	is	…	

an	embeddable	VM	

for,	and	wriUen	in,	a	subset	of	Java	

opAmized	to	execute	Truffle	languages	

ahead-of-9me	compiled	using	Graal	

integraAng	with	na9ve	development	tools.	

…	

9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Substrate	VM	Building	Blocks	
•  Reduced	runAme	system,	all	wriUen	in	Java	

–  Stack	walking,	excepAon	handling,	garbage	collector,	deopAmizaAon	
–  Graal	for	ahead-of-Ame	compilaAon	and	dynamic	compilaAon	

•  Points-to	analysis	
–  Closed-world	assumpAon:	no	dynamic	class	loading,	no	reflecAon	
–  Using	Graal	for	bytecode	parsing	
–  Fixed-point	iteraAon:	propagate	type	states	through	methods	

•  SystemJava	for	integraAon	with	C	code	
–  Machine-word	sized	value,	represented	as	Java	interface,	but	unboxed	by	compiler	
–  Import	of	C	funcAons	and	C	structs	to	Java	

•  SubsAtuAons	for	JDK	methods	that	use	unsupported	features	
–  JNI	code	replaced	with	SystemJava	code	that	directly	calls	to	C	library	

10	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Chunked	Heap	for	Low	Footprint	

11	

Chunked	Heap	 Monolithic	Heap	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Chunked	Heap	for	Low	Footprint	

12	

Chunked	Heap	aner	GC	 Monolithic	Heap	aner	GC	

Reclaimed	by	
the	OS	

Reclaimed	by	
the	OS	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Polyglot	NaAve:	ExecuAon	Model	

13	

Ahead-of-Time
Compilation

Points-To Analysis

Substrate	VM	

Polyglot	JVM	Program	

Language	RunAmes	

Reachable	methods,		
fields,	and	classes	

Machine	Code	

IniAal	Heap	

All	Java	classes	from		
Truffle	language		

(or	any	applicaAon),		
JDK,	and	Substrate	VM	

ApplicaAon	running		
without		dependency	on	JDK		
and	without	Java	class	loading	

DWARF	Info	

ELF	/	MachO	Binary	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Points-To	Analysis	

14	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Graal	as	a	StaAc	Analysis	Framework	
•  Graal	and	the	hosAng	Java	VM	provide	

–  Class	loading	(parse	the	class	file)	
–  Access	the	bytecodes	of	a	method	
–  Access	to	the	Java	type	hierarchy,	type	checks	
–  Build	a	high-level	IR	graph	in	SSA	form	
–  Linking	/	method	resoluAon	of	method	calls	

•  StaAc	points-to	analysis	and	compilaAon	use	same	intermediate	representaAon	
–  Simplifies	applying	the	analysis	results	for	opAmizaAons	

•  Goals	of	points-to	analysis	
–  IdenAfy	all	methods	reachable	from	a	root	method	
–  IdenAfy	the	types	assigned	to	each	field	
–  IdenAfy	all	instanAated	types	

•  Fixed	point	iteraAon	of	type	flows:	Types	are	propagated	from	sources	(allocaAons)	to	usages	

15	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

bar	

Example	Type	Flow	Graph	
Object	f;	
	
void	foo()	{	
		allocate();	
		bar();	
}	
	
Object	allocate()	{	
		f	=	new	Point()	
}	
	
int	bar()	{	
		return	f.hashCode();	
}	

putField f

new Point

getField f

obj vcall hashCode

this

allocate	

Point.hashCode	

[Point]

[Point]

[Point]

f

[Point]

[Point]

Analysis is context insensitive:
One type state per field

16	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

bar	

Example	Type	Flow	Graph	
Object	f;	
	
void	foo()	{	
		allocate();	
		bar();	
}	
	
Object	allocate()	{	
		f	=	new	Point()	
}	
	
int	bar()	{	
		return	f.hashCode();	
}	

putField f

new Point

getField f

obj vcall hashCode

this

allocate	

Point.hashCode	

[Point]

[Point]

[Point, String]

f

[String]

[Point, String]

[Point, String]

this

String.hashCode	

Analysis is context insensitive:
One type state per field

f	=	"abc";	

17	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Polyglot	NaAve:	ExecuAon	Model	

18	

Ahead-of-Time
Compilation

Points-To Analysis

Substrate	VM	

Polyglot	JVM	Program	

Language	RunAmes	

Reachable	methods,		
fields,	and	classes	

Machine	Code	

IniAal	Heap	

All	Java	classes	from		
Truffle	language		

(or	any	applicaAon),		
JDK,	and	Substrate	VM	

ApplicaAon	running		
without		dependency	on	JDK		
and	without	Java	class	loading	

DWARF	Info	

ELF	/	MachO	Binary	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 19	

Polyglot	NaAve	Startup	
•  Slow	startup	and	high	footprint	

– Class	loading	
– Bytecode	interpretaAon		
– Just-in-Ame	compilaAon	
– Monolithic	heap	

Program	 Time	 InstrucAons	

“Hello,	World!”	in	C	 0.005s	 154,127	

“Hello,	World!”	in	PN		 0.006s	 232,122	

“Hello,	World!”	in	JS	with	PN	 0.028s	 915,461	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Demo:	Instant	Startup	of	JVM	Code	

20	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Benchmarks:	Scala	NaAve	vs	SystemJava	

21	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	

22	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	

•  Legacy	C	code	integraAon	
–  Need	a	convenient	way	to	access	preexisAng	C	funcAons	and	structures	

•  Legacy	Java	code	integraAon	
–  Leverage	preexisAng	Java	libraries	
–  Example:	JDK	class	library	

•  Call	Java	from	C	code	
–  Entry	points	into	JVM	code	

New	
System	Java		

Code	

PreexisAng		
C	Code	

PreexisAng	
Java	Code	

Call	Java	from	C	

Legacy	C	Code		
IntegraAon	

Legacy	Java	Code		
IntegraAon	

23	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	vs.	JNI	
•  Java	NaAve	Interface	(JNI)	

– Write	custom	C	code	to	integrate	exisAng	C	code	with	Java	
– C	code	knows	about	Java	types	
– Java	objects	passed	to	C	code	using	handles	

•  SystemJava	
– Write	custom	Java	code	to	integrate	exisAng	C	code	with	Java	
– Java	code	knows	about	C	types	

24	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Word	Type	for	Low-Level	Memory	Access	
•  Requirements	

–  Support	raw	memory	access	and	pointer	arithmeAc	
–  No	extension	of	the	Java	programming	language	
–  Pointer	type	modeled	as	a	class	to	prevent	mixing	with,	e.g.,	long	
–  Transparent	bit	width	(32	bit	or	64	bit)	in	code	using	it	

•  Base	interface	Word	
–  Looks	like	an	object	to	the	Java	IDE,	but	is	a	primiAve	value	at	run	Ame	
–  Graal		does	the	transformaAon	

•  Subclasses	for	type	safety	
–  Pointer: 	C	equivalent	void*	
–  Unsigned: 	C	equivalent	size_t	
–  Signed: 	C	equivalent	ssize_t	

25	

public	static	Unsigned	strlen(CharPointer	str)	{	
		Unsigned	n	=	Word.zero();	
		while	(str.read(n)	!=	0)	{	
				n	=	n.add(1);	
		}	
		return	n;	
}	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	AnnotaAons	for	C	Interoperability	

#include	<time.h>	@CContext(PosixDirectives.class)	

#define	CLOCK_MONOTONIC	1	

struct	timespec	{	
		__time_t	tv_sec;	
		__syscall_slong_t	tv_nsec;	
};	

int*	pint;	

int**	ppint;	

@CConstant	static	native	int	CLOCK_MONOTONIC();	

@CPointerTo(nameOfCType="int")	interface	CIntPointer	extends	PointerBase	{	
		int	read();	
		void	write(int	value);	
}	

@CPointerTo(CIntPointer.class)	interface	CIntPointerPointer	...	

-lrt	@CLibrary("rt")	

@CStruct	interface	timespec	extends	PointerBase	{	
		@CField	long	tv_sec();	
		@CField	long	tv_nsec();	
}	

int	clock_gettime(clockid_t	__clock_id,	struct	timespec	*__tp)	@CFunction	static	native	int	clock_gettime(int	clock_id,	timespec	tp);	

26	

static	long	nanoTime()	{	
		timespec	tp	=	StackValue.get(SizeOf.get(timespec.class));	
		clock_gettime(CLOCK_MONOTONIC(),	tp);	
		return	tp.tv_sec()	*	1_000_000_000L	+	tp.tv_nsec();	
}	

ImplementaAon	of	System.nanoTime()	using	SystemJava:	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SystemJava	from	JVM	Languages	
•  SystemJava	extracts	semanAcs	from	bytecode	
•  For	all	staAc	JVM	languages:	

– FuncAon	calls	are	propagated	
– Java	annotaAons	are	propagated	to	bytecode	

• Possible	extension	to	language	idiomaAc	interface	
– In	Scala	sizeOf[CCharPointer]	would	be	preferred	to	SizeOf.get(CCharPointer.class)	

27	

SystemJava	 SystemScala	 SystemKotlin	

SizeOf.get(CCharPointer.class)	 SizeOf.get(classOf[CCharPointer])	 SizeOf.get(CCharPointer::class)	

StackAlloc.get(…)	 StackAlloc.get(…)	 StackAlloc.get(…)	

@CStruct	interface	AStruct	{…}	 @CStruct	trait	AStruct	{…}	 @CStruct	interface	AStruct	{…}	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Managed	Objects	in	NaAve	Code	

28	

• Managed	objects	are	different	than	naAve	objects	
– in	layout,	as	every	object	has	a	header	
– memory	locaAon,	they	can,	at	any	Ame,	be	moved	by	the	garbage	collector	

•  To	avoid	these	issues,	when	passing	objects	to	naAve	code		
– use	handles	when	naAve	code	only	holds	a	reference	
– pin	objects	and	ignore	their	header	when	naAve	code	reads	the	object		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Demo:	SenAment	Analysis	of	Tweets	

29	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

LimitaAons	
	
•  Java	reflecAon	can	not	be	fully	supported	

– Dynamic	class	loading	is	not	possible	

• Currently	not	implemented	

– ReflecAve	access	to	Java	fields,	methods,	and	types	
	

30	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Take	Polyglot	NaAve	for	a	Spin	

• Download	GraalVM			 	 	 	 	 	 	 		
	
		hUp://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html	

•  The	Tweet	SenAment	Analysis	Demo	
	
		hUps://github.com/vjovanov/polyglot-naAve-demo	

31	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Acknowledgements	

32	

Oracle	
Danilo	Ansaloni	
Stefan	Anzinger	
Cosmin	Basca	
Daniele	BoneUa	
MaUhias	Brantner	
Petr	Chalupa	
Jürgen	Christ	
Laurent	Daynès	
Gilles	Duboscq	
MarAn	Entlicher	
BasAan	Hossbach	
ChrisAan	Humer	
Mick	Jordan	
Vojin	Jovanovic	
Peter	Kessler	
David	Leopoldseder	
Kevin	Menard	
Jakub	Podlešák	
Aleksandar	Prokopec	
Tom	Rodriguez	

Oracle	(con9nued)	
Roland	Schatz	
Chris	Seaton	
Doug	Simon	
Štěpán	Šindelář	
Zbyněk	Šlajchrt	
Lukas	Stadler	
Codrut	Stancu	
Jan	Štola	
Jaroslav	Tulach	
Michael	Van	De	Vanter	
Adam	Welc	
ChrisAan	Wimmer	
ChrisAan	Wirth	
Paul	Wögerer	
Mario	Wolczko	
Andreas	Wöß	
Thomas	Würthinger	

JKU	Linz	
Prof.	Hanspeter	Mössenböck	
Benoit	Daloze	
Josef	Eisl	
Thomas	FeichAnger	
MaUhias	Grimmer	
ChrisAan	Häubl	
Josef	Haider	
ChrisAan	Huber	
Stefan	Marr	
Manuel	Rigger	
Stefan	Rumzucker	
Bernhard	Urban	
	
University	of	Edinburgh	
Christophe	Dubach	
Juan	José	Fumero	Alfonso	
Ranjeet	Singh	
Toomas	Remmelg	
	
LaBRI	
Floréal	Morandat	

University	of	California,	Irvine	
Prof.	Michael	Franz	
Gulfem	Savrun	Yeniceri	
Wei	Zhang	
	
Purdue	University	
Prof.	Jan	Vitek	
Tomas	Kalibera	
Petr	Maj	
Lei	Zhao	
	
T.	U.	Dortmund	
Prof.	Peter	Marwedel	
Helena	KoUhaus	
Ingo	Korb	
	
University	of	California,	Davis	
Prof.	Duncan	Temple	Lang	
Nicholas	Ulle	
	
University	of	Lugano,	Switzerland	
Prof.	Walter	Binder	
Sun	Haiyang	
Yudi	Zheng	

Oracle	Interns	
Brian	Belleville		
Miguel	Garcia	
Shams	Imam	
Alexey	Karyakin	
Stephen	Kell	
Andreas	Kunn	
Volker	LanAng	
Gero	Leinemann	
Julian	LeUner	
Joe	Nash	
David	Piorkowski	
Gregor	Richards	
Robert	Seilbeck	
Rifat	Shariyar	
	
Alumni	
Erik	Eckstein	
Michael	Haupt	
Christos	Kotselidis	
Hyunjin	Lee	
David	Leibs	
Chris	Thalinger	
Till	Westmann	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 33	

