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Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.
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Oracle Labs: GraalVM d
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Managed Runtimes: Slow Startup and High Footprint

* Slow startup and high footprint
— Class loading
— Bytecode interpretation or baseline compilation
— Just-in-time compilation

Program Time Instructions
“Hello, World!” in C 0.005s 154,127
“Hello, World!” in Java 0.109s 162,673,275
“Hello, World!” in JS on the JVM | 1.268s 3,272,118,178
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Java AOT (JEP 235) and Project Panama

* Java AOT addresses startup performance on the JVM
— Ahead-of-time compiles Java bytecode
— Code is JIT compiled with profiling information
— Ahead-of-time compiled code contains additional instructions for profiling

* Project Panama

— Makes it faster and easier to call native code from Java
— Allows changes the Java object layout for native code
— JVM still can not be easily embedded in native projects
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Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWAREF Info
All classes from Reachable methods, Application running
the user application, fields, and classes without dependency on JDK
all language runtimes, and without Java class loading

and Substrate VM
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The Substrate VM is ...

ORACLE

. an embeddable VM

for, and written in, a subset of Java
optimized to execute Truffle languages

ahead-of-time compiled using Graal

integrating with native development tools.
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Substrate VM Building Blocks

* Reduced runtime system, all written in Java
— Stack walking, exception handling, garbage collector, deoptimization
— Graal for ahead-of-time compilation and dynamic compilation

* Points-to analysis
— Closed-world assumption: no dynamic class loading, no reflection
— Using Graal for bytecode parsing
— Fixed-point iteration: propagate type states through methods

» Systemlava for integration with C code
— Machine-word sized value, represented as Java interface, but unboxed by compiler
— Import of C functions and C structs to Java

* Substitutions for JDK methods that use unsupported features
— JNI code replaced with SystemJava code that directly calls to C library
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Chunked Heap for Low Footprint

Chunked Heap

ORACLE

Monolithic Heap
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Chunked Heap for Low Footprint

Chunked Heap after GC Monolithic Heap after GC
ﬂ Reclaimed by g
the OS
Reclaimed by
the OS
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Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWARF Info
All Java classes from Reachable methods, Application running
Truffle language fields, and classes without dependency on JDK
(or any application), and without Java class loading

JDK, and Substrate VM
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Points-To Analysis

ORACLE
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Graal as a Static Analysis Framework

* Graal and the hosting Java VM provide
— Class loading (parse the class file)
— Access the bytecodes of a method
— Access to the Java type hierarchy, type checks
— Build a high-level IR graph in SSA form
— Linking / method resolution of method calls

* Static points-to analysis and compilation use same intermediate representation
— Simplifies applying the analysis results for optimizations

* Goals of points-to analysis

— ldentify all methods reachable from a root method
— ldentify the types assigned to each field
— ldentify all instantiated types

* Fixed point iteration of type flows: Types are propagated from sources (allocations) to usages
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Example Type Flow Graph

Object f;

void foo() {
allocate();
bar();

¥

Object allocate() {
f = new Point()
}

int bar() {
return f.hashCode();

}

Analysis is context insensitive:
One type state per field
ORACLE

allocate

new Point
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Example Type Flow Graph

new Point

Object f; £ = "abc"; [Point]

[String]

void foo() {
allocate();
bar();

¥

Object allocate() {
f = new Point()

[Point]

bar

[Point, String]

}
[Point, String]
int bar() { . .
return f.hashCode(); [Point, String]
}

Point.hashCode

Analysis is context insensitive:
One type state per field

String.hashCode

ORACLE
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Polyglot Native: Execution Model
Ahead-of-Time

Compilation

i Machine Code

Initial Heap
Substrate VM
DWARF Info
All Java classes from Reachable methods, Application running
Truffle language fields, and classes without dependency on JDK
(or any application), and without Java class loading

JDK, and Substrate VM
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Polyglot Native Startup

* Slow startup and high footprint

— Class loading

— Bytecode interpretation

— Just-in-time compilation

— Monolithic heap

Program Time Instructions
“Hello, World!” in C 0.005s 154,127
“Hello, World!” in PN 0.006s 232,122
“Hello, World!” in JS with PN 0.028s 915,461

ORACLE
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Demo: Instant Startup of JVM Code
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Benchmarks: Scala Native vs SystemJava

7

6.36

i scala-native

i scala-svm
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SystemlJava

ORACLE
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SystemlJava

Call Java from C

>

Preexisting

C Code <€

Legacy C Code
Integration

Legacy Java Code
Integration

* Legacy C code integration
— Need a convenient way to access preexisting C functions and structures

* Legacy Java code integration
— Leverage preexisting Java libraries
— Example: JDK class library

e Call Java from C code
— Entry points into JVM code
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SystemlJava vs. JNI

* Java Native Interface (JNI)
— Write custom C code to integrate existing C code with Java
— C code knows about Java types
— Java objects passed to C code using handles

* SystemlJava
— Write custom Java code to integrate existing C code with Java
— Java code knows about C types
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Word Type for Low-Level Memory Access

* Requirements

— Support raw memory access and pointer arithmetic

— No extension of the Java programming language

— Pointer type modeled as a class to prevent mixing with, e.g., long
— Transparent bit width (32 bit or 64 bit) in code using it

* Base interface Word

— Looks like an object to the Java IDE, but is a primitive value at run time

— Graal does the transformation

* Subclasses for type safety
— Pointer: Cequivalent void*
— Unsigned: Cequivalentsize t
— Signed: Cequivalentssize t

ORACLE

public static Unsigned strlen(CharPointer str) {
Unsigned n = Word.zero();
while (str.read(n) != 0) {
n = n.add(1);
}

return n;

}
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Java Annotations for C Interoperability

@CFunction static native int clock_gettime(int clock_id, timespec tp);

int clock_gettime(clockid t _ clock_id, struct timespec *_tp)

@CConstant static native int CLOCK_MONOTONIC();

#define CLOCK_MONOTONIC 1

@CStruct interface timespec extends PointerBase {
@CField long tv_sec();
@CField long tv_nsec();

}

struct timespec {
__time_t tv_sec;
__syscall slong_t tv_nsec;

};

@CPointerTo(nameOfCType="int") interface CIntPointer extends PointerBase {
int read();
void write(int value);

}

int* pint;

@CPointerTo(CIntPointer.class) interface CIntPointerPointer ...

int** ppint;

@CContext(PosixDirectives.class)

#include <time.h>

@CLibrary("rt")

-1rt

Implementation of System.nanoTime () using SystemJava:

static long nanoTime() {
timespec tp = StackValue.get(SizeOf.get(timespec.class));
clock_gettime(CLOCK_MONOTONIC(), tp);
return tp.tv_sec() * 1_000_000_000L + tp.tv_nsec();

}

ORACLE
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SystemlJava from JVM Languages

* SystemJava extracts semantics from bytecode

* For all static JVM languages:
— Function calls are propagated
— Java annotations are propagated to bytecode

* Possible extension to language idiomatic interface
— In Scala sizeOf[CCharPointer] would be preferred to SizeOf.get(CCharPointer.class)

SizeOf.get(CCharPointer.class) SizeOf.get(classOf[CCharPointer]) SizeOf.get(CCharPointer::class)
StackAlloc.get(...) StackAlloc.get(...) StackAlloc.get(...)
@CStruct interface AStruct {...} @CStruct trait AStruct{...} @CStruct interface AStruct {...}
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Managed Objects in Native Code

* Managed objects are different than native objects

—in layout, as every object has a header
—memory location, they can, at any time, be moved by the garbage collector

* To avoid these issues, when passing objects to native code

— use handles when native code only holds a reference
— pin objects and ignore their header when native code reads the object
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Demo: Sentiment Analysis of Tweets
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Limitations

* Java reflection can not be fully supported

— Dynamic class loading is not possible

* Currently not implemented

— Reflective access to Java fields, methods, and types
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Take Polyglot Native for a Spin

* Download GraalvVM

http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads/index.html

* The Tweet Sentiment Analysis Demo

https://github.com/vjovanov/polyglot-native-demo
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Integrated Cloud
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