
Non-Volatile Memory and Java: Part 3
A series of short articles about the impact of non-volatile memory 

(NVM) on the Java platform.

In the >rst two articles I described the main hardware and software 

characteristics of Intel’s new Optane persistent memory.

In this article I will discuss the implications of these characteristics on 

how we build software.

Part 3: Bene+ts and challenges of Non-
Volatile RAM
NVRAM oDers several attractions:

Reduced startup time. After a system or application restart, data will 

be immediately accessible in memory without the delay of reading 

blocks from secondary storage (i.e., SSDs and HDs) and 

constructing an in-memory data structure. The challenge here is 

not in using the data exactly as they were before the restart (which 

could have been due to a failure) but in recovering to the most 

recent consistent state. Much more on this below.

Reduced latency of durable updates. Currently, to make an update 

durable, we have to write to block storage, which at the very least 

requires traversing a system call and then waiting for a relatively 

slow medium.

Higher memory density and lower cost/bit than DRAM, which will 

make possible larger in-memory datasets and hence faster, more 

ePcient applications. This can be seen as a one-time ePciency 

boost to the by-now anticipated progression due to Moore’s Law, 

and does not in itself require dramatic changes in software. JEP 316 

proposes to allow the Java heap to be allocated in NVRAM to take 

advantage of these economies, without exploiting non-volatility.

To fully bene>t from persistence, as we shall see, will require changes to 

application architectures.

1.

2.

3.

https://medium.com/@mwolczko/non-volatile-memory-and-java-7ba80f1e730c
https://medium.com/@mwolczko/non-volatile-memory-and-java-part-2-c15954c04e11
https://medium.com/r/?url=http%3A%2F%2Fopenjdk.java.net%2Fjeps%2F316


Volatility as both curse and cure

It is obvious that the delay incurred by reloading data after a restart is 

undesirable, and that eliminating this delay will bring the immediate 

bene>t of higher availability. What is less obvious is that reloading data 

brings with it vital bene>ts, and the loss of these bene>ts cannot be 

tolerated and they must be realized in some other way.

Restarts are used to work around memory corruption bugs

Wiping memory clean and restarting from secondary storage is a 

panacea for a large class of bugs. More than a half-century of system 

design and implementation has entrenched this approach: programmers 

are extremely careful to ensure that updates to secondary storage are 

correct, but much less careful in avoiding problems in RAM, choosing 

instead to restart (a process, an application, a node, potentially a whole 

system) rather than engineering the level of correctness required for 

continuous, uninterrupted operation. This has been expedient: systems 

have to cope with unscheduled restarts (due to power loss, hardware 

errors, operator error, etc.) so why not use the same mechanism to clear 

up corrupted data?

One can view the current popularity of scale-out architectures (esp. 

“cloud”) as reinforcing this approach: build redundancy at the node 

level, and deal with node failures by restarting a node, on diDerent 

hardware if needed. The immense cost of engineering a node that incurs 

downtime only, say, once every few years, is borne only in scenarios 

where that downtime is even more expensive (e.g., industrial process 

control) and in which the inherent complexity of the system being 

designed is far smaller than that in a contemporary general-purpose 

software stack.

Coping with hardware faults

Hardware is not totally reliable, and it is uneconomical to attempt to 

build hardware beyond a certain level of reliability (e.g., to protect 

against memory corruption by cosmic rays would require immense 

shielding).

Transient memory faults typically result in the corruption of a small 

amount of data, perhaps as little as a single bit. In DRAM, they can be 

caused by stray radiation, and have been carefully characterized. We do 



not yet know the failure characteristics of 3D XPoint memory. (However, 

there are results characterizing radiation eDects in related technologies, 

which suggest a high degree of immunity; see Emerging Memory 

Technologies, Yu and Chen, 2016.)

A correctable transient memory fault is caught by the Error-Correcting 

Code (ECC) logic in the memory interface and repaired without the 

application ever being aware of the problem, using redundant 

information in the ECC bits. However, when an uncorrectable fault is 

detected the only reasonable response is to restart immediately, before 

the faulty datum or data can propagate. In a conventional system, this 

means killing the process using the memory (or the OS, if the memory is 

OS memory), restarting, falling back to the data held in external storage 

and reloading the application’s data into DRAM.

A permanent memory fault means that some region of memory is no 

longer usable. Enterprise systems to date have used techniques such as 

chipkill to provide and exploit redundant hardware, switching over from 

a bad chip to a good spare on the ay.

How are these concepts handled in a system with NVRAM? This UCSD 

paper states that Optane PMMs contain a mapping table which is used to 

re-map blocks for wear leveling and bad block management. Also, since 

they report Optane write latency as very similar to DRAM we can 

surmise that the initial write is to a buDer, with the write to 3D-XPoint 

memory taking place later. This will allow time to consult the wear and 

bad block data, to decide on a >nal placement, and to update the 

mapping. Blocks which have incurred correctable errors are presumably 

avoided; each DIMM is likely to have spare capacity to accommodate 

some number of bad blocks. However, until we see the detailed Cascade 

Lake documentation we do not know how uncorrectable errors are 

reported, nor what mitigation is provided. The details are needed to 

design an eDective recovery system.

In any case, an enterprise system will need a strategy to deal both with 

uncorrectable transient faults, and permanent failures. One strategy may 

be to keep a copy of the critical data in secondary storage, just as must be 

done in current, DRAM-based systems. In the event of the loss of data in 

NVRAM, the state is reconstructed from the copy. This could involve 

reading data from block storage, or perhaps replaying a log. In this 

approach, the application developer cannot eliminate all the code that 

https://medium.com/r/?url=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7495087
https://medium.com/r/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChipkill
https://medium.com/r/?url=https%3A%2F%2Farxiv.org%2Fabs%2F1903.05714


maintains the external data and rely just on the in-memory structures. 

This approach may be attractive when enhancing an existing application 

for NVRAM, in that the code to manage the secondary copy already 

exists. However, we lose one advantage in that durable updates to the 

copy in secondary storage will still have longer latency.

An alternative would be to use a RAID-like approach to NV-DIMMs (e.g., 

mirroring) — simpler in design than backing up to block storage, but less 

economical in hardware. One can envisage this facility being supported 

by a managed language runtime (e.g., duplicating each write to a 

diDerent NV-DIMM), with no additional hardware support and no 

burden to the application developer, although at some cost in 

performance. This may be attractive for new applications, as it would 

save having to write all the code that manages a copy in secondary 

storage. However, this does not address node failure; the two copies are 

still in the same failure domain.

Yet another approach is to maintain a parallel copy of the data on 

another node, to be used as a hot spare. In this case the system 

architecture has to propagate the updates to the spare(s). Currently, this 

approach is even more costly in hardware and requires complex software 

and the performance cost of traversing a network, but provides 

additional protection against failures and enables high availability. The 

Gen-Z industry consortium is developing an interconnect to provide 

memory-semantic access to remote data and devices.

An intermediate solution is to periodically backup the NV-DIMM to 

external storage. It may be necessary to schedule a quiescent period in 

order to ensure that the backup is consistent. A backup process designed 

in concert with the application, and using shared-memory concurrency 

techniques to coordinate with updates, could make these periods very 

short (there are parallels with concurrent garbage collection). An update 

log may be needed to record important changes made between backups. 

Recovery will take longer than switching over to a mirror.

For any particular system, a trade-oD will have to made among hardware 

cost, additional software complexity, reliability and system availability. 

Each of the approaches above has diDerent strengths and weaknesses.

Coping with software faults

https://medium.com/r/?url=https%3A%2F%2Fgenzconsortium.org


Mitigating software faults in the presence of persistent memory is a 

much thornier problem. Software faults which result in memory 

corruption (in the broadest sense of that term) are extremely 

widespread and far more common than faults which result in corrupted 

storage. How can I claim this? Simple: everybody expects to restart an 

application or a machine with some regularity, to correct transient 

undesired behavior. That a simple restart corrects a problem strongly 

evinces that the source was in DRAM and not in secondary storage, since 

the former is reinitialized with state from the latter.

It is unwise to expect the introduction of NVRAM to lead to a sharp 

reduction in bug rates, but it does seem prudent for the industry to 

invest more in tools and techniques to help in the prevention, detection 

and correction of bugs which result in incorrect memory states. 

Systematic approaches have the promise of bigger payoDs. For example, 

the use of memory-safe languages, which prevent the application 

programmer from even expressing certain kinds of memory corruption, 

have immediate appeal, and Java falls squarely into this camp. A 

particularly pernicious source of problems is malware which exploits 

bugs to corrupt memory. The introduction of persistent memory 

increases the attack surface easily reached by malware and can 

dramatically widen its reach by making it easier to corrupt long-term 

data.

Data structure evolution currently requires restarts

An additional reason to restart is to handle software evolution. A new 

version can change the in-memory representation of data when it is 

loaded from block storage. If these data are now persistent and not 

constructed from an out-of-memory canonical copy, then we need a way 

to evolve the representation in response to software modi>cations. This 

problem has received some attention in certain contexts (e.g., dynamic 

code evolution for Java, see Dynamic Code Evolution for Java by 

Würthinger et al or UpgradeJ: Incremental Typechecking for Class 

Upgrades by Bierman et al.) but in the general case is a diPcult, unsolved 

problem, and even in the limited cases is not widely used. It will require 

concerted industry eDort to develop the underlying techniques, integrate 

them into software development and deployment practices, and retrain 

staD.

Restarts from secondary state will still be required

https://medium.com/r/?url=https%3A%2F%2Fdoi.org%2F10.1145%2F1852761.1852764
https://medium.com/r/?url=https%3A%2F%2Fdoi.org%2F10.1007%2F978-3-540-70592-5_11


Until these problems are overcome (the last of which may be a long time 

coming) we may still need occasional restarts from external canonical 

state or to recover a backup.

When can data in NVM be reused after a restart?

If the restart is to deploy a new data structure, then only if the old 

structure gets restructured in place; otherwise the new structure 

should be populated from secondary storage.

If the restart was not due to a fault but was scheduled and the 

system shut down cleanly, then the data can be reused.

If the restart was caused by an uncorrectable error, then the 

aDected data must be reverted to a known good state (e.g., by 

restoring a backup and replaying the log).

For all other failures, we either reload data from secondary storage, 

or provide a mechanism to revert the data in NVM to a known 

consistent state (hopefully in less time than required to reload, if 

this is an option). This requires that (a) software explicitly indicates 

when NVM is in a consistent state, (b) updates are logged, and (c) 

during a restart after a fault the runtime undoes updates which 

took place after the last consistent state: in short, a transacted 

system, with commits, logging and recovery.

The remainder of this series will explore how to achieve this in Java.

•

•

•

•


