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Fuzzing or fuzz testing is an automated software testing 
technique that involves providing invalid, unexpected, or 
random data as inputs to a computer program.

Wikipedia
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Fuzzing Exercises Available Functionality

6/14/2022Copyright © 2022, Oracle and/or its affiliates3

Fuzzers don’t care about the intended 
functionality of a program. 

They find issues by exploring the 
space of available functionality.

Intended functionality

Available functionality

Fuzzer

Photo by Alexander Dummer: https://unsplash.com/photos/x4jRmkuDImo

https://unsplash.com/photos/x4jRmkuDImo


Fuzzers come in 3 shades: black, grey, and 

1. Blackbox fuzzers are completely program-agnostic.

2. Greybox fuzzers use limited program feedback (e.g. coverage, taint) to guide their search.

3. Whitebox fuzzers have complete access to the program’s code.

Shades of Fuzzing
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Model-Based Fuzzing



The client is the gateway to the server

• The server is our fuzzing target because it is where critical operations are happening.

• Need to access the server indirectly through the client.

• Random requests to the server will likely fail early sanity checks (e.g. parameters, types, headers, etc.)

• Fuzzing the server through the client doesn’t scale.

Model-Based Fuzzing of Web Applications
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Abstracting away the client to fuzz the server

• Client-server interactions in modern applications typically adopt a REST-like format.

• Interactions are defined and encapsulated unsing standard HTTP verbs, URLs, and request parameters.

• For fuzzing purposes, clients can be abstracted away as REST API models.

Model-Based Fuzzing of Web Applications
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Inferring REST API Models
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Inferring REST API Models
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Inferring REST API Models
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Inferring REST API Models
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Inferring REST API Models
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Inferred through:
1. State-aware crawling
2. Static type inference



Inferring REST APIs With Prioritised State-Aware Crawling
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Gelato: Feedback-driven and Guided Security Analysis of Client-side Web Applications, 
Behnaz Hassanshahi, Hyunjun Lee, Padmanabhan Krishnan, SANER 2022 (to appear)



Augmenting Crawled APIs With Static Type Inference
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Feedback-Driven Fuzzing



Adding coverage and taint feedback

• A REST API model allows for efficient blackbox fuzzing.

• Adding coverage and taint feedback brings BackREST into greybox fuzzing territory.

Feedback-Driven Fuzzing of Web Applications
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FEEDBACK



BackREST Architecture
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• Coverage feedback helps identify code that 
has not been thoroughly exercised and more 
likely to contain bugs.

• BackREST uses coverage to skip inputs from
its payload dictionary.

• After T payloads of a given type (e.g. SQL, 
JWT, string, numeric) that did not increase 
coverage, skip to next type.

Endpoints

Parameters

Types

Payloads

Coverage Feedback To Filter Payloads
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• Taint feedback helps identify input values 
reaching key program locations

• BackREST uses taint inference1 to identify the  
type of payload that will most likely trigger 
vulnerabilities.

• E.g. inputs reaching an SQL operation 
should be sent malformed or malicious 
SQL fragments.

Endpoints

Parameters

Types

Payloads

Taint Feedback To Filter Types
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1: Affogato: Runtime Detection of Injection Attacks for Node.js, 
François Gauthier, Behnaz Hassanshahi, and Alexander Jordan, SOAP 2018
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Results



Application Description Version SLOC Files
Entry 
points*

Request 
parameters*

Nodegoat Educational 1.3.0 970 450 12 180 19 (0) 28 (0)

Keystone CMS 4.0.0 1 393 144 13 891 20 (0) 69 (46)

Apostrophe CMS 2.0.0 774 203 5 701 184 (0) 633 (531)

Juice-shop Educational 8.3.0 725 101 7 449 69 (0) 71 (64)

Mongo-express DB manager 0.51.0 646 403 7 378 29 (0) 96 (49)

Benchmark Applications and Inferred APIs

6/15/2022Copyright © 2022, Oracle and/or its affiliates21

* Number of statically inferred values in parenthesis



Coverage Increases When BackREST Switches Endpoints

6/15/2022Copyright © 2022, Oracle and/or its affiliates22

Fuzzing a new 
endpoint

Cycling through 
payloads



Application
Coverage (%) Time (hh:mm:ss)

Baseline Coverage Cov. & Taint Baseline Coverage Cov. & Taint

Nodegoat 80.31 78.54 75.59 0:42:39 0:06:07 0:05:44

Keystone 48.31 48.05 45.43 5:46:29 0:49:25 0:13:23

Apostrophe − 48.40 45.52 − 11:11:42 6:17:34

Juice-shop 74.73 76.34 75.85 12:48:15 1:10:31 1:08:26

Mongo-express 69.62 69.57 66.59 2:21:49 0:16:07 0:11:07

Impact of Coverage and Taint Feedback Loops on 
Total Coverage and Runtime
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Baseline (B), Coverage feedback (C), Coverage & Taint feedback (CT)

Application
(No)SQLi Cmd injection XSS DoS

B C CT B C CT B C CT B C CT

Nodegoat 0 0 3 0 0 3 5 5 5 0 0 0

Keystone 0 0 0 0 0 0 1 1 0 0 0 0

Apostrophe 0 0 0 0 0 0 1 1 1 2 1 1

Juice-shop 1 1 2 0 0 1 4 1 1 1 0 0

Mongo-express 0 0 5 0 0 2 0 0 0 3 3 3

Total 1 1 10 0 0 6 11 8 7 6 4 4

Impact of Coverage and Taint Feedback on Vulnerability Reports
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• RESTler1 is the first study to investigate stateful server-side fuzzing of web services. 

• Authors have found a positive correlation between stateful fuzzing and increases in coverage.

• We have not observed a similar effect on our benchmark applications.

• We also attempted to model server-side state by inferring dependencies between endpoints.

• This did not improve coverage for all but the Mongo-express application. 

• In this case, the dependencies were intuitive (e.g. insert a document before deleting it) and easily 
configured manually.

A Note On Server-Side State Modelling
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1: RESTler: Stateful REST API Fuzzing, Atlidakis, Vaggelis, Patrice Godefroid, and Marina Polishchuk. ICSE 2019.



BackREST Coverage vs. State-Of-The-Art
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Codebase Vulnerability Found by Taint only Severity

MarsDB Command injection BackREST ✓ Critical

Sequelize Denial-of-Service BackREST Moderate

Apostrophe Denial-of-Service BackREST −

Apostrophe Denial-of-Service BackREST Low

Mongo-express Command injection BackREST ✓ Critical

Mongo-express Denial-of-Service BackREST, Zap, 
Arachni, w3af

Medium

Mongodb-query-parser Command injection BackREST ✓ Critical

MongoDB Denial-of-Service BackREST, Zap High

BackREST 0-days vs. State-Of-The-Art
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MongoDB: 1 671 653 weekly downloads Sequelize:  648 745 weekly downloads



Taint feedback detected two command injections

Case Study: Mongo-express and Mongodb-query-parser
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1. Command injection
Mongo-express < 0.54.0 

called eval with tainted input

2. Vulnerability reported
concurrently by BackREST
and Jonathan Leitschuh

3. Mongo-express fix
Replaced eval with

mongodb-query-parser

4. Command injection 
reported by BackREST in 
mongodb-query-parser 

due to another eval.

5. Mongodb-
query-parser 

fix
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Conclusions



• Total coverage does not significantly differ between BackREST and state-of-the-art 

• State-modelling hasn’t made a significant impact on our benchmarks 

• Taint feedback is unique to BackREST and allows to

• Select the payloads that will most likely trigger vulnerabilities ✓

• Detect vulnerabilities that are invisible to blackbox fuzzers ✓

• Payload dictionaries encapsulate expert knowledge about web vulnerabilities ✓

• Uncovering more complete API models through state-aware crawling helps trigger more 
vulnerabilities ✓

Why Does BackREST Detect More 0-Days?
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• BackREST is a model-based, coverage- and taint-driven greybox fuzzer that:

• Guides a state-aware crawler to infer REST-like APIs

• Uses coverage feedback to improve performance. 

• Uses taint feedback to detect vulnerabilities and guide payload selection. 

• BackREST:

• Achieved speedups ranging from 7.4 to 25.9. 

• Consistently detected more (No)SQLi, command injection, and XSS vulnerabilities than three 
state-of-the-art web fuzzers.

• Detected six 0-days that were missed by all other fuzzers.

Our feedback loops are simple enough to be applied to existing black-box web application fuzzers.

Conclusion
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Thank you

François Gauthier

francois.gauthier@oracle.com
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