
Experience: Model-Based, Feedback-Driven,
Greybox Web Fuzzing with BackREST

François Gauthier, Benhaz Hassanshahi, Benjamin Selwyn-Smith,
Trong Nhan Mai, Max Schlüter, and Micah Williams

Consulting Researcher, Oracle Labs

Fuzzing or fuzz testing is an automated software testing
technique that involves providing invalid, unexpected, or
random data as inputs to a computer program.

Wikipedia

6/14/20222 Copyright © 2022, Oracle and/or its affiliates

Fuzzing Exercises Available Functionality

6/14/2022Copyright © 2022, Oracle and/or its affiliates3

Fuzzers don’t care about the intended
functionality of a program.

They find issues by exploring the
space of available functionality.

Intended functionality

Available functionality

Fuzzer

Photo by Alexander Dummer: https://unsplash.com/photos/x4jRmkuDImo

https://unsplash.com/photos/x4jRmkuDImo

Fuzzers come in 3 shades: black, grey, and

1. Blackbox fuzzers are completely program-agnostic.

2. Greybox fuzzers use limited program feedback (e.g. coverage, taint) to guide their search.

3. Whitebox fuzzers have complete access to the program’s code.

Shades of Fuzzing

6/15/2022Copyright © 2022, Oracle and/or its affiliates4

Burp Suite

AFL

Honggfuzz

libFuzzer

Jazzer

Arachni

Zap

SAGE

KLEE

DART

BackREST

RESTler
w3af

Web
fuzzers

6/15/2022Copyright © 2022, Oracle and/or its affiliates5

Model-Based Fuzzing

The client is the gateway to the server

• The server is our fuzzing target because it is where critical operations are happening.

• Need to access the server indirectly through the client.

• Random requests to the server will likely fail early sanity checks (e.g. parameters, types, headers, etc.)

• Fuzzing the server through the client doesn’t scale.

Model-Based Fuzzing of Web Applications

6/15/2022Copyright © 2022, Oracle and/or its affiliates6

CLIENT SERVER DATABASE

HTTP REQUEST

HTTP RESPONSE
USER

Abstracting away the client to fuzz the server

• Client-server interactions in modern applications typically adopt a REST-like format.

• Interactions are defined and encapsulated unsing standard HTTP verbs, URLs, and request parameters.

• For fuzzing purposes, clients can be abstracted away as REST API models.

Model-Based Fuzzing of Web Applications

6/15/2022Copyright © 2022, Oracle and/or its affiliates7

REST API SERVER DATABASE

HTTP REQUEST

HTTP RESPONSE

BackREST

Inferring REST API Models

6/15/2022Copyright © 2022, Oracle and/or its affiliates8

Inferring REST API Models

6/15/2022Copyright © 2022, Oracle and/or its affiliates9

Inferring REST API Models

6/15/2022Copyright © 2022, Oracle and/or its affiliates10

Inferring REST API Models

6/15/2022Copyright © 2022, Oracle and/or its affiliates11

Inferring REST API Models

6/15/2022Copyright © 2022, Oracle and/or its affiliates12

Inferred through:
1. State-aware crawling
2. Static type inference

Inferring REST APIs With Prioritised State-Aware Crawling

6/15/202213 Copyright © 2022, Oracle and/or its affiliates

Gelato: Feedback-driven and Guided Security Analysis of Client-side Web Applications,
Behnaz Hassanshahi, Hyunjun Lee, Padmanabhan Krishnan, SANER 2022 (to appear)

Augmenting Crawled APIs With Static Type Inference

6/15/2022Copyright © 2022, Oracle and/or its affiliates14

6/15/2022Copyright © 2022, Oracle and/or its affiliates15

Feedback-Driven Fuzzing

Adding coverage and taint feedback

• A REST API model allows for efficient blackbox fuzzing.

• Adding coverage and taint feedback brings BackREST into greybox fuzzing territory.

Feedback-Driven Fuzzing of Web Applications

6/15/2022Copyright © 2022, Oracle and/or its affiliates16

REST API SERVER DATABASE

HTTP REQUEST

HTTP RESPONSE

BackREST

COVERAGE AND TAINT
FEEDBACK

BackREST Architecture

6/15/2022Copyright © 2022, Oracle and/or its affiliates17

• Coverage feedback helps identify code that
has not been thoroughly exercised and more
likely to contain bugs.

• BackREST uses coverage to skip inputs from
its payload dictionary.

• After T payloads of a given type (e.g. SQL,
JWT, string, numeric) that did not increase
coverage, skip to next type.

Endpoints

Parameters

Types

Payloads

Coverage Feedback To Filter Payloads

6/15/2022Copyright © 2022, Oracle and/or its affiliates18

• Taint feedback helps identify input values
reaching key program locations

• BackREST uses taint inference1 to identify the
type of payload that will most likely trigger
vulnerabilities.

• E.g. inputs reaching an SQL operation
should be sent malformed or malicious
SQL fragments.

Endpoints

Parameters

Types

Payloads

Taint Feedback To Filter Types

6/15/2022Copyright © 2022, Oracle and/or its affiliates19

1: Affogato: Runtime Detection of Injection Attacks for Node.js,
François Gauthier, Behnaz Hassanshahi, and Alexander Jordan, SOAP 2018

6/15/2022Copyright © 2022, Oracle and/or its affiliates20

Results

Application Description Version SLOC Files
Entry
points*

Request
parameters*

Nodegoat Educational 1.3.0 970 450 12 180 19 (0) 28 (0)

Keystone CMS 4.0.0 1 393 144 13 891 20 (0) 69 (46)

Apostrophe CMS 2.0.0 774 203 5 701 184 (0) 633 (531)

Juice-shop Educational 8.3.0 725 101 7 449 69 (0) 71 (64)

Mongo-express DB manager 0.51.0 646 403 7 378 29 (0) 96 (49)

Benchmark Applications and Inferred APIs

6/15/2022Copyright © 2022, Oracle and/or its affiliates21

* Number of statically inferred values in parenthesis

Coverage Increases When BackREST Switches Endpoints

6/15/2022Copyright © 2022, Oracle and/or its affiliates22

Fuzzing a new
endpoint

Cycling through
payloads

Application
Coverage (%) Time (hh:mm:ss)

Baseline Coverage Cov. & Taint Baseline Coverage Cov. & Taint

Nodegoat 80.31 78.54 75.59 0:42:39 0:06:07 0:05:44

Keystone 48.31 48.05 45.43 5:46:29 0:49:25 0:13:23

Apostrophe − 48.40 45.52 − 11:11:42 6:17:34

Juice-shop 74.73 76.34 75.85 12:48:15 1:10:31 1:08:26

Mongo-express 69.62 69.57 66.59 2:21:49 0:16:07 0:11:07

Impact of Coverage and Taint Feedback Loops on
Total Coverage and Runtime

6/15/2022Copyright © 2022, Oracle and/or its affiliates23

Baseline (B), Coverage feedback (C), Coverage & Taint feedback (CT)

Application
(No)SQLi Cmd injection XSS DoS

B C CT B C CT B C CT B C CT

Nodegoat 0 0 3 0 0 3 5 5 5 0 0 0

Keystone 0 0 0 0 0 0 1 1 0 0 0 0

Apostrophe 0 0 0 0 0 0 1 1 1 2 1 1

Juice-shop 1 1 2 0 0 1 4 1 1 1 0 0

Mongo-express 0 0 5 0 0 2 0 0 0 3 3 3

Total 1 1 10 0 0 6 11 8 7 6 4 4

Impact of Coverage and Taint Feedback on Vulnerability Reports

6/15/2022Copyright © 2022, Oracle and/or its affiliates24

• RESTler1 is the first study to investigate stateful server-side fuzzing of web services.

• Authors have found a positive correlation between stateful fuzzing and increases in coverage.

• We have not observed a similar effect on our benchmark applications.

• We also attempted to model server-side state by inferring dependencies between endpoints.

• This did not improve coverage for all but the Mongo-express application.

• In this case, the dependencies were intuitive (e.g. insert a document before deleting it) and easily
configured manually.

A Note On Server-Side State Modelling

6/15/2022Copyright © 2022, Oracle and/or its affiliates25

1: RESTler: Stateful REST API Fuzzing, Atlidakis, Vaggelis, Patrice Godefroid, and Marina Polishchuk. ICSE 2019.

BackREST Coverage vs. State-Of-The-Art

6/15/2022Copyright © 2022, Oracle and/or its affiliates26

Codebase Vulnerability Found by Taint only Severity

MarsDB Command injection BackREST ✓ Critical

Sequelize Denial-of-Service BackREST Moderate

Apostrophe Denial-of-Service BackREST −

Apostrophe Denial-of-Service BackREST Low

Mongo-express Command injection BackREST ✓ Critical

Mongo-express Denial-of-Service BackREST, Zap,
Arachni, w3af

Medium

Mongodb-query-parser Command injection BackREST ✓ Critical

MongoDB Denial-of-Service BackREST, Zap High

BackREST 0-days vs. State-Of-The-Art

6/15/2022Copyright © 2022, Oracle and/or its affiliates27

MongoDB: 1 671 653 weekly downloads Sequelize: 648 745 weekly downloads

Taint feedback detected two command injections

Case Study: Mongo-express and Mongodb-query-parser

6/15/2022Copyright © 2022, Oracle and/or its affiliates28

1. Command injection
Mongo-express < 0.54.0

called eval with tainted input

2. Vulnerability reported
concurrently by BackREST
and Jonathan Leitschuh

3. Mongo-express fix
Replaced eval with

mongodb-query-parser

4. Command injection
reported by BackREST in
mongodb-query-parser

due to another eval.

5. Mongodb-
query-parser

fix

6/15/2022Copyright © 2022, Oracle and/or its affiliates29

Conclusions

• Total coverage does not significantly differ between BackREST and state-of-the-art 

• State-modelling hasn’t made a significant impact on our benchmarks 

• Taint feedback is unique to BackREST and allows to

• Select the payloads that will most likely trigger vulnerabilities ✓

• Detect vulnerabilities that are invisible to blackbox fuzzers ✓

• Payload dictionaries encapsulate expert knowledge about web vulnerabilities ✓

• Uncovering more complete API models through state-aware crawling helps trigger more
vulnerabilities ✓

Why Does BackREST Detect More 0-Days?

6/14/202230 Copyright © 2022, Oracle and/or its affiliates

• BackREST is a model-based, coverage- and taint-driven greybox fuzzer that:

• Guides a state-aware crawler to infer REST-like APIs

• Uses coverage feedback to improve performance.

• Uses taint feedback to detect vulnerabilities and guide payload selection.

• BackREST:

• Achieved speedups ranging from 7.4 to 25.9.

• Consistently detected more (No)SQLi, command injection, and XSS vulnerabilities than three
state-of-the-art web fuzzers.

• Detected six 0-days that were missed by all other fuzzers.

Our feedback loops are simple enough to be applied to existing black-box web application fuzzers.

Conclusion

6/14/202231 Copyright © 2022, Oracle and/or its affiliates

Thank you

François Gauthier

francois.gauthier@oracle.com

6/15/2022Copyright © 2022, Oracle and/or its affiliates32

