
Correct, Fast Remote Persistence
Sanidhya Kashyap*

Georgia Institute of Technology
Dai Qin*

University of Toronto
Steve Byan Virendra J. Marathe

Oracle Labs

Sanketh Nalli
Oracle

Abstract
Persistence of updates to remote byte-addressable persistent
memory (PM), using RDMA operations (RDMA updates),
is a poorly understood subject. Visibility of RDMA updates
on the remote server is not the same as persistence of those
updates. The remote server’s configuration has significant
implications on what it means for RDMA updates to be per-
sistent on the remote server. This leads to significant impli-
cations on methods needed to correctly persist those updates.
This paper presents a comprehensive taxonomy of system
configurations and the corresponding methods to ensure cor-
rect remote persistence of RDMA updates. We show that the
methods for correct, fast remote persistence vary dramatically,
with corresponding performance trade offs, between different
remote server configurations.

1 Introduction
Byte addressable persistent memory (PM) such as Intel and
Micron’s 3D XPoint™ [1] promises to make local persistence
faster than the state-of-the-art NAND flash by orders of magni-
tude. Furthermore, PM’s byte addressability promises to fun-
damentally change the way applications represent and man-
age persistent data. At the same time, modern Remote Direct
Memory Access (RDMA) network fabrics (InfiniBand [15, 8],
RoCE [7], and iWARP [9, 11, 30, 31, 35]) are bringing net-
work access latencies down to singleton microseconds. They
offer similar byte addressable remote memory access. The
confluence of these two technologies in enterprise and dis-
tributed systems, where high availability is critically impor-
tant, is inevitable.

Some early work [21, 42] has indeed demonstrated the
synergistic performance benefits RDMA and PM can deliver
to distributed, highly available applications. However, little is
understood on how persistence of RDMA updates to remote
PM can be correctly achieved. For instance, mere receipt of
a completion notification of a RDMA WRITE to remote PM
does not necessarily mean that the WRITE has persisted on
the remote PM. In fact, persistence of remote PM updates,
using RDMA operations, truly depends on the configuration
of the remote server. Absent the recipe to correctly persist a
remote update, serious consistency problems can emerge in
distributed applications in the face of failures.

To the best of our knowledge, there is no comprehensive

*Work done when author was at Oracle Labs.

analysis on system configurations and their implications on
methods to correctly, and efficiently, persist updates using
RDMA operations. Douglas [13] provides an enumeration
of some remote server configurations and corresponding re-
mote persistence recipes. However, it lacks comprehensive-
ness. Furthermore, certain system configurations assumed in
Douglas’ categorization are not even relevant to today’s state-
of-the-art system support for PM [32]. Recent effort by the
InfiniBand Trade Association (IBTA) standards community
proposes extensions to RDMA operations to enable remote
persistence [10, 28]. However, we show that the proposed ex-
tensions cover correct, fast remote persistence for a somewhat
narrow set of remote server configurations.

This paper presents a comprehensive taxonomy of remote
server configurations that has significant implications on the
methods required to correctly persist RDMA updates to the
remote server’s PM. Our taxonomy breaks down configura-
tions along three axes: (i) the notion of a persistence domain
in a system – the portion of the memory hierarchy and RDMA-
capable Network Interface Card (RNIC) buffers that are ef-
fectively persistent; (ii) enablement of optimizations to direct
RDMA updates to the remote server’s processor cache [4, 5],
also called Data Direct I/O (DDIO) by Intel [12]; and (iii)
location of receive queue work request buffers (RQWRBs) of
RDMA connection endpoints, called Queue Pairs (QPAIRs),
on the remote server – either in the server’s DRAM or its PM.

We incorporate not only existing RDMA operations in our
analysis (RDMA WRITE, RDMA WRITEIMM, and RDMA
SEND), but also operations and extensions newly proposed
by the IBTA standards community [10, 28] – RDMA FLUSH
and non-posted RDMA WRITE.

Our thorough analysis of the server configuration space
and RDMA operations has led us to 10 distinct methods
for remote persistence of singleton RDMA updates. Our
analysis leads us to some interesting, and surprising, methods
of remote persistence that let clients treat the traditionally
two-sided RDMA SEND operation as a one-sided RDMA
operation.

We also examine correct persistence of compound updates.
We try to address the following question: What is the way
to correctly, and efficiently, persist causally dependent up-
dates on the remote server’s PM? (Much of the IBTA stan-
dards community discussion has revolved around this ques-
tion [10, 28].) We find 9 additional methods for correct and

ar
X

iv
:1

90
9.

02
09

2v
1

 [
cs

.D
C

]
 4

 S
ep

 2
01

9

efficient remote persistence for compound updates. Through
our analysis we precisely pin-point the correct and efficient
method of remote persistence for each of the combined 72
different scenarios considered in our work. The programmer
must carefully apply the correct remote persistence method
for a given remote server configuration. Application of an
incorrect persistence method may lead to worse performance,
or even critical data inconsistencies in the face of failures.

We evaluate our methods of remote persistence using a
ubiquitous workload that manifests in most distributed and
highly available systems – log replication (REMOTELOG).
REMOTELOG serves as the test bed for both singleton and
compound RDMA update persistence. Our evaluation shows
significant performance trade offs between the various meth-
ods of remote persistence, with a general indication that, for
REMOTELOG, remote persistence via one-sided RDMA op-
erations performs significantly better than a message passing
based approach using RDMA SENDs.

We first present some background in §2 that describes per-
tinent system support for PM, the high level architecture of
a system that participates in a RDMA network, various per-
tinent RDMA operations (current, and new ones proposed
by the IBTA standards community [10, 28]), and recent tech-
nological advancements that have significant implications on
remote persistence. In §3, we describe our remote persistence
taxonomy and its implications on persisting RDMA updates
to PM. We present a detailed qualitative analysis of the steps
needed for remote persistence. Our taxonomy’s methods of
remote persistence are based in part on recent RDMA exten-
sions proposed by the IBTA standards community [10, 28].
We treat persistence of singleton and compound remote up-
dates separately. Our preliminary evaluation in §4 indicates
significant performance trade offs between the various meth-
ods of remote persistence.

2 Background
System Support for PM: PM supported systems are ex-
pected to become available imminently [27]. In these systems,
PM will be available in the DIMM form factor, alongside tra-
ditional DRAM DIMMs as shown in Figure 1. Applications
will be able to perform load, store, and other memory access
instructions on PM that are typical of DRAM. Furthermore,
processor vendors such as Intel [16] and ARM [6] are pro-
viding extensions to enable ordering of persistence of stores
to PM – e.g. Intel’s clflush-opt and clwb instructions, and
extensions to existing instructions with fence semantics to
enforce completion of prior cache line flushes and writebacks
(ARM has similar extensions [6]). Cache line flushes, write-
backs and memory fences guarantee that updated cache lines
are evicted or copied to at least the Integrated Memory Con-
troller (IMC) buffers. IMC buffer entries are drained out to
the PM DIMMs as scheduled by the memory controller. Dur-
ing a power failure, hardware features such as Asynchronous
DRAM Refresh (ADR) [3, 32] are used to drain the IMC

CPU

WSP
domain

Cores

PM DIMMs

¬DDIO path

DDIO path

4

3

2

Socket

IMCs

Memory Bus

DRAM DIMMs

LLC

IIO Controller

RNIC

RDMA

Network

MHP
domain

DMP
domain

1

Figure 1: Block Diagram of a computer connected to an RDMA
network fabric.

buffers to PM DIMMs. PM is already available in the indus-
try in the form of NVDIMM-N type DIMMs [18] – DRAM
backed by NAND flash using ultra capacitors [2, 24, 39].

Networked Computer Architectures: RNICs are becom-
ing increasingly common in modern data centers. Figure 1
depicts the high level architecture of today’s data center com-
puters connected to each other via RDMA network fabrics.
A computer communicates with another via the RNIC. The
RNIC itself has internal buffers that can host data recently
sent or accessed by a remote node. These buffers however are
not coherent with the host processor’s cache [37].

We now discuss the data flow between different parts of
the system caused by RDMA accesses (shown in Figure 1).
We focus on RDMA WRITEs here, but the same details ap-
ply to RDMA SENDs, READs, and ATOMICs. An incoming
RDMA WRITE first lands in the RNIC buffers (step 1 in Fig-
ure 1). Thereafter, the RNIC posts (via DMA) the WRITE
to the server’s memory. The data itself travels through the
processor’s PCIe I/O controller. The I/O controller was tradi-
tionally a separate off-die chip between peripheral I/O devices
and the processor. However, in recent years, processors have
the Integrated I/O (IIO) feature that hosts the I/O controller
on the processor’s die for a much more efficient data path
between peripheral I/O devices (e.g. RNICs) and the proces-
sor. IIO is prevalent in modern processors, and has its private

2

independent buffers.
The RDMA WRITE’s data in practice moves from the

RNIC buffers to the IIO controller buffers (step 2), after which
it is moved to the target memory DIMMs via the pertinent
memory controllers (step 4). The received data can then be
accessed by the server’s processor. This necessarily leads to
a high latency memory bus transaction in the server to fetch
the recently received data. Recognizing these overheads,
Intel introduced the notion of Data Direct I/O (DDIO) in
its processors that provides a data path from the IIO directly
to the server processor’s L3 cache, rather than placing the
data in IMC buffers [12] (step 3). A similar feature exists in
processors by other vendors such as ARM [4, 5].

With DDIO, all incoming RDMA WRITEs are likely to
directly reach the server processor’s L3 cache; in high traffic
scenarios, writes may partially be written directly into the
server’s memory DIMMs. DDIO is a standard feature in
modern Intel processors, and can be switched off to avoid
cache pollution if the application hosted on the server is not
expected to access recently received data through its periph-
eral I/O devices. As we will show in §3, DDIO plays an
important role in remote persistence.

RDMA Operations: The RDMA programming
model [23, 31, 34] contains a QPAIR abstraction that
is used to represent an endpoint of a communication channel
(connection) between computers (nodes) over and RDMA
network. A connection management system establishes a
connection between QPAIRs of communicating nodes. This
includes designating the type of the connection: Unreliable
Datagram (UD), Unreliable Connection (UC), or Reliable
Connection (RC). Since reliability (messages are not lost) is
critical to remote persistence, we assume reliable connections
in the rest of the paper unless mentioned otherwise. All
RDMA data operations (detailed below) can be used in
reliable connections. In the rest of this paper, we call the
remote server that receives RDMA requests the responder,
and the requesting server is called the requester.

RDMA operations contain a “two-sided” message passing
operation – the RDMA SEND. The responder must receive
and process the sent message and potentially provide a re-
sponse to the requester via another RDMA SEND message
directed to the requester. The responder’s processor performs
these tasks, which may not be desirable for some applica-
tions [14]. The “one-sided” RDMA operations – RDMA
READ and RDMA WRITE – do not require any participation
from the responder’s CPU; these operations read and write re-
mote memory respectively (the responder’s RNIC uses DMA
to perform the reads and writes). A hybrid RDMA WRITE
with Immediate Data (WRITEIMM) operation performs a
WRITE on the responder’s memory and delivers a message
to the responder with a 32-bit sized payload – the immediate
data. RDMA WRITEIMM does require the responder’s CPU
to process the message with immediate data, like RDMA
SEND. RDMA also contains one-sided ATOMIC operations

(RDMA Fetch-And-Add (FAA) and RDMA Compare-And-
Swap (CAS)) – 64-bit wide atomic read-modify-write oper-
ations that can be used for synchronization between remote
requesters [34, 41], but can incur significant performance
overheads [19].

All RDMA operations described above are asynchronous.
The requester posts a RDMA work request at a QPAIR and,
if the request was flagged to return a completion notification,
can subsequently wait on a completion notification for the
request. The notification is generated at the requester once the
operation completes. All operations that semantically gener-
ate a response (RDMA READ, FAA, and CAS) necessarily
generate a completion notification. Work requests for other
operations (RDMA SEND, WRITE, and WRITEIMM) can
optionally be flagged for completion notification. An applica-
tion can use the RDMA ordering rules to infer completion of
operations that are not flagged for completion notification.

More recently [10, 28], the IBTA standards community de-
cided to add a new RDMA operation – the RDMA FLUSH.
This is because simply receiving a completion notification, at
the requester, for a RDMA WRITE/SEND/WRITEIMM does
not guarantee that the operation has become visible (available
in the memory hierarchy) at the responder’s end – the oper-
ation may still reside in the responder’s RNIC buffers, or in
the case of iWARP [9, 11, 30, 31, 35], may not even have left
the requester. As we will see in §3, a failure at the respon-
der at such a juncture could lead to loss of data residing in
the responder’s RNIC buffers in some system configurations.
The new RDMA FLUSH operation guarantees that all prior
RDMA update operations, issued on the same connection, be-
come visible to the responder before the FLUSH’s completion
notification is received at the requester.

RDMA Operation Ordering: The RDMA standard spec-
ifies interesting ordering rules for RDMA operations [8, 31,
34]. In particular, it separates RDMA operations into two
categories: (i) operations that produce a return value that is
consumed by the requester (RDMA READ, CAS, FAA, and
now, FLUSH), informally referred to as “non-posted” oper-
ations in the community [10, 28]; and (ii) operations that
do not require a return value (RDMA SEND, WRITE, and
WRITEIMM), also referred to as “posted” operations.

The effects of non-posted operations are totally ordered
with all prior operations at the responder – their effects are
made visible at the responder in the order they were issued at
the requester. Effects of posted operations are totally ordered
with each other. However, posted operations can be ordered
at the responder before prior non-posted operations issued by
the requester.

Visibility of updates to PM on a local system does not
imply persistence of those updates [20, 29, 38]. Similarly,
visibility of RDMA updates does not imply persistence of
those updates. As a result, though RDMA updates become
visible in-order on a reliable connection, they may become
persitent out-of-order. RDMA FLUSH was introduced by

3

IBTA precisely to enforce order of persistence. However,
since RDMA FLUSH is a non-posted operation, a subsequent
posted RDMA operation can be ordered before the FLUSH
leading to the out-of-order persistence problem. To address
this problem, IBTA decided to add an ATOMIC version of
RDMA WRITE [10, 28] that guarantees atomicity seman-
tics similar to the other ATOMIC operations (FAA and CAS).
In effect, an ATOMIC WRITE (WRITEatomic) acts as a non-
posted operation – it is ordered, at the responder, after all
preceding posted and non-posted RDMA operations issued
on the same connection. Furthermore, WRITEatomic can be
used to update up to 8-bytes atomically (all or nothing seman-
tics).

Ordering enforcement between posted and non-posted
RDMA operations is not a new problem. The pre-existing
solution in the RDMA standard is to tag posted RDMA op-
erations with the fence flag. This flag ensures that the fenced
operation blocks at the requester’s end until all prior non-
posted operations on the same QPAIR complete – their result
is received at the requester’s end. Such fenced posted op-
erations can be used in conjunction with RDMA FLUSH to
enforce ordering of persistence of two consecutive RDMA
updates. However, it incurs the overhead of an extra round-
trip for the RDMA FLUSH, that the second RDMA update
must wait for. WRITEatomic eliminates that extra round-trip,
and enables pipelining of the dependent updates (separated
by an intervening RDMA FLUSH).

3 Taxonomy of Remote Persistence
3.1 Remote Server Configuration
Persistence on the responder’s end of RDMA based remote
updates depends on several characteristics of the responder’s
configuration. We first describe these characteristics that
enable us to build an elaborate taxonomy of server configura-
tions that have significant implications on methods to perform
remote update persistence on the responder. We break down
the responder’s configuration along three axes: (i) the notion
of a persistence domain in a system [22, 33]; (ii) enable-
ment of optimizations to direct RDMA updates to the remote
server’s processor cache (e.g. DDIO in Intel’s processors);
and (iii) location of work request buffers in the receive queue
of RDMA QPAIRs on the responder – either on its DRAM
or its PM.

3.1.1 Persistence Domains

Prior work [22, 33] has defined a persistence domain as the
portion of the memory hierarchy that is effectively persis-
tent – writes reaching this part of the memory hierarchy are
guaranteed to persist across power failure and restart cycles.
We extend that definition to include the RNIC’s buffers as
well. We observe three distinct persistence domains based on
characteristics of a system’s configuration.

1. DIMM and Memory controller Persistence (DMP): This
persistence domain includes the PM DIMMs as well

as the integrated memory controller (IMC) buffers.
The IMC buffers are included in the persistence do-
main through hardware features such as Asynchronous
DRAM Refresh (ADR) [32, 33] that flush the IMC
buffers to the PM DIMMs during a power failure event.
This is expected to be the dominant type of persistence
domain in at least the near term.

2. Memory Hierarchy Persistence (MHP): This persistence
domain includes the entire memory hierarchy of the sys-
tem [17, 26, 33] – all processor caches, store buffers, etc.
Here the assumption is that the system has enough resid-
ual power to flush processor buffers and caches to the
PM DIMMs on a power failure event. Custom system
hardware and power supply equipment may be required
to make this possible [33]. MHP has significant impli-
cations on the programming model for PM since now
the visibility of store instructions implies persistence –
there is no need for explicit cache line flushes and write-
backs and corresponding persistence barriers [20, 29].
The RNIC buffers are however not included in the persis-
tence domain. As a result, there is still a need to perform
RDMA FLUSHes.

3. Whole System Persistence (WSP): This persistence do-
main encompasses the entire system, including the RNIC
buffers. Battery backed systems can serve WSP [25].
On a power failure, the caches of the processor as well
as the buffers of all peripheral devices will be flushed to
corresponding regions in the PM DIMMs. Since RNIC
buffers become effectively persistent, WSP has interest-
ing implications on the programming model for remote
persistence in that it eliminates the need for explicit or-
dering barriers between posted RDMA operations. In
WSP, the normal RDMA ordering semantics now apply
to persistence, once the data has been received by the
responder RNIC.

Figure 1 depicts DMP, MHP, and WSP. We do not include
a persistence domain limited to just the PM DIMMs [13, 22]
since such persistence domains are unlikely to be supported
in real systems [32].

3.1.2 Implications of DDIO / Cache Stashing

DDIO [12] is the feature on Intel processors that enables
delivery of incoming RDMA data from the responder’s RNIC
directly into the L3 cache. A similar feature called cache
stashing is provided by ARM processors [4, 5]. While it does
provide the processor much more efficient access to incoming
data, for a system that supports just DMP, DDIO ends up
keeping the inbound data outside the persistence domain, that
is, in the processor cache. Extra work needs to be done by
the responder’s processor to flush/writeback the arrived data
to the persistence domain. Alternately, if DDIO is turned off
at the responder, the inbound data will move to the memory

4

controller, which is within the DMP domain. If the responder
supports MHP, arrival of the inbound data in the responder’s
L3 cache implicitly persists the data. For WSP, arrival of
inbound data in the RNIC buffers itself ensures persistence.

3.1.3 RDMA Queues and Work Requests

Each QPAIR used for a RDMA connection internally con-
tains two queues – the send queue and the receive queue.
Each of these is a linked list of work requests (WRs) created
by the enclosing application. Each work request itself points
to a work request buffer (WRBs) created by the application.
The work request buffer contains application specific data.
For the send queue, one or more work request buffers can be
associated with a work request. The more pertinent queue
for persistence of RDMA updates is the receive queue. The
responder must preallocate work requests (and their buffers)
in a QPAIR’s receive queue in order to receive work requests
from the requester. These work request buffers are completely
under the control of the application, which can allocated them
from either DRAM or PM. As we shall see later, these allo-
cation choices have significant implications on remote persis-
tence of RDMA SEND requests to the extent that they can be
treated by the requester like one-sided RDMA updates.

We note that a QPAIR also is associated with a Completion
Queue (CQ) that contains requester-side, RNIC generated,
completion notifications for operations explicitly marked to
generate a completion notification. For a posted operation, a
completion notification is generated by the requester’s RNIC
immediately after the responder’s RNIC receives the opera-
tion – this is triggered from the lower level RDMA transport
layer, when the requester’s RNIC receives an acknowledg-
ment from the responder’s RNIC for the receipt of the opera-
tion at the responder’s end. As noted earlier, for a non-posted
operation, a completion notification is generated at the re-
quester only after the return value of the non-posted operation
is received from the responder.

Receipt of inbound two-sided RDMA operations (RDMA
SEND and WRITEIMM) results in creation of a receive com-
pletion notification in the QPAIR’s CQ. This receive comple-
tion is however generated after the corresponding receive
queue work request, and its corresponding work request
buffer, is populated and made visible by the RNIC.
Our analysis above leads us to twelve distinct remote server
configurations as shown in Table 1.
3.2 Persisting Singleton RDMA Updates
We first consider the case of singleton remote updates com-
prising update of just one contiguous block of data in the
responder’s PM. The block can range from 1−231 bytes in
size, the permissible size for a RDMA SEND, WRITE, and
WRITEIMM on a reliable connection. Table 2 depicts the full
taxonomy of remote persistence of singleton remote updates
for the twelve different responder configurations enumerated
in Table 1. We break down our discussion of remote persis-
tence by the persistence domain configured on the responder.

Config Explanation

DMP + DDIO +
DRAM-RQWRB

→ DMP, with DDIO turned on, and RQWRB placed in DRAM.

DMP + DDIO +
PM-RQWRB

→ DMP, with DDIO turned on, and RQWRB placed in PM.

DMP + ¬DDIO +
DRAM-RQWRB

→ DMP, with DDIO turned off, and RQWRB placed in DRAM.

DMP + ¬DDIO +
PM-RQWRB

→ DMP, with DDIO turned off, and RQWRB placed in PM.

MHP + DDIO +
DRAM-RQWRB

→ MHP, with DDIO turned on, and RQWRB placed in DRAM.

MHP + DDIO +
PM-RQWRB

→ MHP, with DDIO turned on, and RQWRB placed in PM.

MHP + ¬DDIO +
DRAM-RQWRB

→ MHP, with DDIO turned off, and RQWRB placed in DRAM.

MHP + ¬DDIO +
PM-RQWRB

→ MHP, with DDIO turned off, and RQWRB placed in PM.

WSP + DDIO +
DRAM-RQWRB

→ WSP, with DDIO turned on, and RQWRB placed in DRAM.

WSP + DDIO +
PM-RQWRB

→ WSP, with DDIO turned on, and RQWRB placed in PM.

WSP + ¬DDIO +
DRAM-RQWRB

→ WSP, with DDIO turned off, and RQWRB placed in DRAM.

WSP + ¬DDIO +
PM-RQWRB

→ WSP, with DDIO turned off, and RQWRB placed in PM.

Table 1: Remote server configurations. RQWRB is the Receive
Queue Work Request Buffer.

DMP: The DMP domain comprises just the PM DIMMs
and the host processor’s IMC buffers (see Figure 1). As
a result, if DDIO is turned on at the responder, incoming
RDMA updates may very well go into its processor cache,
which is not a part of its DMP. As a result, the requester must
send a message to the responder to flush those updates to
DMP. It is clear that remote persistence is not reliably possi-
ble with just one-sided RDMA operations (RDMA WRITE
and RDMA FLUSH). The alternative shown in Table 2 is for
the requester to perform an RDMA WRITE followed by a
RDMA SEND that informs the responder that a WRITE has
just happened, and needs to be flushed out of the responder’s
processor cache. After performing the flush, the responder
sends back a response to the requester informing comple-
tion of remote persistence. Remote persistence is guaranteed
to have happened from the requester’s perspective when it
receives the response.

With RDMA SEND we assume that the sent message con-
tains the target location to update in the responder’s PM and
the value that needs to be written to that location. We thus use
the standard message passing idiom to enforce persistence of
remote updates. It however leads to a copy of the payload on
the responder’s side – from the RQWRB of the responder to
the target memory location of the responder (done using local
copy followed by local flush shown in Table 2).

RDMA WRITEIMM is much more elegant in that it elim-
inates the copying overhead (we assume that the write in
WRITEIMM is directed to a location in PM). However it does
require the responder’s processor to perform local flushes of
the updated cache lines. Furthermore, RDMA WRITEIMM
has the limitation that the target address must be identifiable
using just the 32-bit immediate data embedded in the message
delivered to the responder, which may not be possible in some
application contexts.

Remote persistence gets more interesting when DDIO is

5

DMP MHP WSP

Write WriteImm Send Write WriteImm Send Write WriteImm Send

DDIO + Rq Write(a) Rq WriteImm(a) Rq Send(a) Rq Write(a) Rq WriteImm(a) Rq Send(a) Rq Write(a) Rq WriteImm(a) Rq Send(a)
DRAM-RQWRB Rq Send(&a) Rsp Receive(&a) Rsp Receive(a) Rq Flush Rq Flush Rsp Receive(a) Rq CompWrite(a) Rq CompWriteImm(a) Rsp Receive(a)

Rsp Receive(&a) Rsp flush(&a) Rsp copy(a) + Rq CompFlush Rq CompFlush Rsp copy(a) Rsp copy(a)
Rsp flush(&a) Rsp Send(ack) flush(&a) Rsp Send(ack) Rsp Send(ack)
Rsp Send(ack) Rq Receive(ack) Rsp Send(ack) Rq Receive(ack) Rq Receive(ack)
Rq Receive(ack) Rq Receive(ack)

DDIO + As above As above As above As above As above Rq Send(a) As above As above Rq Send(a)
PM-RQWRB Rq Flush Rq CompSend(a)

Rq CompFlush
¬DDIO + Rq Write(a) Rq WriteImm(a) As above As above As above Rq Send(a) As above As above Rq Send(a)
DRAM-RQWRB Rq Flush∗ Rq Flush Rsp Receive(a) Rsp Receive(a)

Rq CompFlush Rq CompFlush Rsp copy(a) Rsp copy(a)
Rsp Send(ack) Rsp Send(a)
Rq Receive(ack) Rq Receive(a)

¬DDIO + As above As above Rq Send(a) As above As above Rq Send(a) As above As above Rq Send(a)
PM-RQWRB Rq Flush Rq Flush Rq CompSend(a)

Rq CompFlush Rq CompFlush

RQWRB = Receive Queue Work Request Buffer Rq = Requester Rsp = Rsponder
copy = local memcpy at the Responder flush = local cache line flush at the Responder
Rq Completion = Receipt of completion notification at requester Receive = Requester/Responder receives message

∗On some systems, a message exchange, using RDMA SEND, can possibly be more efficient than a RDMA FLUSH.

Table 2: Taxonomy for Singleton Updates (value a) using RDMA operations to location &a in the responder’s PM. Each row in the table
corresponds to a remote server (responder) configuration with DDIO turned on or off and the RQWRB resident in DRAM or PM. Each
column represents the primary operation used to implement the remote update (RDMA WRITE, RDMA WRITEIMM, or RDMA SEND),
further grouped by the persistence domain configured on the responder – DMP, MHP, WSP. Value a is written by the requester at the responder;
&a represents the address of the target PM memory block at the responder.

turned off. First, remote persistence using one-sided opera-
tions – RDMA WRITE, RDMA WRITEIMM, and RDMA
FLUSH – becomes possible (we assume that RDMA WRITE
or RDMA WRITEIMM updates a location in the responder’s
PM). The requester must wait for the completion notifica-
tion for the RDMA FLUSH, which is received only after its
FLUSH has taken effect on the responder. Prior work [13, 37]
has described this particular case. We note however that
in some RDMA network and RNIC implementations, an
RDMA FLUSH could possibly have higher latency than a
two-sided message exchange using RDMA SENDs.

With DDIO turned off, if the RQWRB resides in DRAM,
the method of remote persistence with RDMA SEND follows
the traditional messaging passing idiom. However, if the
RQWRB resides in PM an interesting possibility emerges:
Since the RQWRB resides in PM, a message received in
the responder’s DMP domain is effectively persistent. This
message can survive power failure cycles, and the enclos-
ing application’s recovery subsystem can be designed to ac-
cess these messages and persist their effects. As a result,
the requester needs to simply persist the data from RDMA
SEND operations on the responder, which is done by issuing
a RDMA FLUSH. In applications where processing of these
persistent messages is not possible during recovery (because
of additional missing context that was hosted in DRAM), the
standard two-sided message exchange idiom would be the
only viable alternative.

MHP: MHP refers to persistence of the whole memory
hierarchy. Since the RNIC buffers are not a part of the MHP
domain, RDMA FLUSH is required for remote persistence

using just one-sided operations. That is the case not only
with RDMA WRITE, but also with RDMA WRITEIMM. In
the latter case, we assume that application correctness is
not compromised even if the immediate data delivered with
the RDMA WRITEIMM is lost due to a power failure or
application crash. (If synchronous immediate data delivery
is required for application correctness, a different method
for remote persistence, most likely based on RDMA SEND,
must be used by the application.) The requester can infer
persistence of remote updates when it receives a completion
notification for the RDMA FLUSH.

The RDMA SEND based method for persistence of re-
mote updates varies based on whether the RQWRB resides
in DRAM or PM. If in DRAM, the method is the classic
message passing based idiom. Note however that the respon-
der’s processor does not need to issue local cache line flushes
since completing local stores itself ensures persistence. If the
RQWRB resides in PM, persisting just the RDMA SEND
on the responder may be sufficient for the requester to infer
persistence of the remote update. Again, if the application
requires a synchronous handshake between the requester and
responder, the classic message passing idiom may be a better
match, but may come with higher latency for remote persis-
tence.

WSP: When even the RNIC buffers become effectively
persistent, persistence of remote updates may become quite
simple. For the InfiniBand and RoCE RDMA transports,
receipt of just the completion notification of RDMA WRITE
and RDMA WRITEIMM at the requester is sufficient to infer
persistence of a remote update. The same method of remote

6

persistence applies to the RDMA SEND based approach if
the responder’s RQWRB resides in PM. If not, the classic
message exchange idiom is required for remote persistence.

We note a key difference in the semantics of completion
notifications between iWARP [9, 11, 30, 31, 35] and Infini-
Band/RoCE [7, 8, 15]. InfiniBand and RoCE guarantee that
the RDMA operation is received at least at the responder’s
RNIC before the corresponding completion notification is gen-
erated at the requester. iWARP, however, makes a “weaker”
guarantee in that a completion notification is created as soon
as the operation reaches the requester’s reliable transport layer
(TCP, or SCTP [9]). As a result, the completion notification
may be received by the application on the requester’s side
even before the operation is sent to the responder. The impli-
cation the iWARP semantics have on remote persistence for
responders supporting WSP is that RDMA FLUSH becomes
necessary for correct remote persistence. The methods for
remote persistence for WSP essentially mimic the correspond-
ing methods for remote persistence for MHP on iWARP.

3.3 Persisting Compound RDMA Updates
Ordering of consecutive updates is foundational to achieve
data consistency. RDMA based updates are no different. We
now focus on the methods programmers can use to enforce
correct order of persistence of consecutive updates using
RDMA operations. We want to ensure that if a requester is
posting two strictly ordered updates, a followed by b, to the
responder’s PM, those updates are persisted at the responder
in the same order. Log append is a canonical example of
such dependent updates – the log record at the remote log’s
tail must first be updated and persisted, before advancing the
log’s tail pointer and persisting it. Table 3 shows the recipes
to enforce the correct order of persistence on the responder.

DMP: With DDIO turned on, dependent RDMA WRITEs
must be separated by a message exchange between the re-
quester and responder. The responder must also flush the
affected cache lines for the first RDMA WRITE to ensure
its persistence before sending back an acknowledgment to
the requester. Furthermore, the second RDMA WRITE must
also be followed by another identical message exchange to
inform the requester about persistence of the second RDMA
WRITE. We observe similar set of operations required for
remote persistence of consecutive RDMA WRITEIMMs; the
WRITEIMM itself ends up performing a write followed by
delivery of a message to the RQWRB of the responder.

RDMA SEND is perhaps the more effective way of per-
forming remote updates since both updates (a and b) can be
packaged in a single message. The responder must first write
and flush a before writing and flushing b. A receipt of an
acknowledgment from the responder informs the requester
that the two updates have persisted on the responder’s PM.
The RDMA SEND based approach does however lead to two
copies of the updates at the responder’s end – in the RQWRB
and the final target. As a result, the above two approaches

may be more efficient for coarse grained updates. The meth-
ods for remote persistence of dependent updates remains the
same as above even when the RQWRB resides in PM since
DDIO can push the remote updates to the responder’s proces-
sor cache, which the responder must flush locally to its DMP
domain.

We observe interesting implications if DDIO is turned off
on the responder. When the RDMA WRITE operation is used
to perform the remote updates, there are two possible means
of ordering the persistence of the two updates a and b. Ta-
ble 3 shows just one alternative that aligns with the canonical
log append example mentioned above – the second update
is a fine-grain write, to the log’s tail, that atomically updates
at most 8 bytes. The RDMA FLUSH after the first RDMA
WRITE ensures that the write will be flushed to the respon-
der’s PM. The use of RDMA WRITEatomic for the second
write ensures that, at the responder, it is ordered after the
preceding RDMA FLUSH. The second subsequent RDMA
FLUSH makes sure that the WRITEatomic persists before the
completion notification for the second FLUSH is received at
the requester.

If the second update is more than 8 bytes long, a RDMA
WRITEatomic will not work. In that case, the requester must
wait for the completion notification of the first RDMA
FLUSH before before issuing the second RDMA WRITE. As
mentioned earlier, in some RDMA fabric and RNIC imple-
mentations, a message exchange based notification of com-
pletion of remote persistence (similar to the approach taken
above in the case where DDIO is turned on) may perform
better than the use of RDMA FLUSH.

With DDIO turned off, RDMA WRITEIMM can be used
as somewhat of a one-sided operation in that the responder
does not need to send back an acknowledgment message to
the requester after either of the two RDMA WRITEIMMs.
(We again assume that application correctness is not com-
promised even if the immediate data delivered with the
RDMA WRITEIMM is lost due to a power failure or appli-
cation crash.) However, since there is no ATOMIC version
of WRITEIMM, the requester must wait for the completion
notification of its first RDMA FLUSH before performing
the second (dependent) RDMA WRITEIMM. Thereafter the
second RDMA FLUSH and its corresponding completion no-
tification informs the requester that the second update has
also remotely persisted.

For RDMA SEND based remote updates, the method de-
scribed above for the DDIO case will work correctly if the
RQWRB resides in DRAM. However, if the RQWRB resides
in PM, the RDMA SEND can be used like a one-sided oper-
ation. This is because using RDMA FLUSH ensures that the
sent message resides in the PM location of the correspond-
ing RQWRB at the responder. This implicitly presists the
compound update, which can survive an immediate power
failure at the responder. The application’s recovery subsystem
can be used to find and apply the sent message to the correct

7

DMP MHP WSP

Write WriteImm Send Write WriteImm Send Write WriteImm Send

DDIO + Rq Write(a) Rq WriteImm(a) Rq Send(a,b) Rq Write(a) Rq WriteImm(a) Rq Send(a,b) Rq Write(a) Rq WriteImm(a) Rq Send(a,b)
DRAM-RQWRB Rq Send(&a) Rsp Receive(&a) Rsp Receive(a,b) Rq Write(b) Rq WriteImm(b) Rsp Receive(a,b) Rq Write(b) Rq WriteImm(b) Rsp Receive(a,b)

Rsp Receive(&a) Rsp flush(&a) Rsp copy + Rq Flush Rq Flush Rsp copy(a,b) Rq CompWrite(b) Rq CompWriteImm(b) Rsp copy(a,b)
Rsp flush(&a) Rsp Send(ack) flush(a,b) Rq CompFlush Rq CompFlush Rsp Send(ack) Rsp Send(ack)
Rsp Send(ack) Rq Receive(ack) Rsp Send(ack) Rq Receive(ack) Rq Receive(ack)
Rq Receive(ack) Rq WriteImm(b) Rq Receive(ack)
Rq Write(b) Rsp Receive(&b)
Rq Send(&b) Rsp flush(&b)
Rsp Receive(&b) Rsp Send(ack)
Rsp flush(&b) Rq Receive(ack)
Rq Send(ack)
Rq Receive(ack)

DDIO + As above As above As above As above As above Rq Send(a,b) As above As above Rq Send(a,b)
PM-RQWRB Rq Flush Rq CompSend(a,b)

Rq CompFlush
¬DDIO + Rq Write(a) Rq WriteImm(a) As above As above As above Rq Send(a,b) As above As above Rq Send(a,b)
DRAM-RQWRB Rq Flush∗ Rq Flush Rsp Receive(a,b) Rsp Receive(a,b)

Rq Writeatomic(b) Rq CompFlush Rsp copy(a,b) Rsp copy(a,b)
Rq Flush Rq WriteImm(b) Rsp Send(ack) Rsp Send(ack
Rq CompFlush Rq Flush Rq Receive(ack) Rq Receive(ack)

Rq CompFlush
¬DDIO + As above As above Rq Send(a,b) As above As above Rq Send(a,b) As above As above Rq Send(a,b)
PM-RQWRB Rq Flush Rq Flush Rq CompSend(a,b)

Rq CompFlush Rq CompFlush

RQWRB = Receive Queue Buffer Rq = Requester Rsp = Responder
WRITEatomic = RDMA Atomic WRITE copy = local memcpy at the Responder flush = local cache line flush
Rq Comp = Receipt of completion notification at requester Receive = Requester/Responder receives message

∗On some systems, a message exchange, using RDMA SEND, can possibly be more efficient than a RDMA FLUSH.

Table 3: Taxonomy for Compound Updates using RDMA operations. The above taxonomy orders remote persistence of two updates – a
followed by b.

locations in the responder’s PM. The requester can infer that
the compound update has persisted on receipt of completion
notification for the RDMA FLUSH.

MHP: For MHP, visibility of RDMA updates at the re-
sponder is equivalent to persistence, as long as the updates
are directed to the remote PM. Existing RDMA ordering
semantics [8, 31, 34] guarantee in-order visibility of consec-
utive posted updates. As a result, two dependent updates
can be pipelined back-to-back as RDMA WRITEs. However,
since the writes need to be flushed from the responder’s RNIC
buffers to its memory hierarchy, a RDMA FLUSH is needed.
The requester can conclude ordered remote persistence of
the two WRITEs upon receipt of the completion notification
for the FLUSH. RDMA WRITEIMM can be treated as a one-
sided operation by the requester and used in a way similar to
RDMA WRITE for MHP.

For RDMA SEND, the requester can send a compound
message containing both the dependent updates, which are
applied (using local stores) by the responder in the expected
order. No local cache line flushes are required at the respon-
der because of MHP. However, the responder must send an
acknowledgment to the requester informing the latter of per-
sistence of the compound update. If the RQWRB resides in
PM, RDMA SEND can be treated as a one-sided operation
by the requester. As a result, a subsequent RDMA FLUSH
followed by receipt of completion of the FLUSH is all the re-
quester needs to infer that the compound update has persisted
on the responder’s end. However, note that the requester can-

not immediately try to read the responder’s affected memory
without additional coordination with the responder. If no co-
ordination takes place, the requester might end up reading a
stale value from the responder if the preceding RDMA SEND
was not applied at the responder.

WSP: The RDMA reliable connection guarantees ordered
delivery of update requests (RDMA WRITE, WRITEIMM,
and SEND) at the responder’s RNIC. As a result, with RDMA
WRITE based updates, the requester can simply post the
WRITE requests in the expected order. The requester can
assume remote persistence of the two updates on receipt
of a completion notification of the second RDMA WRITE.
RDMA WRITEIMM can be treated like a one-sided oper-
ation for WSP, allowing simple back-to-back issuance of
WRITEIMMs for ordered remote updates. Again the requester
simply needs to wait for the completion notification for the
second WRITEIMM to infer remote persistence. Similar
operation sequence can be used with RDMA SEND if the
RQWRB resides in PM. However, both the dependent up-
dates can be packaged in a single SEND message. (As noted
earlier in the singleton update case, RDMA FLUSH will be
required for the iWARP transport protocol.) If the respon-
der’s RQWRB resides in DRAM, the typical message passing
idiom is needed to ensure remote persistence of the two up-
dates.

3.4 Discussion
Our analysis above is intended to provide guidance to applica-
tion developers for correct remote persistence. It is clear that

8

the method for remote persistence using RDMA operations
varies significantly between the twelve different configura-
tions detailed above. We make a few interesting observations
based on our analysis of remote persistence methods for these
various remote server configurations.

First, the DDIO feature was originally introduced to im-
prove performance of applications that used the RDMA net-
working fabric. We however find that the DDIO optimiza-
tion gets in the way of performing remote persistence using
just the one-sided operations – RDMA WRITE and RDMA
FLUSH – in remote servers configured with DMP, which will
likely be a substantial portion, perhaps a majority, of systems
supporting PM in the near future. Second, for MHP and WSP,
placing the RQWRB in PM, enables treatment of RDMA
SEND messages as one-sided operations, which will likely
lead to lower latency communication between the requester
and responder using these operations. Third, with WSP, the
new RDMA FLUSH operation that is being discussed in the
IBTA standards community [10, 28] becomes unnecessary
for InfiniBand and RoCE network fabrics, although it is still
required for iWARP. Fourth, for compound RDMA updates,
we find that the new WRITEatomic operation applies to a nar-
row set of configurations in the whole taxonomy. Lastly,
while we described different methods of remote persistence
for different system configurations, methods such as RDMA
SEND based message passing for remote persistence are uni-
versal in that they can be used in all system configurations.
However, as we will see in §4, they come with a performance
penalty compared to remote persistence with just one-sided
RDMA operations.

We note that RDMA FLUSH and non-posted RDMA
WRITE are not supported in today’s RDMA protocol. How-
ever, RDMA FLUSH can be correctly emulated using
RDMA READ [13]. This is because RDMA READ flushes
the responder’s RNIC’s buffers the IIO per the RDMA order-
ing rules and then triggers a PCIe READ at the responder’s
RNIC, which in turn flushes the IIO buffers to memory [36].
Non-posted RDMA WRITE cannot be correctly emulated by
any existing RDMA operations at present. Fenced RDMA
WRITE can be used for similar ordering behavior, however, it
adds an extra round-trip between the requester and responder
before the fenced WRITE can be sent by the requester.

Torn writes are always a data consistency concern for per-
sistence. The concern is no different in RDMA based remote
persistence. The application must ensure robustness against
torn writes via algorithmic techniques such as checksums and
strictly ordered writes [10, 22, 40], all of which are very well
understood in the literature.

4 Evaluation
Our taxonomy clearly demonstrates that the method to cor-
rectly ensure persistence of RDMA updates varys signfi-
cantly between the various system configurations. We how-
ever would like to understand the performance trade offs

between these methods. There are several key questions we
want to answer using our evaluation. (i) Do the different meth-
ods for remote persistence perform differently? (ii) Is there
a significant enough performance gap between the universal
message passing based remote persistence and one-sided re-
mote persistence? (iii) How much performance impact do
the various persistence domains have on remote persistence?
(iv) Does DDIO affect remote persistence performance? (v)
Does placement of RQWRB in DRAM or PM matter to
performance?

To answer these questions, we use a workload that is ubiq-
uitous to distributed systems that perform replication for high
availability – log replication. Log replication is arguably the
dominant method used to perform replication of updates to
remote nodes in a distributed system.

4.1 Log Replication with REMOTELOG

Our benchmark, called REMOTELOG, sets up a contiguous
log at the server end that is accessible to the client over a
RDMA connection. REMOTELOG’s client repeatedly ap-
pends 10 million log records to the log. Each append is made
the RDMA based remote update and persistence methods
discussed in this paper. We perform the experiment for all
the 72 configurations from Table 2 and Table 3. We report
average log append latency at the end of each experiment.

REMOTELOG’s append operation provides a test bed for
both singleton RDMA updates and compound RDMA up-
dates. Log appends happen at the tail of the log. This can
be done using singleton RDMA updates by encoding the log
record with a checksum. This checksum is used to detect the
tail of the log at the server – the server detects the log tail
when its checksum fails. Checksums are also an effective way
to detect data corruption. Thus checksummed log records
can enable a way to do log appends using singleton RDMA
updates.

Another dominant means of maintaining a log is by explic-
itly managing the server’s log tail pointer from the client’s
end. The client needs two RDMA updates to perform an
append – first to write (and persist) a new log record at the log
tail, and second to write (and persist) the tail pointer reflecting
the new tail of the log. This compound update provides the
compound RDMA update use case in our experiments.

In both cases, the server asynchronously garbage collects
log records that have been applied at the server end.

4.2 Experimental Setup
Our experiments were conducted in a single client and single
server setting, where both systems hosted a dual-socket In-
tel® Xeon® E5-2600 processors with 8 hyperthreaded cores
per socket with a total of 48 GB of memory. The systems
run the Fedora 25 distribution of Linux. We emulate PM
with DRAM. Each system contains a Mellanox ConnectX-4
100 Gb/s InfiniBand RNIC that is used to communicate over
the RDMA network fabric. The client and server commu-
nicate with each other via a Mellanox SB7700 36 port 100

9

Gb/s InfiniBand switch. Our underlying RDMA framework
used busy-waiting for completions rather than sleeping while
awaiting a completion event.

In our experiments, we emulated a RDMA FLUSH with a
RDMA READ. We cannot correctly emulate a non-posted
RDMA WRITE. However, for performance estimation of a
RDMA FLUSH followed by a non-posted RDMA WRITE,
we can use a RDMA READ followed by pipelined RDMA
WRITE and a second RDMA READ. The RDMA WRITE
can be ordered before the first RDMA READ at the server.
However, the second RDMA READ will not be reordered
with the first RDMA READ, and we believe will give a rea-
sonable estimate for the overhead of a non-posted RDMA
WRITE, although it does not enforce the correct ordering
semantics.

4.3 Singleton RDMA Updates

Figure 2 (a), (b), and (c) show the latencies of REMOTELOG
append operations for the various server configurations. The
various methods for remote persistence indeed have a signifi-
cant impact on latency of appends. The more general trend
is toward a sizable difference between one-sided and two-
sided (classic message passing) operations, where the former
outperforms the latter by up to 50%.

The persistence domains also have a significant impact on
append latencies: When transitioning from DMP to MHP, the
observed difference largely reflects the difference in method
of remote persistence. For instance, for the DDIO_DRAM_-
RQWRB_WRITE bars, MHP performs significantly better
than DMP since the former uses one-sided RDMA opera-
tions compared to the two-sided operations used by the latter,
which lead to a ping-pong of messages between the client
(requester) and server (responder) – a full round trip with
additional CPU processing on the server’s end to flush cache
target lines. For both, MHP and WSP, the foundational differ-
ence between performance boils down to whether the RDMA
update is performed (and persisted) using one-sided opera-
tions or message passing based ping-pong between the client
and the server, with the latter incurring the round-trip over-
head for messages sent back and forth between the client and
server. We also note that RDMA FLUSH has a significant
impact on latency. In WSP, omission of RDMA FLUSH in a
one-sided RDMA update drops its latency to 1.6 microsec-
onds (a 25% reduction in latency from the one-sided RDMA
updates in MHP). Overall, as expected, WSP enables the best
latency for remote persistence using RDMA operations.

DDIO appears to selectively have a negative impact on
performance of some configurations in DMP, particularly
for RDMA WRITE and RDMA WRITEIMM, when the
RQWRB is placed in PM. But this effect is indirect in that
it forces a two-sided operation to ensure that the remotely
updated cache lines are flushed to the DMP domain. Place-
ment of RQWRB has a significant performance indirectly as
well in that if the RQWRB is placed in PM, RDMA SEND

can be treated by the client as a purely one-sided operation,
and hence gain the performance advantage of one-sided op-
erations. However, care must be taken by programmers on
balancing consumption of receive queue buffers at the server
end with the rate of RDMA SEND and RDMA WRITEIMM
operations coming from the client. Each such operation con-
sumes a receive queue buffer on the server’s end, and the
server must quickly recycle these buffers in order to continue
receiving messages from the client. If the server is too slow,
resource availability timeouts may be triggered on the client’s
end leading to performance jitter.

4.4 Compound RDMA Updates

Compound update latency results appear in Figure 2 (d), (e),
and (f). As in the case of singleton updates, the server con-
figuration and resulting method of remote persistence has a
significant impact on latencies of remote persistence. The uni-
versal message passing based approach, which had a negative
performance impact for singleton updates, appears to have a
significant advantage in servers supporting the DMP domain.
The advantage is that the two updates – the log tail record and
the tail pointer – can be packaged in a single message by the
client, which keeps the operation to a single round trip. In
contrast, use of RDMA WRITE and WRITEIMM with mes-
sage passing leads to two round trips leading to more than 2X
latency in DMP when DDIO is turned on. However, MHP
unlocks the capability of doing one-sided compound RDMA
updates lead to significant latency improvements in RDMA
WRITE and WRITEIMM based methods, which end up per-
forming with a latency up to 20% better than the latency of
message passing. This gain is more pronounced to 30% for
WSP.

Similar to singleton updates, DDIO appears to have an
indirect negative performance impact on DMP configurations
for RDMA updates done using RDMA WRITE and RDMA
WRITEIMM, in that it forces additional message passing (and
cache line flushing at the server) overheads for remote per-
sistence. The non-posted RDMA WRITE based method is
enabled when DDIO is turned off, and appears to deliver a
big performance improvement. In general, turning DDIO
off enables compound updates using RDMA WRITE and
WRITEIMM to be done using just one-sided RDMA opera-
tions, where the big performance manifests. Notice however,
that the latency of RDMA WRITEIMM does not drop as
much. This is because non-posted writes enable pipelining of
updates and RDMA FLUSH. However since there is no non-
posted version of RDMA WRITEIMM available, the RDMA
WRITEIMM based method, incurs overhead of completion of
the first RDMA FLUSH before issuing the second RDMA
WRITEIMM. As expected, DDIO has no effect on MHP and
WSP configurations.

Placement of RQWRB in PM enables a big optimization
in the RDMA SEND based method in that, provided the per-
sistence domain is either MHP or WSP, or DDIO is turned

10

0.0

0.8

1.6

2.4

3.2

4.0

4.8
D

D
IO

_D
RA

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_W
RI

TE
_I

M
M

¬D
D

IO
_D

RA
M

_R
Q

W
RB

_S
EN

D

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

¬D
D

IO
_P

M
_R

Q
W

RB
_W

RI
TE

_I
M

M

¬D
D

IO
_P

M
_R

Q
W

RB
_S

EN
D

L
at

en
cy

(µ
s)

(a) Single: DMP (b) Single: MHP (c) Single: WSP

L
at

en
cy

(µ
s)

(d) Compound: DMP (e) Compound: MHP (f) Compound: WSP

Figure 2: Latencies of remote persistence of REMOTELOG appends for singleton and compound RDMA update based implementations. In
all cases, the client appends a 64-byte wide log record.

off, RDMA SEND can be treated by the client as a one-sided
RDMA operation. As in the case of singleton updates, ab-
sence of RDMA FLUSHes in servers configured to support
WSP boosts latency of remote persistence by close to 20%.

5 Conclusions
We presented the first comprehensive taxonomy of methods
for persistence of RDMA updates to remote persistent mem-
ory. Our taxonomy spans server configurations along three
different axes: (i) the persistent domain of the system, (ii)
use of DDIO, and (iii) placement of RQWRBs in DRAM or
PM. We showed how these configurations affect the methods
to correctly and efficiently enforce persistence of RDMA
updates. We also included some of the recent advances in
the IBTA standards community [10, 28] in our analysis. Our
detailed analysis covered persistence of singleton RDMA
updates as well as compound RDMA updates that need to
be persisted in the order they were issued from the requester.
We find that the methods to correctly, and efficiently, persist
RDMA updates vary significantly based on the underlying
system’s configuration parameters enumerated above. Pro-
grammers must be extremely careful in applying these meth-
ods – application of the wrong method can lead to significant
performance overheads, and even critical data inconsistencies

in the face of system failures.
Our evaluation demonstrated several interesting perfor-

mance trade offs between available methods for persistence
of RDMA updates. In particular, we find that remote per-
sistence done using one-sided RDMA operations (RDMA
WRITE, RDMA WRITEIMM, RDMA FLUSH, and even
RDMA SEND in cases where the RQWRB resides in PM)
is generally more efficient than remote persistence enforced
using RDMA SEND based message passing. In the end, we
believe the workloads requirements may determine the best
choices. A client may need to perform a complex set of
non-contiguous updates at the server, which would be better
served by a single RDMA SEND based remote procedure
call (RPC) [19].

The newly proposed non-posted RDMA WRITE based
method is also quite effective in delivering better performance.
However, this RDMA extension seems useful only in a small
part of the space of system configurations we explored in
the paper. Perhaps, that small part itself could represent
the dominant system configurations used in the industry. It
remains to be seen what configurations will be used widely
in the future.

Given the wide range of choices of remote persistence,
it may be reasonable to build a single RDMA library that

11

transparently applies the correct method of remote persistence
for a given system and application. There may be interesting
subtleties that may lead to sub-optimal performance, and even
correctness issues in the face of failure. However, we leave
the exploration for future work. Another interesting aspect
that remains to be explored is implications of these choices for
remote persistence on memory persistency models [20, 29].

References
[1] 3D XPoint Technology Revolutionizes Storage Mem-

ory., 2015.

[2] AgigaRAM NVDIMMs. http://agigatech.
com/.

[3] AGIGA TECH. NVDIMM Messaging and
FAQ. SNIA Solid State Storage Initiative.
https://www.snia.org/\sites/default/
files/\NVDIMM%20Messaging\%20and%
20FAQ%20Jan%2020143.pdf, 2014.

[4] Cache Stashing. https://developer.
arm.com/docs/100453/latest/part-a-
functional-description/cache/cache-
stashing.

[5] Arm® DynamIQ™ Shared Unit. Revision
r3p0. Technical Reference Manual. https:
//static.docs.arm.com/100453/0300/
dsu_trm_100453_0300_01_en.pdf.

[6] Armv8-A architecture evolution. https:
//community.arm.com/processors/b/
blog/posts/armv8-a-architecture-
evolution.

[7] ASSOCIATION, I. T. Supplement to InfiniBand™ Archi-
tecture Specification, Volume 1, Release 1.2.1, Annex
A17: RoCEv2, 2014.

[8] ASSOCIATION, I. T. InfiniBand™ Architecture Specifi-
cation, Volume 1, Release 1.3, 2015.

[9] BESTLER, C., AND STEWART, R. Stream Con-
trol Transmission Protocol (SCTP) Direct Data Place-
ment (DDP) Adaptation. IETF RFC 5043. https:
//tools.ietf.org/html/rfc5043, 2007.

[10] BURSTEIN, I. RDMA Memory Placement Extensions
for PMEM. In 2018 Flash Memory Summit (2018).

[11] CULLEY, P., ELZUR, U., RECIO, R., BAILEY, S., AND
CARRIER, J. Marker PDU Aligned Framing for TCP
Specification. IETF RFC 5044. https://tools.
ietf.org/html/rfc5044, 2007.

[12] Intel Data Direct I/O Technology. https://www.
intel.com/content/www/us/en/io/data-
direct-i-o-technology.html.

[13] DOUGLAS, C. RDMA with PM: Software Mechanisms
for Enabling Persistent Memory Replication. In 2015
Storage Developer Conference (2015).

[14] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O.,
AND CASTRO, M. Farm: Fast remote memory. In Pro-
ceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (2014), pp. 401–
414.

[15] InfiniBand™ Trade Association. https://www.
infinibandta.org/.

[16] Intel® 64 and IA-32 Architectures Software Developer’s
Manual. http://www.intel.com/content/
dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-
software-developer-manual-325462.pdf,
2015.

[17] IZRAELEVITZ, J., KELLY, T., AND KOLLI, A. Failure-
atomic persistent memory updates via justdo logging.
In Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (2016), pp. 427–442.

[18] JEDEC STANDARDS COMMITTEE. DDR4 NVDIMM-
N Design Specification. https://www.jedec.
org/standards-documents/docs/jesd248,
2018.

[19] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G.
Design guidelines for high performance RDMA systems.
In 2016 USENIX Annual Technical Conference (2016),
pp. 437–450.

[20] KOLLI, A., GOGTE, V., SAIDI, A. G., DIESTEL-
HORST, S., CHEN, P. M., NARAYANASAMY, S., AND
WENISCH, T. F. Language-level persistency. In Pro-
ceedings of the 44th Annual International Symposium
on Computer Architecture (2017), pp. 481–493.

[21] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus:
an rdma-enabled distributed persistent memory file sys-
tem. In USENIX Annual Technical Conference (2017),
pp. 773–785.

[22] MARATHE, V. J., MISHRA, A., TRIVEDI, A., HUANG,
Y., ZAGHLOUL, F., KASHYAP, S., SELTZER, M., HAR-
RIS, T., BYAN, S., BRIDGE, B., AND DICE, D. Persis-
tent Memory Transactions. https://arxiv.org/
abs/1804.00701, 2018.

[23] MELLANOX TECHNOLOGIES. RDMA Aware Networks
Programming User Manual, Rev 1.7.

12

http://agigatech.com/
http://agigatech.com/
https://www.snia.org/\ sites/default/files/\ NVDIMM%20Messaging\ %20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/\ sites/default/files/\ NVDIMM%20Messaging\ %20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/\ sites/default/files/\ NVDIMM%20Messaging\ %20and%20FAQ%20Jan%2020143.pdf
https://developer.arm.com/docs/100453/latest/part-a-functional-description/cache/cache-stashing
https://developer.arm.com/docs/100453/latest/part-a-functional-description/cache/cache-stashing
https://developer.arm.com/docs/100453/latest/part-a-functional-description/cache/cache-stashing
https://developer.arm.com/docs/100453/latest/part-a-functional-description/cache/cache-stashing
https://static.docs.arm.com/100453/0300/dsu_trm_100453_0300_01_en.pdf
https://static.docs.arm.com/100453/0300/dsu_trm_100453_0300_01_en.pdf
https://static.docs.arm.com/100453/0300/dsu_trm_100453_0300_01_en.pdf
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution
https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-evolution
https://tools.ietf.org/html/rfc5043
https://tools.ietf.org/html/rfc5043
https://tools.ietf.org/html/rfc5044
https://tools.ietf.org/html/rfc5044
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.infinibandta.org/
https://www.infinibandta.org/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www.jedec.org/standards-documents/docs/jesd248
https://www.jedec.org/standards-documents/docs/jesd248
https://arxiv.org/abs/1804.00701
https://arxiv.org/abs/1804.00701

[24] Micron Technology. http://www.micron.com/
products/dram-modules/nvdimm.

[25] NARAYANAN, D., AND HODSON, O. Whole System
Persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems (2012).

[26] NAWAB, F., CHAKRABARTI, D. R., KELLY, T., AND
III, C. B. M. Procrastination beats prevention: Timely
sufficient persistence for efficient crash resilience. In
Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015 (2015),
pp. 689–694.

[27] Intel Optane DC Persistent Memory read-
ies for widespread deployment,. https:
//newsroom.intel.com/news/intel-
optane-dc-persistent-memory-readies-
widespread-deployment/, 2018.

[28] PAUL GRUN, STEPHEN BATES, R. D. Persistent Mem-
ory over Fabrics (PMoF). In Persistent Memory Summit
(2018).

[29] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Mem-
ory persistency. In ACM/IEEE 41st International Sympo-
sium on Computer Architecture, ISCA 2014, Minneapo-
lis, MN, USA, June 14-18, 2014 (2014), pp. 265–276.

[30] PINKERTON, J., AND DELEGANES, E. Direct
Data Placement Protocol (DDP) / Remote Direct
Memory Access Protocol (RDMAP) Security. IETF
RFC 5042. https://tools.ietf.org/html/
rfc5042, 2007.

[31] RECIO, R., METZLER, B., CULLEY, P., HILLAND, J.,
AND GARCIA, D. A Remote Direct Memory Access
Protocol Specification. IETF RFC 5040. https://
tools.ietf.org/html/rfc5040, 2007.

[32] RUDOFF, A. Deprecating the PCOMMIT Instruc-
tion. https://software.intel.com/en-
us/blogs/2016/09/12/deprecate-
pcommit-instruction, 2016.

[33] RUDOFF, A. Programming Persistent Memory. ;login:
42, 2 (2017).

[34] SHAH, H., MARTI, F., NOUREDDINE, W., EIRIKS-
SON, A., AND SHARP, R. Remote Direct Mem-
ory Access (RDMA) Protocol Extensions. IETF
RFC 7306. https://tools.ietf.org/html/
rfc7306, 2014.

[35] SHAH, H., PINKERTON, J., RECIO, R., AND CUL-
LEY, P. Direct Data Placement over Reliable Trans-
ports. IETF RFC 5041. https://tools.ietf.
org/html/rfc5041, 2007.

[36] THE PCI-SIG. PCI Express Base Specification Revi-
sion 3.0, 2010.

[37] THE SNIA NVM PROGRAMMING TECHNICAL
WORKING GROUP. NVM PM Remote Access for High
Availability, 2013.

[38] THE SNIA NVM PROGRAMMING TECHNI-
CAL WORKING GROUP. NVM Programming
Model (Version 1.0.0 Revision 10), Working Draft.
http://snia.org/sites/default/files/
NVMProgrammingModel_v1r10DRAFT.pdf,
2013.

[39] Viking Technology. http://www.
vikingtechnology.com/nvdimm-
technology.

[40] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: lightweight persistent memory. In Pro-
ceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (2011), pp. 91–104.

[41] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN,
H. Fast in-memory transaction processing using RDMA
and HTM. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), pp. 87–104.

[42] ZHANG, Y., YANG, J., MEMARIPOUR, A., AND
SWANSON, S. Mojim: A reliable and highly-available
non-volatile memory system. In Proceedings of the
Twentieth International Conference on Architectural
Support for Programming Languages and Operating
Systems (2015), pp. 3–18.

13

http://www.micron.com/products/dram-modules/nvdimm
http://www.micron.com/products/dram-modules/nvdimm
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://newsroom.intel.com/news/intel-optane-dc-persistent-memory-readies-widespread-deployment/
https://tools.ietf.org/html/rfc5042
https://tools.ietf.org/html/rfc5042
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://tools.ietf.org/html/rfc7306
https://tools.ietf.org/html/rfc7306
https://tools.ietf.org/html/rfc5041
https://tools.ietf.org/html/rfc5041
http://snia.org/sites/default/files/NVMProgrammingModel_v1r10DRAFT.pdf
http://snia.org/sites/default/files/NVMProgrammingModel_v1r10DRAFT.pdf
http://www.vikingtechnology.com/nvdimm-technology
http://www.vikingtechnology.com/nvdimm-technology
http://www.vikingtechnology.com/nvdimm-technology

