
Gelato: Feedback-driven and Guided Security
Analysis of Client-side Web Applications
1st Behnaz Hassanshahi

behnaz.hassanshahi@oracle.com
Oracle Labs Australia

2nd Hyunjun Lee
hyunjun.l.lee@oracle.com
Oracle Labs Australia

3rd Paddy Krishnan
Paddy.Krishnan@oracle.com

Oracle Labs Australia

Abstract—Modern web applications are getting more sophisti-
cated by using frameworks that make development easy, but pose
challenges for security analysis tools. New analysis techniques
are needed to handle such frameworks that grow in number and
popularity. In this paper, we describe GELATO that addresses the
most crucial challenges for a security-aware client-side analysis
of highly dynamic web applications. In particular, we use a
feedback-driven and state-aware crawler that is able to analyze
complex framework-based applications automatically, and is
guided to maximize coverage of security-sensitive parts of the
program. Moreover, we propose a new lightweight client-side
taint analysis that outperforms the state-of-the-art tools, requires
no modification to browsers, and reports non-trivial taint flows on
modern JavaScript applications. GELATO reports vulnerabilities
with higher accuracy than existing tools and achieves significantly
better coverage on 12 applications of which three are used in
production.

Index Terms—web security, JavaScript, program analysis

I. INTRODUCTION

The powerful and rich features of modern browsers have en-
abled developers to use languages, such as JavaScript, HTML,
and CSS, to implement complex and highly interactive func-
tionalities on the client side including single-page applications.
A recent developer survey [37] shows that applications are
increasingly built using complex frameworks, such as Angu-
larJS [1] and React [34], revealing the importance for security
analysis tools to handle such complexities. While attackers
have been actively exploiting client-side vulnerabilities, such
as DOM-based XSS [29], the existing tools are not effective in
detecting them because they are unable to handle the inherent
complexity in JavaScript applications and frameworks, which
introduce additional abstraction layers that make it difficult to
devise automated testing tools. Furthermore, the source of the
client-side program that runs in the browsers is available to
attackers. From an attacker’s point of view, the client side can
reveal invaluable information about the server side, such as
REST end points, validation routines, and database queries.
BackREST [48] is an example server-side fuzzer that uses the
REST endpoints discovered by GELATO to detect zero-day
vulnerabilities.

In this paper, we propose GELATO to take advantage of
the unrestricted access of the source code on the client side
to detect vulnerabilities both on the client and server side
of web applications without requiring the server side code.
To understand the problem better, we enumerate the crucial

features a security-aware client-side analysis should support
and report on the status of existing tools. We limit our study
to dynamic analysis tools because they are better suited for
highly dynamic JavaScript applications. Towards comparing
the different tools, we have identified the following features.
Crawling features. F1 : Generates data inputs; F2 : Generates
event sequences; and F3: Focuses on detecting hyperlinks as
well as improving coverage of executed JavaScript code.
Coverage and security features. F4: Supports goal-based
(e.g., coverage) priority for triggering events; F5: Generates
inputs that can satisfy required boolean guards; F6: Directs
towards specific locations for more efficient security analysis;
F7: Triggers specific functionality; F8: Processes dynamically
registered event handlers; and F9: Supports modern frame-
works such as React [34], and Knockout.js [26].

For security-related tools we also consider the ability to
detect client-side vulnerabilities, such as DOM-based XSS.
Also note that we do not consider tools that focus purely
on analyzing the server’s state; but we consider tools like
Artemis+SID [51], which support both client-side and server-
side analysis. Tables I and II summarize the features of the
existing tools and compares them against GELATO. From a
security perspective, GELATO is the only tool that supports the
three features that help detect issues like DOM-based XSS in
a variety of applications.

From a crawling coverage perspective most of the crawlers
that focus on improving the coverage (lines of JavaScript
code or number of discovered URLs) are not guided towards
specific locations. Such guidance is essential in practice for
security analysis to reach security-sensitive locations (sinks)
efficiently. Moreover, GELATO is the only tool that leverages
hybrid analysis to handle complex frameworks. Our evaluation
on real-world applications in Sec. V shows the effectiveness
of this technique for such frameworks.

The lack of suitable crawlers limits the state-of-the-art se-
curity analysis tools [56], [65] to report vulnerabilities that are
present in the initial page(s) only, missing the vulnerabilities
in the other parts of the application, as shown in Sec. V.
The existing DOM-based XSS analysis tools do not have a
state-aware crawler and are often installed as extensions in
the browser, requiring manual interaction from the user to
reach security sensitive locations [64]. While these tools can
be useful as a last-resort mitigation solution in production, they
are not suitable for detecting vulnerabilities during the testing
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TABLE I: Comparing coverage and security features of the state-aware crawlers. The features that are only
supported by GELATO are marked as red.

Feature GELATO Crawljax [58] jÄk [66] Feedex [60] WATEG [70] Artemis+SID [51] Artform [69]
F1 3 7 7 7 7 7 3
F4 3 7 3 3 3 3 3
F5 3 7 7 7 7 7 3
F6 3 7 7 7 7 7 7
F7 7 7 7 3 3 7 3
F8 3 7 3 7 7 7 7
F9 3 7 7 7 7 7 7

stages. Our contribution is integrating a crawler and a security
analysis tool in a feedback-driven and guided fashion, enhanc-
ing both coverage and security analyses of highly dynamic
framework-based client-side JavaScript programs. Moreover,
we demonstrate a lightweight taint analysis technique that fits
well into this design. The overall architecture of GELATO is
shown in Fig. 1, which is described next.

Guided state-aware crawling. One of the challenges that
state-aware crawlers face is that the search space they need
to explore can grow exponentially. However, not all of these
states need to be explored for a security analysis. To cut down
the search space, our key insight is to guide a crawler to
explore the relevant states. Towards providing such guidance,
as shown in Fig. 1, we develop a hybrid analysis that (1)
retrieves a coarse-grained model of the web application, App
model, in the form of a call graph for the JavaScript code
using static analysis; and (2) refines the call graph model
in a feedback-driven way using execution traces generated
by the crawler at runtime. This approach helps to discover
new states and prioritizing events in existing states to direct
the execution towards program locations of interest, such as
DOM-based XSS sinks and REST calls that can be further
analyzed using taint analysis. By guiding GELATO towards
specific targets, we improve the performance while achieving
high coverage. Moreover, by generating inputs as both data
values and events, our crawler can satisfy validation routines
and reach deeper parts of the application. Using static analysis
to guide a fuzzer is already explored for C/C++ programs
and smart contracts[43], [62]. To the best of our knowledge
we are the first to take this technique to complex JavaScript
applications that are heavily dynamic and event-driven. Our
detailed experiments show the benefit of this technique and the
opportunities to improve existing static call graph construction
tools to assist dynamic analysis tools.

Staged taint inference for DOM-based XSS analysis. Once
GELATO identifies the sinks and guides the crawler to reach
them, it runs the security analyses. In this work, we focus
on DOM-based XSS and REST endpoint discovery that is
essential for server-side REST API fuzzing [48], [66], [55].
Because the DOM-based XSS analysis requires a practical
dynamic taint analysis to work on modern real-world appli-
cations, we have designed a novel lightweight staged taint
inference analysis that achieves better precision and recall
than the state-of-the-art dynamic taint analyses [47], [65], [68],
[44], [56], [57]. Moreover, our instrumentation is non-intrusive

and is unlikely to break the semantics of the applications. In
summary, we make the following contributions:
• A new crawler that can be guided towards program locations

of interest commencing from a statically constructed call graph
that is continuously refined based on execution traces.

• A feedback-driven analysis that enables our guided crawler to
support modern client-side JavaScript libraries and frameworks.

• A staged taint inference analysis that detects potential DOM-
based XSS vulnerabilities with high accuracy.

• A lightweight input generator that supports both event and data
value generation to increase the coverage of security analyses.

• A comparison of the state-of-the-art crawlers on a wide range
of applications that use complex frameworks.

Feature GELATO jÄk DexterJS Kudzu CTT
[66] [65] [67] [56]

F1 3 7 3 3 7
F2 3 3 3 7 7
F3 3 3 7 3 7

TABLE II: Comparing crawling features of the client-side security analysis tools.

II. RELATED WORK

Client-side web application crawling. Crawljax [58] is a
state-aware crawler that explores AJAX-based applications by
comparing the states using the edit distance of the string
representation of DOM trees. jÄk [66] and Black Widow [45]
analyze web applications by handling dynamically generated
URLs, dynamic event registration, etc., and by increasing the
coverage of client-side program, they aim to find more vulner-
abilities on the server side. FEEDEX [60] uses a state-aware
feedback-directed crawling technique to derive a test model
for client-side web applications. The main focus of FEEDEX
is to reduce the test model size and enhance coverage with
respect to functionality, navigation, and page structure. Unlike
GELATO, none of these crawlers guide the execution towards
security-sensitive sinks in the JavaScript code, such as AJAX
calls for REST API testing, and DOM manipulation calls for
DOM-XSS detection.

Guided crawling aims to achieve a particular goal in ex-
ploration, such as increasing code, functionality or navigation
coverage [41], [60], [70]. [42] guides the exploration to
discover as many states as possible in a given amount of
time. Compared to [41], [60], [70], which focus on increasing
the diversity of crawled pages, this work mainly focuses on
increasing efficiency for an anticipated model. GELATO is
also guided and proposes prioritization strategies but aims at
increasing coverage of specific security-sensitive sinks.
Input value generation. In addition to event-based inputs
(e.g., clicking), client-side web applications also accept input
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value in URLs and form elements, such as input fields.
Therefore, to have an in-depth exploration of a client-side
application, input value generation is required. For input fields,
existing approaches mostly provide random data if no custom
data is available [59]. Tools that rely on heavyweight analy-
ses [67], [69], such as symbolic execution, are known to have
scalability issues. Furthermore, Kudzu [67] does not consider
the event-driven nature of modern applications and the effort
expended in input generation using symbolic execution does
not have the desired consequence of increased coverage.
Taint analysis. Several static analysis techniques have been
proposed to analyze JavaScript applications [52], [50], [54],
[63]. However, the lack of static typing in JavaScript as well as
the asynchronous and event-based nature of web applications
makes it hard to detect taint flows statically. On the other
hand, dynamic analysis requires instrumentation, which can
be achieved at engine [56], [71], [57] or source-code level
[68], [65], [23], [47], [44], [53]. Engine-level instrumentation
involves adding hooks to the JavaScript engine. While this
design can have performance benefits from being compiled
into the engine itself, it is not easy to maintain across different
engines [56]. On the other hand, source code-level instrumen-
tation [18], [44], [65], [53] involves modifying the program’s
source code without affecting the original behavior, which can
have lower performance, but is often easier to maintain and
engine-agnostic.

DexterJS [65] carries out character-level taint tracking using
code-rewriting to discover potentially vulnerable taint flows. It
attaches taint labels to primitive values by wrapping (boxing)
them. Because built-ins, browser APIs and DOM functions
cannot be instrumented, it requires hard-coded models, which
are very challenging to create. Our experiments with Dex-
terJS [65] show that incomplete models for built-ins result in
missing valid taint flows. Jalangi2 [18] provides syntactic traps
to implement dynamic analyses. Our taint inference analysis
uses the source code-level instrumentation in Jalangi2. Note
that we only use Jalangi2 to embed our taint inference analysis
to run at runtime. Our analysis is lightweight and does not
make any intrusive changes, such as boxing primitive value
and allows us to deal with the non-instrumented parts such as
built-ins, browser APIs, and DOM functions. Affogato [47] is
an instrumentation-based dynamic taint inference analysis tool
Node.js applications. It finds injection vulnerabilities on the
server side by detecting flows of data from untrusted security-
sensitive sources to sinks using grey-box taint inference analy-
sis. GELATO goes one step further and improves the precision
by introducing a multi-staged approach.

III. APPROACH

GELATO automates guiding of state-aware crawling based
on the requirements of a target security analysis using a
feedback-driven approach. Algorithm 1 shows the main loop
of our crawler. It takes as input the URL of a web application,
a target security analysis, TA, and a set of function signatures
and object property names, Loc, that the crawler should be
guided towards (sinks). For instance, if the chosen target

analysis is REST endpoint detection for server-side fuzzing,
the target function signatures will include AJAX functions
(e.g., XMLHttpRequest.send) in the JavaScript code and our
crawler is guided to maximize the coverage of such function
calls. The loop continues until the crawler reaches a fixpoint
and there are no more new states to visit. The results of the
target analysis (Results) is reported as output.

At each iteration, we run a target security analysis, TA,
over the JavaScript and HTML code in the given state,
S, and collect results. At the same time, we generate an
Approximate Call Graph (ACG) using [46] on the newly
discovered JavaScript code, and collect the execution trace
using lightweight instrumentation. The execution trace helps
us to add the newly discovered edges to the ACG as feedback,
which contains the call graph for the explored parts of the
application. prioritizeEvent determines which event should
be triggered next based on the metrics computed using ACG,
the current state S, and program locations of interest Loc.
We also reprioritize the events based on the feedback from
the execution when ACG reports a false positive path from
an event handler to a target location. In Sec. IV, we describe
a novel taint inference analysis to detect DOM-based XSS
vulnerabilities as an example security analysis that fits well in
our approach.

Algorithm 1 Feedback-driven and guided security-aware
crawler
1: inputs: web application URL, target analysis TA, target program locations Loc
2: output: Results
3: ACG← ∅
4: browser.goto(URL)
5: while browser.newStateExists() do
6: S ← browser.getNewState()
7: Results← ANALYZE(S, TA) if Loc in S // See Algorithm 2
8: cg ← computeACG(S)
9: trace← getExecutionTrace(S)

10: ACG← refineACG(ACG, cg, trace)
11: e← prioritizeEvent(S,ACG,Loc, trace)
12: browser.trigger(e)
13: end while
14: report(Results)

State representation and comparison. The first step in
designing a state-aware crawler is to define a suitable state
representation. Ideally, storing the entire browser and server
states will help transitioning between relevant states. But that
is unrealistic. We use the state representation and comparison
strategies descibed in prior work [58] and reduce the size
of states by storing the most crucial elements, such as the
URL, and the DOM tree. We use depth first search (DFS) to
traverse the state graph, and record references to the parent
and child states to replay the sequence of events to reach the
current state. When DOM elements are shown or hidden using
style attributes and the DOM tree does not change, our state
representation will not capture the changes. We plan to deal
with such cases in a future work.
Call graph refinement. One of the contributions of GELATO
is using the call graph to guide the state exploration of the
crawler. The function computeACG in Algorithm 1 statically
generates an approximate call graph using ACG [46] for the
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1 <!DOCTYPE html>
2 <html lang=’en’>
3 <script src=’./knockout-min.js’></script>
4 <script>
5 function event_handler() {
6 fetch(’http://localhost/attack_target’);
7 }
8 </script>
9 <body>

10 <button id=’b_1’ data-bind=’click:
button_click’>button 1</button>↪→

11 <button id=’b_2’ data-bind=’click:
button_click’>button 2</button>↪→

12 <script>
13 function KnockoutViewModel() {
14 this.button_click = function() {
15 event_handler();
16 };
17 }
18 ko.applyBindings(new KnockoutViewModel());
19 </script>
20 </body>
21 </html>

Listing 1: An example framework code that ACG does not analyze soundly, and misses
a critical call graph edge. Our call graph refinement approach, however, is able to

detect and add it to the call graph.

JavaScript code obtained from the state S. As the crawler
interacts with the application’s user interface, we log the
function invocations in the execution trace. This execution
trace is processed to determine whether an edge in the model
call graph is missing. All missing edges are added to the call
graph. An edge from node a to node b is missing if the call
graph does not include such an edge but the execution trace
does. Listing 1 is a code-snippet from the Knockout.js [26]
framework. Due to a complex event delegation mechanism,
ACG fails to find the edge from the click event in the
two button elements to event_handler function. However,
once the crawler clicks on one of the buttons, e.g., button 1 at
line 10, the execution trace records the edge from click event
handlers in Knockout.js and event_handler function, which
is added to the call graph. This enables us to prioritize clicking
on button 2 at line 11 in future to trigger the HTTP endpoint at
line 6, as described next. Note that while we are able to collect
execution trace for libraries and frameworks (e.g., Knockout.js,
React, jQuery [26], [34], [20]), due to limitations of source-
code instrumentation, we do not trace the execution through
the browser runtime and JavaScript engine. Moreover, our
trace collection has limitations in supporting hard-to-analyze
JavaScript language features, including (but not limited to)
asynchronous and reflective call mechanisms (e.g.,Promise
and Function.prototype.call).
Prioritization. We prioritize a state that is visited for the first
time (not similar to any of the previously visited states) if
it contains a target program location (Loc in Algorithm 1).
For partially expanded states, we use a prioritization heuristic
to choose the next event in the state that should be triggered
by the browser. To guide the crawler towards target program
locations, we prioritize an event if it has the minimum distance
from the handler (registered to handle it) to a target location in
the call graph. Because false positive edges in ACG can cause
the crawler to get trapped in local optima, we use the collected
execution trace, which contains the invoked function calls, as

feedback to reprioritize the events as follows: if a reported
ACG edge from an event handler to a target method is not
observed in the execution trace, we give a lower priority to
the event to give opportunities to other events to be triggered.
When ACG does not report any reachable target location in a
state, we randomly choose an event. Moreover, we propose a
Composite mode, where both random and ACG-based distance
prioritizations are combined using different weights to avoid
local optimums.

score = p * ACG(e) + q * rand()

where p and q are the weights given to the priorities computed
using ACG distance metric and a random score. By default we
use 0.25, and 0.75 for p and q, respectively. Our evaluation in
Section V shows that this prioritization scheme can be effective
for some applications (e.g., Jenkins [19]) for which ACG does
not achieve high precision.
Input value generation. While the state-aware crawler inter-
acts with the JavaScript application, we analyze (line 7 in
Algorithm 1) the JavaScript code returned from the server
side1, generating input values to bypass guards and increase
coverage.2 The input value generation is performed on a state
if its code contains a target program location, hence the target
analysis analyzes it (TA in Algorithm 1). Algorithm 2 shows
how we generate input values.

Our input value generation technique can be thought of as a
simplified and practical concolic testing [49], where path con-
straints are only collected for certain operations based on our
experience from analyzing real-world JavaScript applications.
Form input generation by itself is an extremely challenging
topic and our solution provides a pragmatic approach to
partially solve the problem in practice only. At high level, to
bypass the guards on the execution path we collect runtime val-
ues of interest during the execution, construct path constraints,
and solve them to generate inputs (generateNewURLs at
line 18). The guards that we aim to bypass are validation
routines that must be satisfied to let the analyzer reach
the deeper parts of the program. Example runtime values
of interest are operands in conditional statements (e.g., if

statement) and arguments in string function calls (e.g., the
string.substring built-in function) that are triggered on
the execution path. We use such logged values in constraint
generation if they are tainted (the taint analysis is explained in
detail in Sec. IV). These constraints are used to replace tainted
characters of input values that are compared in a conditional
statement.

We explain the input value generation in Algorithm 2 via
an example. Listing 2 shows a simplified application that has
a DOM-based XSS vulnerability [29]. In this example, a value
obtained from the URL at line 12 is written to the document

object at line 14, which modifies the DOM and allows the at-

1The JavaScript code is stored in the crawler state.
2There are several ways to provide input values into a client-side JavaScript

application: forms, URLs, cookies, local storage, etc. In this paper, we show
how we integrate input value generation for URLs to our state-aware crawler
for simplicity. However, the same algorithm can be used for other sources of
input values.

4



1 <!DOCTYPE html>
2 <html>
3 <body>
4 <button id="button1" onclick=safe()> Button 1 </button>
5 <button id="button2" onclick=unsafe()> Button 2 </button>
6 <textarea id = ’text1’ style="display:none;">This is

safe! </textarea>↪→
7 <script>
8 function safe(){
9 document.getElementById("text1").style =

"display:true;";↪→
10 }
11 function unsafe(){
12 var loc = document.location.hash //url is

"http://example.com#action"↪→
13 if (loc.indexOf("show")!=-1) {
14 document.write("You are visiting : " + loc +

".");↪→
15 }
16 }
17 </script>
18 </body>
19 </html>

Listing 2: An example of HTML/JavaScript code with constraints on input value.

tacker’s malicious payload to run. However, the original URL
used to load the page is "http://example.com#action",
which does not contain "show". Therefore, line 14 is not
executed when the original input value is used. Next, we show
how we generate an input (URL) that bypasses the validation
at line 13 and allows the execution to reach line 14.

Initially, the execution path (π) in Algorithm 2 is empty
and the test input queue, InputQ, contains the original URL.
Our input generator continues generating new test inputs until
InputQ is empty. In each iteration, an input is removed from
InputQ and passed to the runTargetAnalysis function,
which runs the target analysis (TA) determined by the analyst.
Before running the target analysis if the state has changed, we
take the browser to state S by obtaining and triggering the
corresponding event sequence (eventSeq(S)).

As the target analysis is performed at line 7 and results
are added to Results, the conditional statements (e.g., if

statements) are logged in π, which are used to generate path
constraints and new test inputs at line 8. Going back to the ex-
ample in Listing 2, when analysis executes line 13, we record
the if statement together with the following runtime values
in π: "show", -1 and "http://example.com#action"

(value of loc variable). The InputV alueGen function in
Algorithm 2 generates new inputs using the values recorded
on the execution path, π. If a value in a conditional statement
or string function call is identified by taint analysis to
be tainted (See Sec. IV for details), the tainted characters
and the value that they are compared against are recorded
in the Constraints map. For instance, the value of loc

at line 13 in Listing 2 is inferred to be tainted by taint
analysis, and the tainted characters are "action". Therefore,
"action" is added to Constraints[3].taintedV al at line
15 in Algorithm 2. We also record "show", which is then
compared against the tainted value.

Finally, the genConstraint function at line 16 in the
algorithm generates the constraint loc == "show" which is
stored in the Constraints map. The generateNewURLs

1 var tmp = document.location.hash; // tmp = "#payload"
2 tmp = tmp.substring(3,7); // tmp = "yloa"
3 tmp = tmp + "123"; // tmp = "yloa123"
4 document.write(tmp.substring(4)); // "123" is written to

DOM and is not tainted↪→
5 document.write(tmp); // "yloa123" is written to DOM and

"yload" is tainted↪→

Listing 3: Example JavaScript program that contains a vulnerable taint flow.

function at line 18 replaces "action" with "show" in the
original URL3 and generates a new input4. The new URL
is loaded, line 14 in Listing 2 is executed, and if the target
analysis is DOM-based XSS detection, line 7 in Algorithm 2
reports a DOM-based XSS vulnerability.

Algorithm 2 Input value generation
1: function ANALYZE(S, TA)
2: π ← ∅ // JavaScript execution path
3: InputQ← URL //initial seed input value
4: while InputQ.isNotEmpty() do
5: v ← InputQ.pop()
6: browser.trigger(eventSeq(S))
7: (π,Results)← runTargetAnalysis(v, TA)
8: InputQ.add(INPUTVALUEGEN(π))
9: end while

10: return Results
11: end function
12: function INPUTVALUEGEN(π)
13: Constraints← ∅
14: for n in π if taintAnalysis(n.val) do
15: Constraints[n.loc].taintedV al← taintedV al(n.val)
16: Constraints[n.loc].cons← genConstraint(n)
17: end for
18: Return generateNewURLs(Constraints, URL)
19: end function

IV. SECURITY ANALYSIS: DOM-BASED XSS DETECTION

In this section, we describe a novel dynamic taint analysis to
detect DOM-based XSS vulnerabilities. This security analysis
is integrated into our guided crawler to drive the execution
towards DOM manipulation locations, which are marked as
sinks. Once the crawler reaches the states containing sinks,
we perform taint analysis.

Dynamic taint analysis of JavaScript requires instrumenta-
tion either at the JavaScript engine [56], [71] or the source-
code level [68], [65], [23]. An engine-level instrumentation-
based analysis would require substantial maintenance effort.
Moreover, it is possible for an attack to work on one engine
but not another [65]. On the other hand, previous works show
that a source-code level instrumentation-based approach [68],
[65], [23] will face the following challenges: (1) tracking taint
through non-instrumented code; and (2) attaching taint labels
to primitive values because primitives cannot be extended
with additional properties, hence to wrap primitives in an
object that will have a property representing the taint label
of the primitive value – aka, boxing. Empirical evidence from
previous work [44], [65], [68] shows that wrapping primitives
is an intrusive process and, thus, challenging to get right.

The challenges encountered by existing dynamic taint track-
ing solutions are explained via the example in Listing 3.

3http://example.com#action
4http://example.com#show
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Fig. 2: Flow diagram of our staged dynamic taint flow inference technique.

It shows a JavaScript program that contains a vulnerable
taint flow from the source, location.hash at line 1, to the
security sensitive sink, document.write at line 5. In this
example, the string value #payload is injected in the URL as
the fragment identifier (i.e., the part of the URL following the
# sign). DexterJS [65] fails to report the vulnerable taint flow
due to an incorrect model used for the uninstrumented built-in
function, substring at line 2. On the other hand, Linvail [44]
and Chromium Taint Tracking [56] report two taint flows at
both lines 4 and 5, even though document.write at line 4
is not tainted.

A. Dynamic Taint Inference

To address the challenges listed above, we developed a non-
intrusive, dynamic taint inference analysis based on source
code-level instrumentation. Our analysis infers tainted flows
by correlating values at sources and sinks, and observing the
behavior of the program instead of attaching and tracking
taint labels. Fig. 2 shows our staged approach to discover
correlations between values at taint sources and sinks. The
stages, represented as diamonds in Fig. 2, act as increasingly
complex filtering steps that aim to maximise the precision of
our approach.
Stage 1: Substring. The first stage looks for an exact substring
match of length ≥ θ between string values observed at sources
and sinks, i.e., whether either string is a substring of the
other. If a match of length ≥ θ is found, a taint flow is
immediately reported. Otherwise, the remaining three stages
are used to infer taint flows when the values at sources and
sinks approximately match as described shortly. These stages
will be described in the following sections using the symbols
outlined below.
• A = a source (identified by location in source-code)
• B = a sink (identified by location in source-code)
• Av = string value at source A
• Bv = string value at sink B
• F = a taint flow detected by our analysis

Stage 2: Edit Distance. If neither Av nor Bv are substrings of
each other (i.e., the substring stage does not report a match),
the edit distance filter performs approximate matching of Av
and Bv . Specifically, this stage computes the longest common
subsequence (LCS) [61] between Av and Bv , extracts Di

and Dd, the number of insertions and deletions required to
compute the LCS, computes a similarity score, and compares
it to a threshold η. The source-sink (A, B) pairs that pass this
test in this stage are recorded and processed in the next stages
to filter out false positives (FPs).
Stage 3: Sink Check. In Fig. 2, when a source-sink pair (A,
B) reaches the sink check stage, we know that there is no exact
substring match but that the two strings are similar. To weed
out cases where the similarity happens by chance but there is
no taint flow from A to B, the sink check stage mutates Av
into A′v by changing a few characters randomly, running the
program again with the new source input, and observing B′v .
There are three possible outcomes:

1) Sink B is not reached (B′v is NULL). The execution path
triggered by A′v has diverged from the execution path triggered
by Av . The pair (A, B) proceeds to the next stage.

2) B′v is different from Bv , indicating that the value at A has
an impact on the value at B. The pair (A, B) proceeds to the
next stage.

3) B′v is identical to Bv , indicating that the value at A probably
has no impact on the value at B. The pair (A, B) does not
proceed to the next stage.

Stage 4: Trace Check. Trace Check is the final and most
expensive stage of our taint flow inference process. It aims to
detect real taint flows with high precision. This step involves
recording the JavaScript execution trace and analyzing the
string manipulation operations performed on Av to determine
whether Bv is derived from Av (i.e., there is a taint flow from
A to B). Algorithm 3 shows our trace check stage. Given
a source value Av , a number of insertions Di, a number
of deletions Dd, and the execution trace seeded with Av ,
the TRACECHECK procedure determines whether the string
operations in the trace can possibly transform Av into Bv .
The sub-procedure ISOPTAINTED in Algorithm 3 re-uses the
Substring and Edit Distance stages, parameterised with θ and
η, to determine whether the base variable or any argument
of a string operation matches Av . If the base variable or any
argument matches Av , ISOPTAINTED returns true. The trace
check stage counts the number of tainted string operations that
are insertions (Dti), and deletions (Dtd) in the trace. Then,
it weeds out traces where either no insertion happens while
Di > 0 or no deletion happens while Dd > 0.

We now revisit the example in Listing 3 to show how our
taint inference technique correctly reports an inferred taint flow
at line 5 and does not report any flows at line 4. For the sink at
line 4, the observed values are Av = "#payload" and Bv =
"123". Since Av and Bv do not pass “Is Substring” check,
they are passed to the Edit Distance stage. Because these
values also fail to pass the “Edit Distance below Threshold”
check, the analysis does not infer any taint flows.

For the sink at line 5 in this example, Av = "#payload",
Bv = "yloa123", Di = 3, Dd = 4. Inspecting the trace
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Algorithm 3 Trace Check Stage
1: function TRACECHECK(Av , Di, Dd, trace)
2: Let Dti = 0 and Dtd = 0
3: for each stringop in trace if ISOPTAINTED(stringop, θ, η, Av) do
4: if ISOPINSERTION(stringop) then
5: Dti += 1
6: else if ISOPDELETION(stringop) then
7: Dtd += 1
8: end if
9: end for

10: if (Di > 0 && Dti == 0) || (Dd > 0 && Dtd == 0) then
11: return "Trace does not match"
12: end if
13: return "Trace matches"
14: end function

between lines 1 and 4 in this example, the Trace Checking
filter is able to determine that one string concatenation and
two substring operations occurred. Because both of these
operations are performed on the tmp base variable with the
string values "#payload", "yloa" and "yloa123", they
pass the ISOPTAINTED check at line 3 in Algorithm 3 that
compares them against the source value #payload. The trace
check algorithm then computes Dti = 1, and Dtd = 2 and
concludes that the trace matches at line 13 in Algorithm 3.

V. IMPLEMENTATION AND EVALUATION

GELATO automatically interacts with the web application
using the Selenium WebDriver [36]. To guide our input gen-
erator towards target locations, we use the pessimistic mode in
Approximate Call Graph analysis [46] to statically build call
graphs. ACG also provides an optimistic mode to improve
recall by tracking more data flows. However, our experiments
on real-world applications showed that it only had a small
impact on recall, while degrading precision and performance.
We have developed a new lightweight instrumentor to carry
out the dynamic analysis of JavaScript code for dynamic
event handler registration and call graph refinement. The
dynamic analysis finds dynamically registered events5, new
pages, and missing edges in the call graph at runtime. The
lightweight instrumentor is also used to collect runtime values
and generate constraints for creating new input values. The
taint inference analysis is implemented using source-code
instrumentation in Jalangi2 [18] framework. Note that Jalangi2
is only an instrumentation framework and does not provide
any analysis on its own. We have implemented two target
security analyses in our framework, REST endpoint and DOM-
based XSS detection, but our technique is not limited to these
analyses and can support other security analyses too.

The experiments are performed using the Google Chrome
browser version 69.0.3494.0 running on Ubuntu 16.04 VM on
VirtualBox 6.0, Intel i7-7700 CPU @ 3.60GHz x 4 (4 cores
assigned to VM) with 4096 MB memory. In our experiments,
we study the following research questions:
• RQ1: How does GELATO compare with existing crawlers?
• RQ2: How effective are the different guiding strategies in

GELATO in terms of coverage and performance?
• RQ3: Does GELATO’s DOM-based XSS analysis find taint flows

with better accuracy, compared to other taint analysis tools?

5These are the events that are registered using addEventListener

Benchmarks. We have gathered open-source applications, in-
house applications that are currently used in production6,
vulnerable libraries, and micro-benchmarks. The advantage
of such a benchmark, compared to Alexa top websites, is
that we can automate authentication and test beyond the
first landing page, gaining a more in-depth understanding of
different crawling strategies. All the applications that are not
publicly deployed and available via a URL run in Docker
containers [9], which makes it easy to reset the application
state and database between runs. Table III shows the selected
applications and their features in our benchmarks. Our bench-
mark includes both single-page and multi-page applications
that use modern and complex frameworks and libraries, in-
cluding React, AngularJS, Knockout.js, and jQuery [34], [1],
[26], [20].7 To evaluate our feedback-driven technique on these
frameworks, we have created scripts that assist the static call
graph by adding the critical missing edges. These assisting
scripts are about 100 lines of JavaScript code. We compare
the results of our feedback-driven technique (FD-ACG) with
these assisted versions (Assisted-ACG). To estimate the size
of JavaScript code used in each application, we extracted the
JavaScript source-code (including inline scripts) at runtime
using our crawler. While we compare GELATO with other
crawlers on all the applications, the guiding strategies in our
crawler are compared only on the AJAX-based applications
because the goal in that experiment is to evaluate the coverage
of AJAX calls. Some of our open-source benchmarks are
collected from [66] and the rest are selected because they use
modern complex frameworks and libraries.

Application Type Framework/ JavaScript
Library LoC

Firing Range (FR) [14] multi-page - 29k
DVWA [8] multi-page - 218
Wivet [40] multi-page jQuery, Ext JS[11] 43k

WebGoat [31]X single-page jQuery, AngularJS 34k
WebScanTest (WST) [39]X multi-page React, AngularJS 425k

JuiceShop [24]X single-page AngularJS, jQuery 20k
Jenkins [19]X multi-page jQuery 52k

Apostrophe [2]X single-page jQuery 139k
Keystone [25]X single-page React 218k

App1X single-page AngularJS, jQuery 35k
App2X single-page jQuery, Knockout JS 69k
App3X single-page jQuery, Knockout JS 132k

TABLE III: Benchmark Description. To count the LoC, we remove comments [38], and
unminify [22] the extracted code. AJAX-based applications are marked with X.

A. Comparing GELATO with existing crawlers

To answer the first research question, we compare GELATO
against state-of-the-art crawlers that are designed to handle
dynamic web applications. The timeout used in this experiment
is six hours for all applications, and we do not report the
number of static URLs, such as image and JavaScript files,
to focus on the crawler’s ability to reach and interact with
the dynamic parts of the application. We also filter query

6The internal applications (app1, app2, and app3) are anonymized based
on the double-blind rules. Note that these applications are actively used in
production, and are not created by the authors of the paper.

7This list only shows some candidate frameworks and libraries for each
application and is not comprehensive.
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TABLE IV: Comparing GELATO against other crawlers for number of URLs and AJAX calls.

Crawlers Tested Web Applications
FR DVWA Wivet WebGoat App1 App2 App3 WST JuiceShop Jenkins Apostrophe Keystone

GELATO 425 69 84 409 39 20 17 307 79 279 24 70
Arachni [3] 256 17 83 6 11 1 3 25 31 61 4 17

ZAP-Crawljax [33] 83 19 15 13 8 8 1 60 30 168 5 44
Htcap [17] 160 62 68 65 7 1 13 168 15 67 18 69
jÄk [66] 257 33 76 8 20 1 - 17 2 - 6 -

parameter values in URLs because some URLs contain values,
such as timestamps.8 We use the Crawljax (AJAX Spider)
plugin integrated in ZAP 2.10.0 [33] because ZAP provides
better support for authentication compared to the original
Crawljax implementation [5] and achieves more coverage. We
use the autologin plugin in Arachni [3] for all the applications
except for Jenkins, for which we inject cookies to establish the
session. We also fixed database and authentication issues while
evaluating Htcap [17] and jÄk [66] to the best of our ability.
However, jÄk was not able to analyze three applications. We
use URLs and AJAX calls as proxy to measure coverage,
which are suitable for security analysis because they expose
entry points to the server side. While an alternative metric
would be code coverage on the client side, a lot of the
JavaScript code that is executed by the browsers is not security
relevant. Table IV shows the total number of URLs and
AJAX calls recorded by each tool. The results show that our
crawler records more URLs and AJAX calls compared to other
tools. Note that GELATO outperforms other crawlers on both
framework-based applications and on applications like DVWA
and Firing Range that do not use any frameworks. Our results
also show how other crawlers compare with each other on
different types of applications. For instance, ZAP-Crawljax
performs well on less modern applications, such as Jenkins,
but is not as effective for most of the single-page applications.
Htcap, on the other hand, is able to achieve better coverage
for single-page applications, such as Apostrophe, WebGoat,
App3, and Keystone.

B. Effectiveness of different guiding strategies

In the previous experiment we showed that GELATO
achieves better coverage compared to the state-of-the-art
crawlers. Here, we answer the second research question by
taking a close look at various guiding strategies in GELATO
to understand how the strategies in GELATO can affect the
coverage and performance. In this experiment, we use REST
endpoint discovery [66], [55] as the target security analysis.
REST endpoint discovery is the key step in finding server-side
vulnerabilities, such as XSS and SQLi [30], that web appli-
cation fuzzers [48], [4], [32] rely on. Our goal is to measure
how effective different strategies are in automatically guiding
the crawler to call AJAX functions (JavaScript functions that
trigger REST endpoints). We count the number of distinct
AJAX calls made by each strategy over time on the AJAX-
based applications shown in Table III. The timeout for all the
experiments in this section is six hours.

8Jenkins uses object ID as path parameter in some URLs. We merge such
path parameters and count them as one to avoid skewing the results.

Guiding strategies. We compare three guided and a random
crawling strategies: (1) Assisted-ACG, which uses manually
crafted scripts to assist finding missing edges for libraries,
such as jQuery, when the approximate call graph fails to
analyze them effectively; (2) FD-ACG, which is our feedback-
driven technique to add newly found call graph edges at
runtime automatically; and (3) Composite, which combines
both Random and ACG-based distance prioritization as shown
in Sec. III, as well as the assisting scripts and the feedback-
driven technique (similar to the first two modes). Note that the
Random strategy still benefits from features, such as dynamic
event registration, and replaces prioritization functions in
Algorithm 1 with random selection only.

To identify which guiding strategy suits a specific type of
application, Fig. 3 compares the percentage of AJAX calls
triggered by each mode over the total number of AJAX calls
found by GELATO across all runs. Because we have a black-
box view of the server side, this total number estimates an
approximate coverage, and may not include all the AJAX
calls. We have run GELATO three times in each mode and
computed the average number across runs. The results show
that our guiding strategies achieve better coverage compared
to a non-guided crawling (Random), except for Keystone and
WebScanTest. Keystone uses React [34] and ACG call graphs
have low precision on this framework, causing our crawler to
wrongly prioritize events that do not lead to AJAX calls. The
ACG refinement mode for Keystone improves the coverage
among the ACG-based modes by detecting true positive call
graph edges during the runtime. WebScanTest performs many
similar AJAX calls in one part of the application that results
in ACG-based strategies spending too much time on them.
We can observe some patterns for certain frameworks, such
as AngularJS [1] that is used in app1, WebGoat, and Juice-
Shop, where the FD-ACG mode performs almost as good
as Assisted-ACG. Therefore, the assisting scripts for these
applications are not crucial. However, the Assisted-ACG still
performs better than FD-ACG for app2 and app3 that use the
Knockout.js [26] framework. The Composite mode performs
equally or better than Assisted-ACG in four applications. So,
combining the ACG-based guiding strategies with random
prioritization, while automatically assigning weights to each,
can be an interesting direction for a future work. Finally,
Apostrophe, which heavily uses jQuery benefits from the
Assisted-ACG the most and FD-ACG is not effective for this
application.

Fig. 4 studies the effectiveness of the guiding strategies over
time. Due to space limitations, we chose four applications that
use AngularJS, Knockout.js, React, and jQuery. For all of the
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Fig. 3: Comparing overall percentage of crawling strategies over our observed ground truth.

applications, the crawler triggers a large number of AJAX
functions in the first few minutes. Over time, the Random
strategy performs the worst in most cases. But combining
Random with ACG prioritization achieves better coverage
except for Juice-Shop. The coverage gained by the ACG re-
finement strategy, FD-ACG, is comparable with the Assisted-
ACG strategy. This is encouraging as it enables supporting
complex frameworks automatically. Another observation is
that even though the ACG-based guiding strategies achieve
better coverage overall, the low precision of the ACG call
graphs prevents GELATO to trigger the target locations fast,
wasting time in triggering events that do not trigger AJAX
calls for a long time. Note that the Composite mode also
does not seem to solve the problem in some of the cases
and more precise call graphs are crucial. Even though the
quality of the static call graphs is not ideal, still getting
assistance from static analysis compared to a pure dynamic
analysis is beneficial due to the large performance overhead
and instrumentation challenges of a dynamic analysis [47].
Overall, our results show that a guiding strategy that uses
call graphs performs better than a non-guided crawler that
selects events randomly in most cases (seven out of nine
apps). However, different frameworks and applications require
different ACG-based strategies and an initial experimental run
to choose the right strategy is recommended.

C. Accuracy of staged taint flow inference

This section answers our third research question by eval-
uating GELATO’s effectiveness for DOM-based XSS detec-
tion. First, we evaluate the effectiveness of our staged taint
inference technique on microbenchmarks and libraries with
known DOM-based XSS vulnerabilities. We use two open-
source microbenchmarks designed to evaluate DOM-based
XSS detection tools: Firing Range [14]9 from Google, and
IBM benchmarks [27]. We also compare our taint inference
technique against dynamic taint tracking in DexterJS [65],
and CTT (Chromium Taint Tracking) [56], the state-of-the-art

9For the Firing Range benchmark, we evaluate only against the DOM-
related test cases: address tests [12], urldom tests [15] and dom tests
(toxicdom) [13].

DOM-based XSS detection tools. We noticed that the crawling
capabilities of these two tools are very limited or non-existent.
Thus, in this paper, we do not compare them against GELATO’s
crawler. Second, we evaluate the effectiveness of our guided
crawling strategy and input generation technique for DOM-
based XSS detection analysis. We use 0.09 as the similarity
score threshold for the Edit Distance and minimum length of
two characters for the Substring check in Fig. 2.
Taint flow inference on microbenchmarks. The payloads for
a DOM-based XSS attack are often provided in the URLs,
which can easily be controlled by attackers. While some
of the test cases in the Firing Range and IBM benchmarks
contain a valid flow from a source to a sink, the value at
the source cannot be directly tainted through URLs, e.g.,
sessionStorage. The TP (True Positive) test cases in Table
V consider only cases that can be triggered through a URL
(URL-controllable), while the FP (False Positive) cases contain
sources that are non URL-controllable or infeasible taint flows.
Note that because our taint inference technique can track taint
values passed via browser APIs without requiring to model
them, we expect to have better precision than taint tracking
techniques that rely on models for non URL-controllable cases.
We plan to extend our implementation to support non URL-
controllable taint sources in future.

Benchmark Firing Range IBM
address tests urldom tests dom tests (toxicdom)

R / P R / P R / P R / P
# GELATO 82 / 100 85 / 100 100 / 100 90 / 100
# DexterJS 75 / 100 23 / 100 100 / 10 80 / 77

# CTT 64 / 100 38 / 100 100 / 20 82 / 75

TABLE V: Taint flow recall (R) and precision (P) reports for microbenchmarks

Because we have the full ground truth for these microbench-
marks, we can compute the recall and precision. Table V shows
that GELATO finds more taint flows than DexterJS and CTT.
This is particularly apparent in urldom test cases, where we
detect a significantly higher portion of the URL-controllable
taint flows. In particular, we can report the taint flow in non-
trivial test case10 in the IBM benchmark, which is triggered if
the URL has topic= query parameter. GELATO successfully

10Incorrect_Sanitizer/apollo_test_01.html in [27].
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Fig. 4: Evaluating guided crawling against random crawling.

finds this query parameter and reports the taint flow. This test
case shows the effectiveness of our value input generator and
constraint heuristics explained in Sec.III. We investigated the
results from other tools further to understand the root causes of
their failures. We noticed that DexterJS does not handle some
of the built-in functions, sanitizations and browser APIs. On
the other hand, CTT does not handle JavaScript property reads
and writes, which result in false negatives. We also noticed
problems in the event-generation component of DexterJS that
leads to poor coverage and missing valid taint flows. Because
CTT does not have support for event generation, it misses
all the flows that require user interaction. GELATO has better
or equal precision than DexterJS and CTT thanks to the
Sink Check and Trace Check stages in Sec. IV. Our manual
inspection shows that Sink Check is enough to avoid most of
the false positives but Trace Check is also used sometimes to
achieve a 100% precision.
JavaScript libraries and open-source applications. Table VI
reports the effectiveness of our taint inference mechanism on
JavaScript libraries that have known vulnerabilities, as reported
in RetireJS [35].11 We have created test harnesses for these
libraries to trigger the DOM-based XSS vulnerable paths and
input payloads are provided for all the tools. GELATO is able
to report taint flows for all of these vulnerable libraries while
DexterJS misses all of them and CTT reports four. Dojo is an
interesting library in our benchmarks because its vulnerability
can be found by our constraint heuristics explained in Sec.III
by bypassing the input validation that expects theme as the
query parameter in the URL [10].

Table VI also shows that GELATO can successfully detect
DOM-based XSS vulnerabilities in non-trivial modern web-
applications, while the other tools miss reporting them. To
detect the vulnerabilities in these applications, a state-aware
crawler is needed that triggers the vulnerable path. In this
experiment, GELATO is the only tool that has an effective
state-aware crawler, successfully exploring the application and
triggering the vulnerable path. It is worth noting that for real
applications it is very challenging to get the ground truth.
That is why we compare GELATO with existing tools and
report only relative recall and precision. We also compared the

11RetireJS documents vulnerabilities in “retired” versions of JavaScript
libraries.

effectiveness of guided crawling strategy for DOM-based XSS
detection analysis with the Random strategy. The target loca-
tions in this experiment were DOM manipulation operations
in the program. For both Firing Range and IBM benchmarks,
the guided crawling strategy helps find the DOM-based XSS
vulnerabilities in 50% less time than a Random strategy.

Benchmark GELATO DexterJS CTT
jQuery 1.11.1 [7] X × ×
jQuery 1.6.1 [6] X × X

jQuery-migrate 1.1.1 [21] X × X
handlebars 1.0.0.beta.2 [16] X × X

mustache 0.3.0 [28] X × X
dojo 1.4.1 [10] X × ×

Juice-shop 8.3.0 [24] X × ×
Damn Vulnerable Web App (DVWA) [8] X × ×

TABLE VI: DOM-based XSS detection for libraries and open-source applications.

Threats to validity. While we aimed to select representative
applications and benchmarks that use modern technologies,
the choice of benchmarks might have affected the validity of
the experiments presented in this paper. Moreover, obtaining
ground truth for coverage of real applications is very challeng-
ing and would need to manually interact with the UI of the
client-side app to capture all the URLs and REST endpoints.
That is why we have used a relative ground truth for RQ2
(Fig. 3) based on the collective observations across all the
strategies. Finally, in our experiments we showed that the
DOM-based XSS detection in GELATO has a high accuracy for
the analyzed applications and libraries. However, depending
on the complexity of the taint manipulation operations in the
given program, the accuracy could vary.

VI. CONCLUSION

In this paper, we have presented GELATO, a feedback-driven
and guided security-aware crawler that addresses the gaps in
analyzing complex framework-based JavaScript applications.
We have studied and evaluated the state-of-the-art tools, and
presented the most crucial features a security-aware client-side
analysis should be supporting. We showed that our crawler out-
performs existing crawlers by achieving better coverage, and
presented various crawling strategies that suit different types
of applications. We have also developed a new lightweight
client-side taint analysis that reports non-trivial taint flows in
modern JavaScript applications with higher accuracy than the
existing dynamic taint analysis tools.
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