ORACLE

7
=
A
3
5

GraalVM Native Image

Large-scale static analysis for Java

Christian Wimmer
Architect, GraalVM Native Image
christian.wimmer@oracle.com

Christian Wimmer

5+ years working on Java HotSpot VM
« SSA form and register allocation for the client compiler
» Research of object layout optimizations

3 years “detour” into language based security

10+ years working on GraalVM
« Native Image architect, from first commit to production

2 Copyright © 2021, Oracle and/or its affiliates

What is GraalVM?

<
"

High-performance optimizing
Just-in-Time (JIT) compiler

3 Copyright © 2021, Oracle and/or its affiliates

o 1
€ O ==
Ahead-of-Time (AOT) “Native
Image” generator

LLVM

Multi-language support

One compiler, many configurations

Executes

App.jar

GraalVM
Compiler (7)

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM

4 Copyright © 2021, Oracle and/or its affiliates

One compiler, many configurations

Executes

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
(@ Compiler also used for just-in-time compilation of JavaScript code

5 Copyright © 2021, Oracle and/or its affiliates

One compiler, many configurations

Executes

Builds
Ypur_
GraalVM GraalVM Application
Compiler (2) Compiler (3)

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
(@ Compiler configured for static points-to analysis
(® Compiler configured for ahead-of-time compilation

GraalVM
Compiler (7)

6 Copyright © 2021, Oracle and/or its affiliates

One compiler, many configurations

7

Executes Builds

GraalVM GraalVM GraalVM
Compiler (7) Compiler (2) Compiler (3)

(D Compiler configured for just-in-time compilation inside the Java HotSpot VM
(@ Compiler configured for static points-to analysis

(® Compiler configured for ahead-of-time compilation

(@ Compiler configured for just-in-time compilation inside a Native Image

Copyright © 2021, Oracle and/or its affiliates

GraalVM
Compiler (3

One compiler, many configurations

https://doi.org/10.1145/2764907

Snippets: Taking the High Road to a Low Level

DOUG SIMON and CHRISTIAN WIMMER, Oracle Labs
BERNHARD URBAN, Institute for System Software, Johannes Kepler University Linz, Austria
GILLES DUBOSCQ, LUKAS STADLER, and THOMAS WURTHINGER, Oracle Labs

When building a compiler for a high-level language, certain intrinsic features of the language must be
expressed in terms of the resulting low-level operations. Complex features are often expressed by explicitly
weaving together bits of low-level IR, a process that is tedious, error prone, difficult to read, difficult to
reason about, and machine dependent. In the Graal compiler for Java, we take a different approach: we use
snippets of Java code to express semantics in a high-level, architecture-independent way. Two important
restrictions make snippets feasible in practice: they are compiler specific, and they are explicitly prepared
and specialized. Snippets make Graal simpler and more portable while still capable of generating machine
code that can compete with other compilers of the Java HotSpot VM.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers, Run-time
environments

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Java, Graal, snippet, compiler, dynamic compilation, just-in-time

compilation E
8

https://doi.org/10.1145/2764907

€O

9 Copyright © 2021, Oracle and/or its affiliates

GraalVM Native Image

Native image generation

Input:

- .- Output:
All classes from application, -
libraries, and VM Native executable
g Ahead-of-Time

Apphcat]on Compilation Code in
Libraries — Text Section
JDK — :

Image Heap in
Substrate VM JAEiETs T Data Section
Writing

lterative analysis until
fixed point is reached

10 Copyright © 2021, Oracle and/or its affiliates

Closed world assumption

» The points-to analysis needs to see all bytecode
» Otherwise aggressive AOT optimizations are not possible
e Otherwise unused classes, methods, and fields cannot be removed
« Otherwise a class loader / bytecode interpreter is necessary at run time

» Dynamic parts of Java require configuration at build time
» Reflection, NI, Proxy, resources, ...

* No loading of new classes at run time

11 Copyright © 2021, Oracle and/or its affiliates

Image heap

« Execution at run time starts with an initial heap: the “image heap”
« Objects are allocated in the Java VM that runs the image generator
» Heap snapshotting gathers all objects that are reachable at run time

* Do things once at build time instead at every application startup
« C(lass initializers, initializers for static and static final fields
» Explicit code that is part of a so-called “Feature”

« Examples for objects in the image heap
» java.lang.Class objects
 Enum constants

12 Copyright © 2021, Oracle and/or its affiliates

Benefits of the image heap

GraalVM Native Image:
Load configuration file
at build time

Without GraalVM GraalVM Native Image
Native Image (default)

Build time

Run time

Load Classes
l Build time

Run time
Load Configuration File Load Configuration File
Build time
‘l’ ‘l’ Run time
Run Workload Run Workload Run Workload

13 Copyright © 2021, Oracle and/or its affiliates

Paper with details, examples, benchmarks

https://doi.org/10.1145/3360610

Initialize Once, Start Fast: Application Initialization
at Build Time

CHRISTIAN WIMMER, Oracle Labs, USA
CODRUT STANCU, Oracle Labs, USA

PETER HOFER, Oracle Labs, Austria

VOJIN JOVANOVIC, Oracle Labs, Switzerland
PAUL WOGERER, Oracle Labs, Austria

PETER B. KESSLER, Oracle Labs, USA

OLEG PLISS, Oracle Labs, USA

THOMAS WURTHINGER, Oracle Labs, Switzerland

Arbitrary program extension at run time in language-based VMs, e.g., Java’s dynamic class loading, comes at
a startup cost: high memory footprint and slow warmup. Cloud computing amplifies the startup overhead.
Microservices and serverless cloud functions lead to small, self-contained applications that are started often.
Slow startup and high memory footprint directly affect the cloud hosting costs, and slow startup can also
break service-level agreements. Many applications are limited to a prescribed set of pre-tested classes, i.e., use
a closed-world assumption at deployment time. For such Java applications, GraalVM Native Image offers fast
startup and stable performance.

14 GraalVM Native Image uses a novel iterative application of points-to analysis and heap snapshotting,
followed bv ahead-of-time compilation with an optimizing compiler. Initialization code can run at build time,

https://doi.org/10.1145/3360610

Nice theory, but does it work in practice?

& Tweet

Cédric Champeau
@CedricChampeau

w #Micronaut

> Task :nativeRun

I QO - - - . ____ _lIl.
1AV T /A P U | VU U A I O O By |
1 T T T A T I I I I [I
P O I O D VO D [DO I VY VO WY |
Micronaut (v3.8.2-SNAPSHOT)

14:54:13.311 [main] INFO io.micronaut.runtime.Micronaut —[Startup completed in ﬁms.]Server Running: http://localhost:8080
<===========--> 85% EXECUTING [3s]

5:55 AM - Sep 15, 2021 - Twitter Web App

15 Copyright © 2021, Oracle and/or its affiliates

Why not “just AOT compilation”?

Several AOT compilers for Java exist or existed

« jaotc (part of OpenJDK, using the GraalVM compiler)
* gC]

» Excelsior JET

But Java code is hard to optimize without data

» Java code is very object oriented

« AOT compilation only covers the “code” aspect of objects and ignores the “data” aspect

» Simple example: You cannot optimize Java enum usages without having the actual enum instances
« To get to data (Java objects), you need to run parts of your application

16 Copyright © 2021, Oracle and/or its affiliates

Static analysis using the JVM compiler interface (JVMCI)

JVMCI and the hosting Java VM provide
 Class loading (parse the class file)
» Access the bytecodes of a method
» Access to the Java type hierarchy, type checks
 Resolve virtual method calls

Bytecode parsing for points-to analysis and compilation use same intermediate representation
« Simplifies using the analysis results for optimizations

Goals of points-to analysis
* |dentify all methods reachable from a root method
* |dentify the types assigned to each field
* |dentify all instantiated types

Fixed point iteration of type flows: Types propagated from sources (allocation) to usage

17 Copyright © 2021, Oracle and/or its affiliates

Points-to analysis

allocate

Object f; new Point

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

Point.hashCode

Analysis is context insensitive:

One type state per field

18 Copyright © 2021, Oracle and/or its affiliates

Points-to analysis

Object f;

void foo() {
allocate();
bar();

}

Object allocate() {
f = new Point()

}

int bar() {
return f.hashCode();

}

void someMethod() {
f = "abc";

}

Analysis is context insensitive:

One type state per field

19 Copyright © 2021, Oracle and/or its affiliates

allocate
new Point
f ="abc"; ijpdnﬂ
[String] putField f

bar
Point, String]

l

obj

getField f

[Point, String]

[Point, String]

this

String.hashCode

>

vcall hashCode

Point.hashCode

this

Context sensitive analysis

Theory: to improve analysis precision, we “just” have to make the analysis context sensitive. And there
is no shortage of papers (and entire conferences) about that.

But what nobody really tells you: Any useful improvement of precision requires a very deep context

Java has deep call chains

Java has deep object structures. For example, just look at java.util.HashMap
Java arrays have no type information: every array can be cast to Object[]
Reflection is pervasively used, and reflection passes arguments in Object[] array
About every JDK method can call String.format which has huge reachability

We believe that a context sensitive analysis is infeasible in production. At least we tried and failed.

20 Copyright © 2021, Oracle and/or its affiliates

Problems of context sensitive analysis: HashMap

21

void foo() {
Map map = new HashMap<>();

-
\

(;Foo> N h

S keys values/

Copyright © 2021, Oracle and/or its affiliates

void bar() {
Map map = new HashMap<>();

el

(Qbar> ‘~ b

S keys values/

At least a 3-level heap context

is required for any useful
optimization

Region-based memory management

Stancu et al, Safe and Efficient Hybrid
Memory Management for Java
https://doi.org/10.1145/2754169.2754185

Static Analysis - \
Reachable world
v | - |
Points-to ! classes |
] .~ +—generates—»| 4
D uses”t analysis 9 methods | AN
Region & 777777 ==- fields || USeS [T AIITTT !
annotated . N Code !
source Ygeneration
code r) \ uses Jmm------ :
‘uses ittt HSes Region metadata
! Region | Senerates P . /
| _analysis | | (CEEm s) Region analysis is built as a
""""" | CETO EmERET | context-sensitive static analysis
Runtime - --\
Data Structures Fo————-- | : [Garbage Collected] i
(. ' ' ! Hea
Region metadata ~ Allocator rjiocates_y ! = |
uses | ! - i aeeeeee- !
- . \ b= : o (Region 0) | 1 |
 region mappings | S :(—collects—: Collector 1
P - L 5 [Region 1] , L :
- region enter/exit | i) l > I
8 /T uses_1 Region :’push/pop ' S !
Manager ! i
,L____g__: | &gv(Region n) !
\)

22 Copyright © 2021, Oracle and/or its affiliates

https://doi.org/10.1145/2754169.2754185

Semantic models

 Model API behavior
» Are simple to analyze
* But do not model all behavior

The static analysis links method calls to both the
original and the model implementation

* Original implementation without context
« Semantic model with context
« T1-level deep heap context is sufficient

Only the more precise return values from model
are propagated

23 Copyright © 2021, Oracle and/or its affiliates

Fegade et al, Scalable Pointer Analysis
of Data Structures using Semantic Models
https://doi.org/10.1145/3377555.3377885

Model for HashMap:

V HashMap_Model.put(K key, V value) {
this.allKeys = key;
this.allValues = value;
return this.allValues;

V HashMap Model.get(Object key) {
return this.allValues;

}

Quite intuitive
« “Anything that gets put in can come out”

https://doi.org/10.1145/3377555.3377885

Semantic models: analysis time

Lower is better - faster analysis @B Context insensitive
@ Context sensitive

Semantic Models

Timed Out 7547 169.68 81.96 8.96 82.75

Normalized analysis time
O =~ NN W b~ 01 OO N

24 Copyright © 2021, Oracle and/or its affiliates

Improving analysis time and memory footprint

* Improving analysis precision is really great

« But in reality, no user has complained about the precision of our current context-insensitive analysis
« And we only just started using all the computed information

* In contrast, many users have complained about long analysis time and high memory footprint
* Currently minutes of analysis time, 10 GByte memory footprint
« GitHub issue #3043: “Image building fails on my Raspberry Pi”

Points-to results are moderately useful for optimizing peak performance
« Useful to know if a certain value has an exact type, or a few types, or is never null
« But 10 types vs. 1000 types makes no difference

Solution: “saturated type states”
* Only track small type states individually

25 Copyright © 2021, Oracle and/or its affiliates

Saturated type states

Goal: reduce the memory footprint (and analysis
time) for large image builds

» Make the analysis “linear enough”

« Saturate type states: Do not track detailed
type information when number of types > n

 Link virtual method calls with saturated
receivers only once

 Enabled since GraalVM 20.2

Benchmark numbers: synthetic benchmark with
10 virtual methods per class, and increasing
number of classes

« Qut of memory without saturation for 4000
and more classes

26 Copyright © 2021, Oracle and/or its affiliates

[seconds] Static Analysis Time
80 |
60 =>=Without saturation
—e—\With saturation
40
20
0
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of classes
[GByte] Total Heap Size
12 |
=>\Without saturation
8 —e—\With saturation
“ [—— —— ¢ —ee
0

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of classes E

Inline methods before static analysis

« Context-sensitivity with a method context is conceptually similar to method inlining
« Both expand the scope from one method to a group of methods
 Inlining only for small methods does not increase static analysis time
« Compiler: Inlining of small methods reduces compilation time and compiled code size

« Method inlining is even more powerful than a method context

« Context sensitive analysis only improves quality of values that have an object type
« Method inlining also improves the quality of primitive value
« Enables more constant folding and dead code elimination before static analysis:

// Either foo or bar is reachable static final boolean WINDOWS = ...

if (WINDOWS) foo(); else bar();

static boolean isWindows() {
// Without method inlining, both return WINDOWS;

// foo and bar are reachable }
if (isWindows()) foo(); else bar();

 Enabled since GraalVM 21.3

27 Copyright © 2021, Oracle and/or its affiliates

Compiler optimizations to run before static analysis

Constant folding
« Propagate final field values from the image heap

Dead code elimination
« Removing unreachable code early makes less other code reachable

Method inlining
« Makes the static analysis context sensitive

Conditional elimination
« Remove redundant if-statements to make the analysis faster

Escape analysis
- Enable more constant folding and inlining by combining object/array allocation and initialization

HelloWorld.class.getDeclaredMethod("foo", String.class, int.class);
is really
HelloWorld.class.getDeclaredMethod("foo", new Class[] {String.class, int.class});

and needs escape analysis of the array allocation and initialization before getDeclaredMethod can be constant folded

28 Copyright © 2021, Oracle and/or its affiliates

Static analysis API exposed to application

Active API: register callbacks for analysis status changes

/* Invoke callback when one of the provided elements (can be Class, Field, or Executable) gets reachable. */
void registerReachabilityHandler(Consumer<DuringAnalysisAccess> callback, Object... elements);

/* Invoke callback when a new subtype of the provided type gets reachable. */
void registerSubtypeReachabilityHandler (BiConsumer<DuringAnalysisAccess, Class<?>> callback, Class<?> baseClass);

/* Invoke callback when a new override of the provided method gets reachable. */
void registerMethodOverrideReachabilityHandler (BiConsumer<DuringAnalysisAccess, Executable> callback, Executable baseMethod);

Passive API: query current analysis status
boolean isReachable(Class<?> clazz);
boolean isReachable(Field field);

boolean isReachable(Executable method);

Set<Class<?>> getReachableSubtypes(Class<?> baseClass);
Set<Executable> getReachableMethodOverrides(Executable baseMethod);

Participate in heap snapshotting: transform entire object or transform individual field value before it is added to image heap

void registerObjectTransformer(Function<Object, Object> transformer); // actually called registerObjectReplacer right now
void registerFieldValueTransformer(Field field, Function transformer); // actually done via @Alias and @RecomputeFieldValue

29 Copyright © 2021, Oracle and/or its affiliates E

Summary: GraalVM Native Image static analysis

« Context-insensitive points-to analysis
« Image heap scanning during analysis
» Application code runs during static analysis and can react to reachability information

« Context-sensitive analysis worked for research projects, but too slow for production
» Recent focus on reducing analysis time and footprint, not improving precision

* Propagate only “useful” information through the type flow graph
« Some compiler optimizations run before the static analysis

« Constant folding, method inlining

30 Copyright © 2021, Oracle and/or its affiliates

Thank you

https://www.graalvm.org

31 Copyright © 2021, Oracle and/or its affiliates

