

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	and	Cannoli	
An	Ini&al	Explora&on	into	Machine	Learning	for	the	Purposes	of	Finding	
Bugs	in	Source	Code	

Tim	Chappell*,	CrisDna	Cifuentes,	Paddy	Krishnan	
Queensland	University	of	Technology*,	Oracle	Labs	
November	15,	2016	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Project	Overview	
•  Imagine	if	machine	learning	could	detect	bugs	for	us	in	soRware	

– With	good	precision	
– With	good	recall	
– With	good	performance	
– And	beat	Parfait	and	other	staDc	code	analysis	tools	at	finding	bugs	in	soRware	

•  This	Friday	Project	is	an	invesDgaDon	into	what	is	feasible	in	this	space	
– Project	started	in	February	2016	

3	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

		Machine	Learning	is	the	subfield	of	
computer	science	that	“gives	
computers	the	ability	to	learn	without	
being	explicitly	programmed”	(Arthur	
Samuel,	1959)	
– Wikipedia	

4	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	

Machine	Learning	Approaches	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

•  Two	tools	
– Bisco@	
– Cannoli	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	
	
	

Machine	Learning	Approaches	

6	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	Classifiers	and	Decision	Trees	

Diagram from: http://sebastianraschka.com/images/blog/2014/intro_supervised_learning/decision_tree_1.png

7	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

2D	Decision	Boundary	

http://statweb.stanford.edu/~jtaylo/courses/stats202/_images/trees_fig_03.png

8	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Iris	Dataset	Example	

	
• Made	use	of	two	petal	features	(length	and	width)	

• Classified	into	three	classes	of	Irises	(setosa,	versicolor,	virginica)	

9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

AbstracDng	The	Iris	Dataset	Example	

	
•  Features	are	inputs	
• Classes	are	outputs	
• Dataset	needs	to	contain	features	and	classes	

10	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

AbstracDng	The	Iris	Dataset	Example	

	
•  Features	are	inputs	
• Classes	are	outputs	
• Dataset	needs	to	contain	features	and	classes	
•  For	bugs	in	source	code	

– Features	==	?	
– Classes	==	bug	type	

11	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	

12	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Complexity	of	the	code	
–  CyclomaDc	complexity	
–  Def-use	chains	
–  #	edges	
–  #	knots	
–  Length	of	code	
–  Line	count	
–  NesDng	level	
–  Vocabulary	
–  FuncDon	start	line	
–  FuncDon	end	line	
– …	

•  Text	features	
–  !	
–  (
– )	
–  ,	
–  00	
–  1	
– …	
–  FILE	
– …	
–  Input	
–  Logged	
– …	

•  Intermediate	Code	
instrucDon	frequency	
–  add	
–  alloca	
–  and	
–  ashr	
–  bitcast	
–  br	
–  call	
–  extractvalue	
–  fadd	
– …	

Bisco@’s	Feature	SelecDon	

13	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Intermediate	Code		
2-grams	
–  alloca-alloca	
–  store-store	
–  store-br	
–  br-load	
–  load-icmp	
–  icomp-br	
–  br-br	
– …	

•  Clang	–analyze	output	
–  Array-subscript-is-undefined	
–  Bad-free	
–  Dead-assignment	
–  Dead-increment	
–  Dereference-of-null-pointer	
–  Double-free	
–  FuncDon-call-argument-is-
an-uniniDalized-value	

– Memory-leak	
–  Out-of-bound-array-access	
– …	

•  Output	from	other	StaDc	
Code	Analysis	tools	
–  Parfait	
–  Splint	
–  UNO	

Bisco@’s	Feature	SelecDon	

14	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Feature	SelecDon	–	Dimensionality	ReducDon	

010002000300040005000600070008000
0

500

1000

1500

2000

2500

3000

8,190	features	reduced	to	500	
15	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Feature	SelecDon	–	Dimensionality	ReducDon	
•  LOONNE:	leave	one	out	nearest	neighbour	error	

– Removes	the	least	disDnguishing	feature	at	each	step	by	minimising	the	global	error	

	Given	a	feature	set	FS,		
	 	GlobalError(FS)	=	Sum	of	all	misclassificaDons	for	FS	
	LOONNE	removes	feature	f	if	
	 	for	all	other	features	f’,	GlobalError(FS-{f})	>	GlobalError(FS-{f’})	

	

16	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@’s	ClassificaDon	Algorithm	
• Random	Forests	

– Forest	of	100	randomly-seeded	decision	trees	using	random	subsets	of	the	feature	
set	

– The	outcomes	of	the	decision	trees	are	combined	to	produce	a	single	outcome	for	
each	result	

– Useful	when	no	natural	probabilisDc	distribuDon	amongst	features	

• Granularity	of	analysis:	funcDon	level	
– Line	number	level	too	fine	for	iniDal	experimentaDon	

17	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Training	and	Test	Datasets:	BegBunch’s	Accuracy	Suites	

BegBunch	Suite	 Type	of	Benchmark	 Average	Non-Commented	
Lines	of	Code	

#	Func&ons	 #	and	Types	of	Bugs	

Cigital	 SyntheDc	 15	 50	 	
Buffer	overruns:	1709	
Memory	leaks:	196	
UniniDalised	vars:	131	

Samate	 SyntheDc	 20	 2,366	

Iowa	 SyntheDc	 31	 1,686	

OracleLabs*	 Real	 917	 547	

Bugs	are	marked	up	in	the	suites	

* These bug kernels were extracted from open source code, including relevant flow of control.

Trained	with	4-fold	cross-validaDon	over	test	datasets	

18	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Bisco@)	vs	StaDc	Code	Analysis	Tools	

Type	of	Bug	 Splint	 Parfait	 BiscoG	

500	features	

Buffer	overrun	 581/999	TP	
(58%)	

343	FP	
	

885/999	
(89%)	

14	FP	
	

910/999	
(91%)	

262	FP	
	

Memory	leak	 -	 9/42		
(21%)	

10	FP	
	

17/42		
(40%)	

3	FP	
	

UniniDalised	variable	 12/15	TP	
(80%)	

54	FP	
	

13/15		
(87%)	

11	FP	
	

8/15		
(53%)	

0	FP	
	

Evaluated	using	4-fold	cross-validaDon	over	BegBunch	dataset	

19	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Top	10	features	
– [Parfait]	buffer	overflow	
– [Parfait]	read	outside	array	bounds	
– [Splint]	fresh	storage	not	released	
before	return	

– [Text]	,	
– [Complexity]	funcDon	end	line	
– [Parfait]	uniniDalised	variable	
– [Splint]	funcDon	exported	but	not	used	
outside	

– [Splint]	for	body	not	block	
– [Text]	contents	

•  Training	datasets	have	high	number	
of	syntheDc	benchmarks	
– Bisco@	learnt	to	rely	on	features	that	
don’t	make	sense	(e.g.,	end	of	line)	

• None	of	the	features	are	
representaDve	of	a	bug	

What	Did	Bisco@	Learn?		

20	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Bisco@)	vs	StaDc	Code	Analysis	Tools	

Type	of	Bug	 Splint	 Parfait	 BiscoG	

500	features	 1-&2-grams	+	
complexity	features	

(553	features)	

Buffer	overrun	 581/999	TP	
(58%)	

343	FP	 885/999	
(89%)	

14	FP	 910/999	
(91%)	

262	FP	 23/999	
(2%)	

5	FP	
	

Memory	leak	 -	 9/42		
(21%)	

10	FP	 17/42		
(40%)	

3	FP	 5/42	
(12%)	

0	FP	
	

UniniDalised	
variable	

12/15	TP	
(80%)	

54	FP	 13/15		
(87%)	

11	FP	 8/15		
(53%)	

0	FP	 0/15		
(0%)	

0	FP	
	

Evaluated	using	4-fold	cross-validaDon	over	BegBunch	dataset	

21	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	Conclusions	
• Need	more	datasets	of	representaDve	bugs;	marked	up	

– I.e.,	not	syntheDc	benchmarks	

•  The	crux	of	supervised	learning	is	determining	the	right	set	of	features	
– What	features	make	a	bug	a	bug?		

	

22	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“Deep	Learning	succeeds	when	it’s	difficult	
to	figure	out	what	features	you	want	to	use	
in	your	classifier”		

23	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

•  Two	tools	
– Bisco@	
– Cannoli	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	
	

Machine	Learning	Approaches	

24	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	ConvoluDonal	Neural	Networks		
3-layer	neural	network	

http://cs231n.github.io/assets/nn1/neural_net2.jpeg

25	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	ConvoluDonal	Neural	Networks		
Convolu&onal	neural	network	

http://cs231n.github.io/assets/cnn/cnn.jpeg

26	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli	

27	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli’s	Architecture		

28	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Training	Dataset:	BegBunch’s	Scalability	Suites	

BegBunch	Suite	 Average	Non-Commented	Lines	of	
Code	

#	Func&ons	

Calysto	 87,636	 11,214	

OracleLabs	 394,739	 53,448	

Bugs	are	not	marked	up	in	these	suites	

29	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Cannoli)	vs	StaDc	Code	Analysis	Tools		
Training	on	Scalability	Suite	(50/50	split),	tes&ng	on	OpenSolaris	ONNV	b93*	(no	split)	

Type	of	Bug	 Parfait	v0.4.1	 Cannoli	

Buffer	overrun	 221	TP,	81	FP	 213/221	TP,	56095	FP	

Memory	leak	 506	TP,	94	FP	 497/506	TP,	47414	FP	

* 168,666 functions

Training on Scalability Suites using Parfait v1.7.1.3 results as ground truth

30	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Cannoli)	vs	StaDc	Code	Analysis	Tools	
Training	on	BegBunch’s	Accuracy	Suites	(no	split),	tes&ng	on	OpenSolaris	ONNV	b93*	

Type	of	Bug	 Parfait	v0.4.1	 Cannoli	

Buffer	overrun	 221	TP,	81	FP	 23/221	TP,	9146	FP	

Memory	leak	 506	TP,	94	FP	 0/506	TP,	174	FP	

UniniDalised	variable	 30	TP,	16	FP	 0/30	TP,	153	FP	

Training on Scalability Suites using Parfait v1.7.1.3 results as ground truth

* 168,666 functions

31	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	Did	Cannoli	Learn?		

?	
32	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli	Conclusions	
•  Image	recogniDon	techniques	not	ideal	for	source	code	analysis	

• Results	from	black-box	techniques	are	not	very	useful	for	bug	detecDon	
– No	bug	traces	can	be	derived	for	developers	to	understand	the	results	of	the	tool	

33	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	Of	The	State	Of	The	Art	
Paper	 Venue-Year	 Summary	

Brun,	Ernst	 ICSE-04	 ProperDes	inferred	using	both	buggy	and	fixed	code	

Yamaguchi	et	al.	 ACSAC-12	 Extrapolate	vulnerabiliDes	from	known	vulnerabiliDes	using	AST	representaDons	

ALETHEIA	 CCS-14	 StaDsDcal	analyses	to	predict	“rare”	vulnerabiliDes;	tunable	to	focus	on	FP	
eliminaDon/TP	detecDon.		Basic	features	(per	Bisco@)	

JSNice	 POPL-15	 Use	program	dependence	graphs	and	staDsDcal	predicDon	to	deobfuscate	JavaScript	
code	

Mou	et	al.	 AAAI-16	 ConvoluDonal	Neural	Networks	using	AST	representaDon	to	idenDfy	code	
similariDes	

Wang	et	al.	 ICSE-16	 Use	Deep	Belief	Networks	and	AST	representaDon	to	detect	within	project	and	cross	
project	defects	

Greico	et	al.	 CODASPY-16	 Use	staDc	and	dynamic	features	(state	of	memory)	to	detect	vulnerabiliDes	

34	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	
•  Two	ML	approaches	were	implemented	to	find	bugs	in	C	code	

– Bisco@:	supervised	learning	using	a	random	forest	of	decision	trees	and	LOONNE	
– Cannoli:	supervised	learning	using	a	convoluDonal	neural	network	

• Both	learned	“something”	
– But	results	are	Ded	to	the	datasets	used;	i.e.,	doesn’t	learn	to	find	bugs	in	unseen	
code	

• Bisco@	captures	syntacDc	features	of	the	program	
– Need	to	capture	seman/c	features	

• Need	a	lot	more	representa&ve	data	

35	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Future	Plans	
1.  Create	enough	data	for	datasets	

– RepresentaDve	proporDon	of	buggy	vs	non-buggy	code	
– RepresentaDve	number	of	bugs	for	each	bug	type	of	interest	
– Fixed	version	of	each	buggy	example	

2.  Explore	different	approaches	to	encode	semanDcs	
– Use	of	buggy	vs	fixed	code	to	determine	features	of	interest	[Ernst’04]	
– Use	of	recurrent	neural	network	with	long	short-term	memory	(LSTM)	[Tristan’16]	
	

	

36	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Q&A	
37	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 38	

