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ABSTRACT  

This paper presents the initial findings in applying a behavior-based approach for detection of unauthorized 

activities in a simulated Supervisory Control and Data Acquisition (SCADA) system. Misuse detection of this type 

utilizes fault-free system telemetry to develop empirical models that learn normal system behavior. Future monitored 

telemetry sources that show statistically significant deviations from this learned behavior may indicate an attack or 

other unwanted actions. The experimental test bed consists of a set of Linux based enterprise servers that were 

isolated from a larger university research cluster. All servers are connected to a private network and simulate several 

components and tasks seen in a typical SCADA system. Telemetry sources included kernel statistics, resource 

usages and internal system hardware measurements. For this study, the Auto Associative Kernel Regression (AAKR) 

and Auto Associative Multivariate State Estimation Technique (AAMSET) are employed to develop empirical 

models. Prognostic efficacy of these methods for computer security used several groups of signals taken from 

available telemetry classes. The Sequential Probability Ratio Test (SPRT) is used along with these models for 

intrusion detection purposes. The different intrusion types shown include host/network discovery, DoS, brute force 

login, privilege escalation and malicious exfiltration actions. For this study, all intrusion types tested displayed 

alterations in the residuals of much of the monitored telemetry and were able to be detected in all signal groups used 

by both model types. The methods presented can be extended and implemented to industries besides nuclear that use 

SCADA or business-critical networks. 
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1  INTRODUCTION 

A growing trend in the nuclear industry and many other industries in recent years is to shift towards a 

digital I&C culture. This shift is mainly due to the lower costs and increased sophistication in computer 

and communications technologies. The Supervisory Control and Data Acquisition (SCADA) system is an 

example of a combination of the previously mentioned technologies, using computers for process 

control/monitoring and sensing/communications equipment for data transfers. SCADA has seen use in 

many industries, including transportation, the energy sector and water treatment. Because these systems 

monitor and control the production and distribution of important resources, the network and related 

telemetry need protection from those with malicious intentions. Along with basic security measures such 

as plant network isolation, robust intrusion detection methods should be investigated and implemented to 

meet the needs of a growing digital industry and the unique new challenges that may arise. 

This research presents a new application of empirical-based modeling, which until now has been 

used for degradation detection of plant sensors or process equipment, to cyber-security of a simulated 



SCADA system. These data-driven modeling methods are the Auto Associative Kernel Regression 

(AAKR) and Auto Associative Multivariate State Estimation Technique (AAMSET). The basic idea 

behind using these two methods is that unwanted activities may show alterations in the behavior of 

monitored telemetry sources that are different from what was learned by the developed model as normal 

behavior. Models were developed using groups of signals selected from available telemetry to determine 

which signal groups offered superior prognostic security results. The Sequential Probability Ratio Test 

(SPRT), a binary hypothesis test that has seen wide use across many fields, is used in tandem with these 

models for quantification of alerts from intrusion-injection activities.  

2  METHODOLOGY 

This section will provide an overview of the various tools and methods used for this cyber-security 

research. First, the basic terminology and different types of intrusion detection methodologies that have 

been developed in prior research will be discussed. Next, the basic steps used for machine learning model 

development are given, followed by a discussion of the AAKR and AAMSET modeling methods. The 

section concludes with an overview of the SPRT, which is the main algorithm used quantify the alerts 

obtained from intrusion-injection activities as normal or faulted. 

2.1 Intrusion Detection Methods 

Intrusion Detection Systems (IDS) can be thought of as a combination of software and/or hardware 

with the purpose of monitoring current telemetry, such as network traffic or log files, for unauthorized 

activities [1, 2]. Detection of these activities can alert operators or take reactive measures to evict 

intruders, if implemented. The IDS also needs to have several properties to be considered useful. These 

include low overhead compute cost, timeliness in detection of alerts and ability to use telemetry from 

different sources [3]. For the purposes of this research, intrusion detection is network based rather than 

host based. This means that the activities of the network and all components are monitored rather than the 

activities or behaviors of a single host computer. As a variety of IDS have been developed, to avoid 

confusion these systems can be generalized into three basic types: Dictionary-based, Behavior-based and 

Specification-based [4]. 

Dictionary-based IDS use signatures or features stored in what is known as an "attack dictionary". 

These are features of known attacks or exploits that are compared with features of monitored signals. If 

there is a match, then an alert is given. The main strength of this type of IDS is that there is a low amount 

of false alarms and is rather simple to implement. Some weaknesses are that attack signatures that do not 

match the dictionary will be considered as normal, meaning that zero-day attacks can never be detected. 

Also, the dictionary must be updated often since new attack features are always being discovered, along 

with new ways to avoid detection by the attack dictionary.   

Behavior-based IDS use empirical models such as AAKR, Neural Networks or Genetic Algorithms 

to learn the patterns of normal behavior for the system in question. The telemetry sources for these 

models can include data from physical process measurements or software/system resource usage metrics. 

After the model is developed, any future telemetry sources that show statistically significant deviations 

from the learned normal behavior will be considered as anomalous. One of the main strengths of this 

method is that zero-day attacks can be detected easily, which is not possible with the previous method. 

Also, new operating conditions can easily be incorporated into these machine learning methods, should 

the need arise. One of the main weaknesses is that there is a higher rate of false alerts, but this rate can be 

reduced with proper model tuning that will be discussed later in this section. It is noted that this type of 

IDS is not meant to replace the Dictionary-based IDS, but rather they should work in tandem with each 

other for added layers of computer prognostic security, or a "defense-in-depth" approach.  

The last IDS is termed Specification-based, this method specifies behaviors or policies beforehand 

by a human security expert. Though this may sound similar to the previous two methods, the features or 



policies in the Specification-based IDS are not extracted features from an attack dictionary or learned 

normal system behavior. The main strengths of this method are that there is a low rate of false alerts given 

and there is no system profiling stage. A weakness of this method is that all specifications must be 

developed and programmed by a human operator, this can lead to errors or poorly defined policies.  

2.2 Auto Associative Kernel Regression 

In this and the following subsection, the empirical models used for this research will be discussed. 

The AAKR and AAMSET models were developed using algorithms contained in the Process and 

Equipment Monitoring (PEM) toolbox created at UT, which is a MATLab based set of tools [5, 6]. 

Developing these machine learning models can be broken down into several simple steps. The first step is 

model training, which requires data from when the system is operating in a fault-free state. The model is 

then optimized so that there is minimum error or uncertainty between the input data and model 

predictions. The last step is model validation, which uses data the model has not seen before to test 

overall performance. After these steps, current sensor information or faulted data can be run through the 

model to generate predictions and residuals. The residuals are obtained by subtracting the input data from 

the model predictions of that data and can be considered as model errors between input data and 

predictions. These residuals can then be used in a detection algorithm such as the SPRT to quantify 

normal versus faulted behavior. 

The first of the empirical models to be discussed is AAKR, which is a class of nonlinear, 

nonparametric (NLNP) regression that generates predictions of input data. The auto associative name 

indicates that both the predictor and response variables are identical. To develop an AAKR model, all that 

is needed is a set of data, hereafter termed training data, which is fault-free and covers all operating 

ranges of the system. This assumption needs stating because this model type cannot accurately predict 

values outside of the range of data used to train the model. A subset of observations is taken from each 

signal in the training data and is used for model training. This subset is termed the memory matrix and 

can be thought of as representative vectors of the entire training set. Current inputs to the model will be 

compared with these memory vectors for similarity. For this work, a Euclidean distance function is used 

to calculate these distances, shown in Equation 1. 
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In Eqn. (1), d are the distances for each sensor j, Xj,i is the current memory vector observation and xi is the 

current input. These distances are used in a Gaussian kernel function to obtain weights that are used to 

generate model predictions; this kernel function is shown next in Equation 2.  
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In the preceding equation, d are the distance values calculated and h is called the kernel bandwidth. The 

resulting weights K for each sensor j are then finally used to generate the model predictions. The kernel 

bandwidth is a parameter that needs to be optimized so that under or over-fitting of model predictions is 

avoided. This means that poor optimization can lead to an introduction of excess model bias or excess 

model variance. In other words, attempting to increase the model accuracy can introduce model variance 

and attempting to reduce the model uncertainty can lead to an increase of model bias. As stated 

previously, subtracting the model predictions from the input data generates residuals used for detection. 



2.3 Auto Associative Multivariate State Estimation Technique 

The AAMSET data-driven model was based upon a similar class of NLNP mathematical methods 

that was used to develop the MSET algorithm at Argonne National Laboratory (ANL) and later 

commercialized by SmartSignal [6, 7, and 8]. It is stressed that the AAMSET in the PEM toolbox does 

not use the same proprietary kernel that was used to develop the ANL MSET. The training data that is 

used to develop the AAKR models can also be used to develop an AAMSET model. Beyond this point, 

there are some differences in how predictions are generated using this technique. 

The first main difference is that the memory matrix is much smaller than that used for the AAKR 

models. For this technique, the number of memory vectors selected for each signal is only four times the 

number of signals in the data set. For example, a particular data set may have 20 signals. An AAKR 

model would then use 500 observations for each signal to develop the memory matrix, while an 

AAMSET model would only require 80 observations for each signal. The obvious advantage here is that 

the overall compute cost required to develop and run an AAMSET model is significantly reduced when 

compared with AAKR.  

Once this memory matrix is developed, the distances between this matrix and an input vector are 

calculated using Eqn. (1) to obtain what is know as a similarity matrix. To obtain the final model 

predictions, a pseudo-inverse is employed. The similarity is inverted using this method to net a 

normalized similarity matrix. In keeping with the previous example, this normalized matrix would have a 

size of 80 x 80. Using this normalized matrix, the weights between this and a query or input vector can 

then be calculated using Eqn. (3). The weights, normalized similarity matrix and query vector are 

combined to then obtain the final predictions, the combined equation is shown next. 

 Yp= w'*((XT*X)-1*XT )*Q            (3) 

In the preceding equation, Yp are the final model predictions, w are the weights, X is the similarity matrix 

and Q is a vector of inputs. As in the AAKR model, the residuals are then obtained by subtracting the 

predictions from the input data. One drawback of this method that is worth mentioning is that an ill-

conditioned matrix can lead to poor model predictions. This can be alleviated by regularization of the 

memory matrix during the pseudo-inverse process.  

2.4 Sequential Probability Ratio Test 

The last method to be discussed and the main anomaly/intrusion detection engine used is the SPRT, 

which is a binary statistical hypothesis test developed by Wald [9]. The main assumption in using this test 

is that the data under observation be Gaussian distributed. In practice this may not always be true, though 

there are more complex non-parametric SPRTs available that could be used for these cases. As the name 

implies, the SPRT examines observations sequentially to arrive at a determination of being in a normal or 

faulted state. For this test, the normal or unfaulted state is assigned to the null hypothesis, H0. The 

anomalous or faulted state is assigned to an alternative hypothesis, H1. The test then determines which of 

the two hypotheses the current observation of the data belongs to. The SPRT does this by calculating what 

is known as the log-likelihood ratio, this test statistic is a ratio of the probabilities of the observation being 

in a faulted versus unfaulted state. The equation for this likelihood ratio is shown next. 
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In Eqn. (4), LN is the log-likelihood ratio or test statistic. The numerator is a probability ratio that the 

current observation xn is in a faulted state or belongs to H1. The denominator is also a probability ratio 

that the current observation xn is in a normal state or belongs to H0. 



To be able to apply the test statistic shown in Eqn. (4), an upper and lower test bounds must be 

defined. These test bounds are a decision criteria that the test statistic is compared against, calculation of 

these test bounds in shown in the next equation. 
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In Eqn. (5), A is the lower test bound and B is the upper test bound. Alpha is the false alarm probability or 

probability of making a Type I error. Beta is the missed alarm probability or probability of making a Type 

II error. If the test statistic for the current observation is less than A, then the observation is in a normal 

state. If the current observation exceeds the upper limit B, then the observation is considered to be in a 

faulted state. If the test statistic value is between these two limits, then there is not enough information to 

arrive at a decision and testing then continues.  

For this research, there were four possible alternative hypotheses that were tested. The first two 

alternative states are a positive or negative shift in the mean, with constant variance, when compared to 

the mean of the distribution defined by H0. Mean shifts in physical systems usually indicate that some 

form of degradation is present. The other two alternative states are an increase or decrease of the variance, 

with constant mean, when compared to the variance of the distribution defined by H0. Variance shifts in 

physical systems usually indicate that unwanted variability is present. Fig. 1 gives a graphical 

representation of these different alternative states.  
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Figure 1. SPRT Hypothesis Distributions 

In the previous figure, H0 is defined as a normal distribution with zero mean and unit variance. M+ 

indicates a positive mean shift from H0 and M- indicates a negative mean shift. The variance factors V 

and 1/V indicate that the variance has increased or reduced, respectively. A more thorough treatment on 

the derivation of the mean and variance SPRTs described here can be found in [10]. Now that the 

empirical-based modeling methods and fault detection algorithms have been defined, we now turn to the 

experiment test bed and a description of what intrusions were tested and detected with these methods.  



3 EXPERIMENT SETUP & INTRUSION TESTING  

The simulated SCADA test bed utilizes a set of Linux based enterprise servers that were isolated 

from the larger UT Nuclear Engineering Research Cluster. Isolation was required to ensure that activities 

on the test bed and on the larger cluster would not be reflected in the dynamics of each system. Isolation 

also ensures that intrusion-injection experiments would not impair the performance of the larger cluster. 

One server in the test bed acts as the Master Terminal Unit (MTU) in a typical SCADA system. This 

component is tasked with monitoring field equipment, issuing command actions and a variety of data 

processing actions. The remaining isolated servers act as a Remote Terminal Unit (RTU), this equipment 

is tasked with maintaining field equipment operations and data transfer activities. Also included in the 

setup is a separate server that acts as a Human Machine Interface (HMI) or engineering workstation. In a 

typical SCADA system, this station serves to monitor the system and to issue control actions to the MTU. 

In the test bed the HMI is used to monitor the simulation and to perform intrusion-injection experiments. 

The HMI also uses Kali Linux as the OS, which is one of the vulnerability testing tools for this work [11]. 

As mentioned previously, the experiment is a simulation of a typical SCADA system. This is 

necessary because, for security reasons, actual sanitized process data from a SCADA or business-critical 

network is very difficult to obtain. A simulation does not devalue the research or results, as many of the 

advances made in the nuclear industry began with small scale simulations and experiments that were then 

shown to have scalability to larger systems. With this in mind, the simulation is based on several 

assumptions. First, the dynamics of the MTU in a typical industry or asset manufacturing setting can 

exhibit periodic components. This is valid due to the fact that the MTU performs specific tasks such as 

data polling and processing on a regular basis. It is also assumed that there will be a large amount of 

network traffic for larger systems with hundreds of components and sensors.   

Task scripts were developed to first generate a baseline working profile of the MTU. These tasks are 

performed on a fairly periodic manner and load all cores to various levels. This simulates the data 

processing activities performed by the MTU. While these task scripts are running, the MTU is also 

collecting data from several sources and writing to a data store. This simulates the data polling and 

storage activities of this component. Additional task scripts are run by both MTU and RTUs to simulate 

command actions, data polling and other network related activities. All of these particular network actions 

are sent over SSH. The combination of MTU and network actions results in telemetry with periodic and 

random components that would be observed in the dynamics of a typical SCADA system. Monitored 

telemetry included resource and network related statistics taken from the Linux kernel, as well as internal 

hardware power usage and tachometer measurements.  

Intrusion testing tools utilized for this research included Kali Linux, Metasploit and past/current 

exploits related to Linux based systems from the Common Vulnerabilities and Exposures (CVE) database 

[11, 12, and 13]. Kali contains several different software packages that can be used to test for 

vulnerabilities on private networks or web-based applications. The CVE database contains past and 

current exploits, often with testing code, for a variety of systems. It is noted that many of the tools and 

exploit codes were not applicable to our simulation or caused no perceivable change in observed system 

dynamics. The data-driven models shown in this paper would not be suited for detection of these intrusion 

types and would need a dictionary-based IDS or some form of post-attack log analysis to detect if there 

was an intrusion event. From a computer security standpoint, any actions taken by an unauthorized user 

on the network will be considered as an intrusion activity. For this work, several different types of 

intrusions were tested, including host/network discovery, Denial of Service (DoS), brute force login, 

privilege escalation and exfiltration actions. These were tested in succession, with short rest periods 

between certain attacks to allow for the system dynamics to return to normal. The idea behind running 

these different intrusion types was to determine which caused changes in telemetry and could be detected 

with these methods. Also, the research was focused on which set or subset of monitored telemetry could 

be used for security purposes instead of building a model with hundreds of telemetry sources.   



4 MODEL RESULTS  

The first topic to be discussed in this last section is related to variable selection for model 

development. As stated previously, one focus of this research was determine the prognostic efficacy of 

using small sets of signals taken from available telemetry rather than developing one large model using all 

signals. In total there were 685 signals taken from various telemetry sources, though many of these 

signals were constant valued or had few changes in signal values over testing. These offer no information 

for modeling or security purposes and were removed prior to final variable selection. The remaining 

signals are grouped based on related cross-correlation values, which is an indicator of linear relationships 

among signals [14]. Cross-correlation values for this work are scaled between 0 and 1. Signals with 

strong relationships have a cross-correlation value of .7 and above, moderate relationships have a value 

between .3 and .7, and signals with values below .3 have little or no relationships. Using this method, four 

separate groups were extracted. The first uses a combination of memory and CPU usage metrics, the 

second signals selected from all telemetry sources, while the remaining two groups used only network 

related and disk usage signals, respectively.  

  Next, for all SPRT tests used in both model types, the alpha and beta values were set at 1%. Recall 

that these are the probabilities of making a Type I or Type II error, the prescribed 1% means that were are 

willing to accept a small occurrence of false and missed alerts. For prognostic security purposes, detection 

success was defined as at least one signal in each group had to detect all six intrusions tested. By this 

definition, all groups of both model types were successful at detecting all intrusions. However, it is also 

worth mentioning which group of signals performed the best and worst. Of the previously listed groups, 

Group 1 had only 2 signals that caught all intrusions, Groups 2 and 4 were both able to detect all six in 

85% of all signals used. The best was Group 3, which used all TCP/IP signals, where all signals used were 

able to detect all intrusions.  

To conclude this section, intrusion detection results from both model and SPRT types will be shown. 

In this particular data set, a tool called SPARTA was employed for network discovery, followed by three 

DoS attacks were used against three different running processes. Next, access to the system was gained by 

a brute force attack, immediately followed by rapid privilege escalation. The attack concludes with the 

theft of several files from the target server over a half hour period. In the upcoming figures, the top 

subplot is the model residual for a particular signal. Recall that the residual is the original input signal 

subtracted from the model predictions. The bottom subplot is the SPRT fault hypothesis scores, a value of 

0 indicates an unfaulted state and a value of 1 indicates a faulted state. For reference in the upcoming 

figures, the observation ranges for each of the intrusions presented is listed next: 

 

SPARTA – 245:345 

NTP Fuzzer – 430:550 

SSH Fuzzer – 580:640 

Smb2 Fuzzer – 655:710 

SSH Brute Force/Privilege Escalation – 880:960 

Information Theft – 975:1100 

 

The first result shown will be for AAKR Model 3. This model used all strongly correlated TCP/IP 

signals. In Fig. 2, the residual for the selected "OutOctets" signal is shown, along with the SPRT fault 

results. The residual indicates large positive and negative mean shifts during intrusions. The variance shift 

SPRT for the both model types of this group also gave the same results as that seen in Fig. 2.  
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Figure 2. AAKR Model 3: TCP/IP Signal "OutOctets" 

In the previous figure, the magnitude of the large residuals that extend beyond the range of the graph 

was on the order of 2 x 10^7. Compare this to the small magnitude of the first fuzzer and brute force 

attack, both which were several orders of magnitude smaller. This is important to mention because a 

simple threshold technique might miss the smaller magnitude intrusions, however, the SPRT was able to 

correctly identify all six different intrusion types with vastly different magnitudes. Also, not all signals in 

this group showed the same obvious change in residuals as in the figure, yet all intrusions were detected 

by these as well. Next, a disk usage signal from AAMSET Model 4 is shown in Fig. 3. The residual 

shown for this signal used the variance shift SPRT, and the residual shows large variance changes in the 

ranges of several of the tested intrusions. 
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Figure 3. AAMSET Model 4: Disk Signal "Dsk-sd0-io-writing"  

 



The results shown in Fig.3 apply the variance shift SPRT to a disk usage signal. Similar to the results 

of Fig. 2, the NTP fuzzer and password attack signatures for this residual and all others in this group 

showed the least change in magnitude, but were still detected. The SSH fuzzer attack caused the greatest 

change seen in this signal out of all intrusions tested. This result is expected because all data transfers and 

related actions are performed over SSH. Thus, an attack that servers to disrupt the SSH process while it is 

active shows a larger amount of disk usage to handle excess load and packet losses.  

The final result that will be discussed is for AAKR Model 2, which used signals selected from the 

memory and CPU usage related metrics. As stated previously, this particular group performed the poorest 

at detecting many intrusions tested. The results shown in Fig. 4 are for the "Processes-running" signal. 
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 Figure 4. AAKR Model 2: Memory Usage Signal "Processes-running"  

 

In the previous figure, it is immediately noticed that only the SSH fuzzer and exfiltration activities 

alter the behavior of the residuals. The other four intrusions that were tested are indistinguishable from 

normal behavior. This is also evident when the residuals in Fig. 4 are compared the previous two figures. 

In fact, the results shown in Fig. 4 were seen in nearly all signals for this particular grouping for both 

model types. The main takeaway in showing a signal grouping that did not catch all intrusions is that first, 

it is unreasonable to assume or expect every signal in a system to react to all known or unknown exploits. 

Second, because almost all residuals showed the same trends for specific intrusions, these features could 

be added to an attack dictionary for added prognostic security. Another interesting result from this group 

is that all memory and CPU usage signals take longer to settle back to normal behavior after the 

information theft attack than what was seen for all other groups. Listed previously, this attack was ended 

at observation 1100; all other residuals for the remaining groups took much less time than the 

memory/CPU group did to settle back to normal behavior. This behavior would also be the same if an 

attacker uploaded various files to the target machine. Considering this, the trend in these residuals could 

be used to verify that an inside attacker or disgruntled employee has stolen various files from the system.  

Also, there may be specific exploits developed in the future that would not be detected by TCP/IP signals, 

but would be easily detected by the memory/CPU signals. Finally, if a specific exploit was not able to be 

detected by any signal type or SPRT test, then a machine learning application would not be appropriate 

and some other detection method must be employed.  



5 CONCLUSIONS  

In conclusion, both the AAKR and AAMSET models presented were useful in from a cyber-security 

approach because both model types were able to generate residuals in all signal groups that showed clear 

indicators of many different attacks. Also, all of these different attack types induced minor to major 

changes in signal/residual behavior, and were able to be accurately quantified by both the mean and 

variance shift SPRTs. From a cyber-security standpoint for a nuclear power plant or SCADA network 

related industry, these results show that various sources of telemetry collected from either system or 

network traffic related metrics are quite useful for detection of known and new attacks. Also, because 

many attackers often spend days to weeks in host/network discovery related activities; these actions may 

also be detected by the methods presented as attacks that cause even small changes in residual behavior 

can be detected. Next, if monitoring small groups of signals is preferred, then attack types that generate or 

disrupt the network traffic will be easily detected when using TCP/IP telemetry. The models that use disk 

usage metrics were just as effective at detection of all attack types and would also enhance overall 

security. Models that use memory or CPU usage signals by themselves would not be effective in detecting 

most traffic related attacks. However, an interesting result is that Group 1, which used a combination of 

all signals from all sources, performed just as well at detecting the intrusions as the disk usage or TCP/IP 

groups. This result shows how combining signals that by themselves may not be effective for detecting all 

intrusions with other signal classes can enhance overall prognostic security. Using these methods with a 

dictionary IDS would result in a hybrid approach to security that would be able to detect known attacks, 

while also bringing the benefit of being able to detect "zero-day" attacks.  

The final conclusion of our investigations in using these data-driven methods, combined with a 

SPRT for anomaly detection, can be a very valuable and useful technique for prognostic security 

purposes. Given that variants of the methods presented here have already seen commercial success, 

implementation or adaptation of these methods to enhance overall plant security could easily be achieved. 

It is noted that these behavior-based methods are meant to augment and not replace conventional 

dictionary-based detection in industry or business critical SCADA networks. In future work, we plan to 

extend the behavior-based techniques presented here that have shown high success for SCADA network 

security, to other enterprise systems and networks. Finally, the SCADA test bed will be adapted to drive a 

realistic simulation of a nuclear power plant or related industrial process to offer further validation to the 

efficacy of the methods when applied to cyber-security. 
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