
Supporting Per-processor Local-allocation Buffers
Using Multi-processor Restartable Critical Sections

David Dice, Alex Garthwaite, and Derek White



M/S MTV29-01
2600 Casey Avenue
Mountain View, CA 94043

Supporting Per-processor Local-allocation Buffers
Using Multi-processor Restartable Critical Sections

David Dice, Alex Garthwaite, and Derek White

SMLI TR-2004-126  March 2004

Abstract:

One challenge for runtime systems like the Java™ platform that depend on garbage collection
is the ability to scale performance with the number of allocating threads. As the number of
such threads grows, allocation of memory in the heap becomes a point of contention. To
relieve this contention, many collectors allow threads to preallocate blocks of memory from the
shared heap. These per-thread local-allocation buffers (LABs) allow threads to allocate most
objects without any need for further synchronization. As the number of threads exceeds the
number of processors, however, the cost of committing memory to local-allocation buffers
becomes a challenge and sophisticated LAB-sizing policies must be employed.

To reduce this complexity, we implement support for local-allocation buffers associated with
processors instead of threads using multiprocess restartable critical sections (MP-RCSs).
MP-RCSs allow threads to manipulate processor-local data safely. To support processor-spe-
cific transactions in dynamically generated code, we have developed a novel mechanism for
implementing these critical sections that is efficient, allows preemption-notification at known
points in a given critical section, and does not require explicit registration of the critical sec-
tions. Finally, we analyze the performance of per-processor LABs and show that, for highly
threaded applications, this approach performs better than per-thread LABs, and allows for
simpler LAB-sizing policies.
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Supporting Per-processor Local-allocation
Buffers Using Multi-processor Restartable

Critical Sections

Dave Dice, Alex Garthwaite, and Derek White

1 Introduction

One central challenge of implementing scalable multi-threaded programs is how
to efficiently manage shared resources, such as memory. The traditional way to
manage shared resources is to use one of the blocking synchronization operations
provided by the operating systems, such as mutexes. But if the shared resource is
frequently used by many threads, the use of blocking synchronization can quickly
become a bottleneck. One common solution is to partition the resources among
threads, so each thread has a thread-local portion of the resource which may man-
aged without synchronization. The main issue then becomes devising the most
efficient partitioning of the global resource, so that resources are available to the
threads that need them, and not wasted on the threads that do not. Another solution
on uniprocessors is to use kernel-assisted non-blocking synchronization, such as
restartable atomic sequences. These schemes don’t prevent several threads from
starting a transaction for a shared resource at the same time, but they detect con-
tention, and cause interrupted transactions to either roll-forward or roll-back to a
consistent state.

In this paper, we describe the effects of replacing the thread-local object al-
location scheme in a JavaTM virtual machine (JVM) with a processor-local allo-
cation scheme. This processor-local scheme is based on recent work with multi-
processor restartable critical sections (MP-RCS). Compared to thread-local man-
agement, it enables us to bound the partitioning of the global resource to at most
the number of processors. Compared to other, possibly non-blocking, synchro-
nization schemes that either map threads to some bounded partitioning of the
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global resource or allow all threads to interact with a single resource, our asso-
ciation of the partitioned resources directly with processors eliminates contention
for those partitioned resources.

Multi-processor restartable critical sections allow user-level threads to manip-
ulate processor-local data safely, without using atomic instructions. The key to
these processor-local transactions is the ability to notify a thread executing in a
critical section that it may have been preempted. To avoid complicating the in-
terface and contract with the scheduler, our implementation of MP-RCS relies
only on notification as threads begin running on processors (ON-PROC notifica-
tion). Through ON-PROC notification, the flow of control in the thread may be
redirected to a recovery routine rather than allowing the MP-RCS transaction to
commit.

The purpose of this report is to investigate a new and simple mechanism for
implementing the MP-RCS service, to apply this mechanism to a new set of chal-
lenges, and to show how MP-RCS transactions may be written in high-level lan-
guages.

In prior work [DG02], we described an alternate implementation of the MP-
RCS service: theupcallmechanism. This mechanism had several good properties:

� overhead is only incurred for those threads in transactions at the time they
come back on-processor, and

� the upcall mechanism is general enough that threads may use it to directly
maintain thread-specific references to processor-local data.

However, this mechanism also required the maintenance of a mapping between
processors and threads in the kernel, as well as a somewhat complicated upcall
mechanism—including a downcall to recover saved state. Most importantly, this
mechanism becomes difficult to manage when multiple services wish to use MP-
RCS transactions for different purposes. Our current approach is meant to address
all of these issues by hiding some details behind a new interface, and exposing
other details to applications and libraries to allow better control over MP-RCS
transactions.

We used this mechanism to implement a highly scalable malloc library and
demonstrated that the resulting library outperformed other implementations by
several orders of magnitude. Much of the performance improvement arose from
the fact that we eliminated the use of memory-barriers, atomic instructions, and
mutexes from most of the commonly executed paths in the malloc interface. In
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this study, we will apply the MP-RCS service to a new problem area: the imple-
mentation of local-allocation buffers (LABs) in a garbage-collected system. We
will describe local-allocation buffers in more detail in the next section.

Local-allocation buffers represent more of a challenge in two senses. First,
because of their effect on the scaling of highly threaded applications, existing
implementations have been highly tuned. In particular, existing LAB sizing poli-
cies take into account factors like the number of allocating threads, the amount
of memory available for allocation, and the rate of allocation to adjust the sizes
of LABs given to threads. In doing so, these policies balance the need to avoid
contention during allocation with the cost of wasting space in unused portions of
local-allocation buffers. Second, the allocation of memory to a local-allocation
buffer is typically achieved with a single atomic instruction. Subsequent alloca-
tions of objects from that LAB are then achieved simply by bumping a pointer
with a store instruction. As such, it is difficult to improve on the performance of
allocation. Where the deployment of LABs remains a challenge, however, is in
the sizing policies one may choose.

Our goal in this study is to show that local-allocation buffers may efficiently
be associated with processors rather than threads and that doing so removes much
of the need to carefully tune LAB sizing policies. This reduction in complex-
ity means both that a wider range of collection techniques may be employed
with highly threaded applications on multiprocessors and that the behavior of the
JavaTM platform is more resilient to the availability of a wider range of compu-
tational resources. One insight gained from this study has been the fact that de-
pending on the number of threads and the number of processors, per-thread and
per-processor local-allocation buffers each offer a different set of benefits. From
this insight, we implemented the capability of flipping between these two modes
of mapping local-allocation buffers.

To demonstrate the effectiveness and efficiency of per-processor local-alloc-
ation buffers, we examine the performance of several applications written in the
JavaTM programming language that cover a spectrum of behavior. Using these
results, we argue that MP-RCS may be effectively applied to the implementation
of local-allocation buffers and that doing so does have benefits.

1.1 Roadmap

In the next section, we outline the problem we have chosen to address with MP-
RCS in this report: the sizing of local-allocation buffers in a garbage-collected
Java virtual machine. We then describe our new implementation of MP-RCS us-
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ing the%asi register and present a library of MP-RCS primitive operations—the
critical-section interface—that allow MP-RCS transactions to be written in high-
level languages. Following this section, we examine how the critical-section inter-
face may be used to implement per-processor LABs. We then offer performance
results demonstrating the efficiency of per-processor LABs. Finally, we conclude
and offer future areas of application for MP-RCS transactions.

2 Local-allocation Buffers

One of the services of a garbage collector is the allocation of properly initialized
memory from the heap [Jon96]. Depending on the collection technique employed,
free memory is distinguished from allocated memory either by maintaining the
former in free-lists—typically found in non-moving collectors—or by maintain-
ing a pointer—afree-pointer—to a boundary between allocated and free memory.
Further, the garbage-collected heap may be organized into several subheaps, each
with its own mechanisms for allocating memory. Because the memory available
for allocation is a shared resource, care must be taken to allow multiple, indepen-
dent threads to perform allocations concurrently.

One simple approach to coordinating this access is to use a lock. However, be-
cause application threads frequently allocate memory for objects from the heap,
this allocation lock becomes a point of contention and the threads tend to exacer-
bate the contention through convoying effects.

Fortunately, most structures used to support allocation of free memory in the
heap are relatively simple, consisting either of singly-linked lists or of a free-
pointer. Since most modern processors provide atomic instructions like compare-
and-swap (CAS) or load-linked (LL)/store-conditional (SC), these allocation struc-
tures are often designed in a manner so that one or two atomic instructions may be
employed to safely allocate memory. Nonetheless, access to these data structures
often becomes a scaling bottleneck in highly threaded applications as multiple
threads contend to adjust them.

One mechanism commonly employed to reduce this contention is thelocal-
allocation bufferor LAB. Typically, each thread is given one or more LABs from
the heap. Once assigned to a thread, memory for individual objects may then be
allocated by that thread without further synchronization with the other threads.
Figure 1 shows how LABs may be used in a garbage-collected heap. In addition
to reducing contention for allocation services, LABs provide a number of other
benefits. By assigning local-allocation buffers to threads on an exclusive basis,
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Figure 1: Partially filled per-thread local-allocation buffer

the objects allocated by those threads tend to be collocated in close proximity.
Further, larger LABs reduce the cost of internal fragmentation due to an inability
to allocate objects to fill each buffer. Finally, some collection strategies work
best if threads may allocate out of relatively large local-allocation buffers—for
example, as large as 64KB to 256KB per LAB.

Local-allocation buffers alleviate contention for allocating memory directly
from the heap by reducing the frequency of such allocations. Clearly, the larger
each LAB, the greater the effect. In the case of highly threaded applications,
this overcommitment of memory to threads can lead to a different kind of scaling
problem. If threads run frequently enough and are not able to allocate all of their
LABs’ memory before the heap is exhausted, the result may be more frequent
garbage collections. The challenge is to balance these two effects, contention for
allocation and frequency of garbage collection, to allow applications to scale as
well as possible on the available processors and with the available memory.

To make this discussion more concrete, let us consider a particular Java plat-
form, the ResearchVM.1 Further, let us concentrate on a particular heap config-

1The ResearchVM was formerly known as the ExactVM and is available as the virtual ma-
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Figure 2: Two-generation heap

uration shown in figure 2: a two-generation heap with the younger generation
organized as a pair of semispaces using copying collection and the older gener-
ation managed by a highly tuned mark-compact collector [Jon96]. Each of the
two generations maintains a free-pointer which is atomically incremented to al-
locate memory—either for LABs or for individual objects—from a contiguous
range of memory. Application threads typically allocate objects in the young gen-
eration. When this generation’s free memory is exhausted, the application threads
are suspended and a minor collection is performed. During this minor collection,
surviving objects may be promoted to the old generation.

In the ResearchVM, application threads may allocate memory for objects in
either generation. This approach allows most allocations to occur in the young
generation while allowing some exceptions for known likely-long-lived objects
to be placed directly in the old generation. Examples of such long-lived objects
includeString objects for interned strings. Because of this policy, each thread
maintains for each generation a current local-allocation buffer from which it allo-
cates small objects. Allocation of memory directly from the either generation is
performed for one of three reasons:

� to reserve memory for a thread’s LAB,

� to allocate an object too large to fit reasonably in a LAB, or

chine in the JavaTM 2 SDK 1.2.2. An early description of the memory system in the ResearchVM
is [WG98].
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� to allocate a small object when not enough memory remains to allocate a
suitably sized LAB.

By properly sizing the local-allocation buffers assigned to threads, most objects
are allocated without synchronization in LABs, and the set of objects that are
considered too large is reduced. The third reason to allocate directly from the
heap impacts the efficiency of local-allocation buffers in an unexpected manner.
When the heap is almost exhausted, threads that have full LABs must contend
for access to the heap. This gives time to threads with unused LABs to allocate
their memory. As local-allocation buffers increase in size, the time required in this
phase leading up to the next collection also increases. So, the point at which the
memory management ceases to hand out local-allocation buffers must trade off
the desire to make use of already-reserved LABs and the increased costs of direct
allocation. We will return to these trade-offs in the performance section.

The two operations on local-allocation buffers described so far are:

� allocation of memory for a new local-allocation buffer, and

� allocation of memory from a LAB for an object.

In the ResearchVM, the heap may support one or more LABs per generation. To
allow this dynamic association of LABs and generations, each generation speci-
fies a local-allocation buffer description outlining,inter alia, the range of sizes its
LABs may take on, how those LABs may be resized, the range of objects’ sizes
that may be allocated in the LAB, and how threads allocating—orrefilling—LABs
do so from the generation. These per-LAB descriptions are allocated as genera-
tions are initialized. To simplify their association with thread-specific information
about LABs, these descriptions and the associated per-thread data structures are
represented by arrays and share a common index.

With this association between descriptions and particular LAB structures, the
ResearchVM further specializes LAB-based object allocation for each class’ in-
stances. Since the instances of a non-array class are uniform in size and we know
this size when that class has been loaded and resolved, we associate a set of alloca-
tion functions with the class for each generation. These sets support precompiled
allocation functions specialized for runtime constants such as LAB description
index, object size, and even object characteristics. This generalization allows ef-
ficient choice of the allocation function to call from dynamically compiled code.
We will see that this same framework makes it straightforward to support both
per-thread and per-processor LABs in the same virtual machine.
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To the above operations we must add some collector-specific actions. When
an application is suspended for a garbage collection of part or all of the heap,
special steps must be taken. Many collection techniques such as the mark-compact
technique used for the old generation for this study rely on the ability to iterate
over the objects in the heap. To support this iteration, unused portions of local-
allocation buffers must be made to look like valid objects for the duration of the
collection. In the event that a given generation is collected, we also discard all
the outstanding local-allocation buffers in the portion of the generation that is
reclaimed.

Per-thread local-allocation buffers work well for many applications. For ex-
ample, those that have relatively few threads or whose threads are compute-bound,
are able to make efficient use of LABs. This efficiency results from the fact that
such threads typically allocate most of the memory reserved for local-allocation
buffers between any two collections. This behavior remains true for most buffer-
sizing policies so long as the maximum buffer size remains below a suitable frac-
tion of the generation from which the buffers are allocated. However, when the
number of threads greatly exceeds the number of processors, the ability of threads
to make use of LABs is diminished as most threads will be suspended for long
periods of time with no chance to run. In such cases, as the efficiency of LAB
usage decreases, the rate of collection increases forcing the application to spend
more time suspended while garbage collections are performed.

To combat this effect, memory managers employing local-allocation buffers
have evolved adaptive sizing policies. The ResearchVM makes use of a carefully
tuned sizing policy due to Ole Agesen in which local-allocation buffers for a given
thread start at a small size (24 words), and as the thread requests additional LABs,
the size is increased by a fixed multiplicative factor (of 1.5). At each garbage
collection, the sizes of each thread’s LABs are then decayed by another factor
(of 2). Finally, the young generation’s size is adjusted based on the number of
observed allocating threads. We will see that this sizing policy is remarkably
resilient at providing good performance across a wide range of applications. As
good as such sizing policies are, however, they require that the garbage collector
efficently support direct allocation from the heap over a range of sizes. This rules
out some otherwise useful garbage collection implementations. We would like to
gain the benefits of local-allocation buffers without need for sensitive LAB sizing
policies.

In this study, we will show that associating local-allocation buffers with pro-
cessors allows us to gain this independence in sizing policy. What makes this
study challenging is that augmentation of the local-allocation buffer mechanism
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so that LABs may be associated with processors not only does not remove syn-
chronization from the common operations, but comes at a small cost in that object-
allocation paths are now dependent on dynamic information for a thread, namely,
the processor on which it is executing. What we show is that despite this potential
cost, per-processor local-allocation buffers have the same latency as per-thread
local-allocation buffers and that together with per-thread local-allocation buffers,
per-processor LABs remove the need to carefully tune LAB-sizing policies. Be-
fore we examine their implementation, however, we must turn to the underlying
notification mechanisms and how these are exposed to the application and garbage
collector.

3 Multi-processor restartable critical sections

Multi-processor restartable critical sections (MP-RCS) provide a facility that pro-
vides two complimentary services: a mechanism to notify threads when they may
have been preempted, and access to knowledge of where the thread is currently
executing. These services may be combined to implement non-blocking [Her91a,
Her91b, Gre99] algorithms that manipulate processor-specific data in a consistent
manner and without interference from other threads. In particular, MP-RCS al-
lows a thread executing a critical section of code to either commit an operation if
the thread ran without interference, or detect the interference and restart.

Among our design goals for MP-RCS are that it impose a minimal burden on
the underlying operating system, and that it not presume a particular underlying
thread model. In the first case, we rely solely on notification of potential interfer-
ence when a thread begins running on a processor. This ON-PROC notification
means that threads’ MP-RCS transactions may only react to potential interference
after the fact, but it also means that user-level threads may be preempted at any
time and that the kernel need do no additional work as it does deschedule them.
In the second case, we desire that our mechanism work well whether the under-
lying threading model is preemptively or cooperatively scheduled and whether
it maps user-level threads directly to scheduler-level threads or whether it multi-
plexes user-level threads over a smaller number of scheduler-level threads. On the
SolarisTM operating environment, these scheduler-level threads are referred to as
lightweight processes or LWPs.

At a high level, MP-RCS provides a way to accurately identify the proces-
sor running the restartable critical section (or more generally, identify the correct
processor-specific data to be modified), and a way to detect interference in the
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critical section before writing to any processor-specific data. An attempt to write
to processor-specific data is the commit point that ends the critical section. Since
restartable critical sections only guard the modification of processor-specific data,
the only sources of interference are preemption, and if signal handlers are allowed
to use MP-RCS, signal handling.

In the Solaris operating environment [MM01], MP-RCS detects preemption
by hooking into the kernel’s thread-scheduling mechanism. This mechanism sup-
ports the loading of modules that may examine and alter the state of threads as
those threads are descheduled from processors or begin running on processors
after being blocked. Support for these modules, accessed viasaveCtx andre-
storeCtx , was first added to support performance-monitoring tools that needed
to multiplex hardware performance counters among the threads running on a pro-
cessor. We make use of these same hooks to notify threads that they have been
preempted and that interference may have taken place while they were blocks.
Because we notify threads at scheduling points, MP-RCS’ services can be im-
plemented without locking, memory barriers, or atomic instructions. The perfor-
mance and scalability improvements of this scheme can be dramatic. An MP-
RCS-based implementation of malloc, using processor-specific allocation arenas
is discussed in our previous paper [DG02].

To install the kernel-level MP-RCS code that will handle ON-PROC notifica-
tion, we currently require that applications employing the MP-RCS service regis-
ter the appropriate loadable driver through the call:

int rcsInitialize();

In addition, we require that individual threads register with the service so that we
can rely on the availability of thread-specific state. When a given thread is started,
it must call

int rcsInitializeThread();

to ensure that its state is properly initialized for MP-RCS. These registrations may
be performed explicitly by the application or may be performed implicitly by a
shared library loaded at the start of the application and interposing on the vari-
ous thread-creation entry points. Removing the need for this kind of registration
would require modifications in the operating system and are beyond the immedi-
ate scope of this study.

This work extends the MP-RCS service in two ways. First, it makes use of
a new mechanism for communicating interference. Second, this mechanism is
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used to implement acritical-section library, or CS interface, of primitives for
constructing MP-RCS transactions in high-level languages. These transactions
are somewhat different from what we have explored previously in [DG02]. Before
we turn to these extensions, let us first review our original approach: upcall-based
MP-RCS.

3.1 Upcall-based MP-RCS

We first implemented MP-RCS using an upcall mechanism. For ease of construc-
tion we partitioned responsibility: the kernel driver detects migration and preemp-
tion while the notification routine detects and restarts interrupted critical sections.
The basic scheme is for the upcall kernel driver to arrange for a user-level noti-
fication routine to run when a thread has been preempted, before resuming the
thread. The user-level routine then determines if the preemption occurred while
the thread was in a critical section, and if so arranges to restart the critical section.

The operating system passes control of the thread to the kernel driver whenever
a thread is about to resume execution. The kernel driver posts an upcall by saving
the interrupted user-level instruction program counter (PC), and substituting the
address of the user-level upcall routine. When the thread returns to user-level, it
resumes in the upcall routine instead of at the interrupted instruction. Because a
thread may be preempted while attempting to perform an upcall’s actions, the no-
tification mechanism also walks the thread’s stack, adjusting PC’s as appropriate.
To assist the upcall routine, the kernel driver passes the current processor ID and
the original interrupted instruction PC as arguments into the notification routine as
well as providing a downcall to recover the original values of the registers holding
these two passed-in values.

By convention, we do not permit blocking system calls or stores to memory
shared between processes within a critical section. These restrictions allow the
kernel driver to filter out benign cases of preemption, such as voluntarily context
switching and preemption by threads from another process. To test for cases of
noninterference, the kernel driver maintains a mapping of processors-to-threads;
by comparing a thread’s notion of the processor it is on with this table, the driver
is able to verify both that the thread has not migrated elsewhere and that no other
thread was on the processor since the thread was last ON-PROC.

The upcall-based approach has several good performance characteristics. For
example, the need to make upcalls is infrequent since it depends on the frequency
with which threads block or are rescheduled, on the order of 10’s or 100’s of
milliseconds. Further, most of the cost to transactions making use of the upcall
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Figure 3: Upcall-based MP-RCS notification of preemption.

version of MP-RCS is the extra overhead on resuming a thread in a transaction
in the upcall handler. On a 400 MHz UltraSPARCR II system the latency of an
upcall is 13�secs. Although more expensive than we would like, the kernel driver
is able to filter out many preemption events to keep upcalls even less frequent.
Combining these behaviors with the fact that in the absence of preemption there
is no cost to enter and execute an upcall-enabled MP-RCS transaction makes the
overall performance efficient.

Figure 3 shows an example of an MP-RCS transaction making use of the
upcall mechanism. In this example, we are popping an item off the head of a
linked list. Starting with the left-most instruction, we load the current processor’s
cpuList into a register. Using this processor-specific value, we load the address
of the head item in the list. We then extract the address of the next item. Finally,
we store this address into the head of the processor’s list claiming the popped item
in the process. Suppose that we are preempted at the third instruction. When we
begin running again, we resume in the MP-RCS kernel driver. If we can detect that
it is a case of benign preemption, then control returns to our previously interrupted
instruction and we continue as before. If, however, there is the possibility of inter-
ference, then the upcall handler redirects our execution to the start of transaction.

Having touted its many benefits, what are the weaknesses of the upcall-based
approach? One immediate cost is that the kernel driver must maintain state for
the process as a whole in the form of the thread-to-processor mapping structures
as well as per-thread save-areas where saved-off register values may be stored.

12



This cost means that long-lived applications with many threads must be careful to
appropriately deregister threads so that kernel resources may be reclaimed.

Another limitation has to do with the recognition of the bounds of MP-RCS
transactions. To determine how to redirect or recover an aborted transaction, the
MP-RCS service must be able to identify the extent of a given transaction as well
as to determine where the transaction should restart. There are many mechanisms
for performing this registration—see [MDP94, MDP96], for example. We have
chosen to register each transaction’s starting, ending, and restart program coun-
ters. Such an approach is simple to implement but does not scale well. First,
this approach doesn’t easily extend to transactions structured as an extended basic
block with multiple committing stores at each of the exiting leaves. Second, to de-
termine whether a transaction is on-going and how to recover requires traversing
the registered mappings. Finally, this approach also makes the registration of dy-
namically compiled MP-RCS transactions more complex, as additional metadata
must be generated to support each newly generated transaction’s registration.

Aside from these issues of registration, there are more subtle challenges. For
example, we noted that the upcall mechanism can be used for two purposes: main-
tenance of thread-locally cached processor-specific state and the support of trans-
actions for managing processor-specific state. If multiple application services
wish to use MP-RCS transactions for different purposes, then each may attempt
to register a different upcall handler. How these handlers are chained together is
an open question and one we did not answer. Another difficulty is that because we
rely on notification of preemption to determine if we have successfully operated
on processor-local resources in isolation, it is not possible to use standard debug-
ging techniques to single-step through, or set break- or watch-points within, an
MP-RCS transaction.

Finally, we found that the fact that we could not rely on how compilers trans-
form high-level languages into object code limited our transactions to ones writ-
ten in assembler code. This restriction allowed us to ensure certain programming
disciplines—for example, avoiding the need to save and restore input values to
support the restarting of transactions; our transactions typically left the registers
containing these values unchanged throughout a transaction. Additionally, our
preemption and redirection at any point in a given transaction means that in the
upcall handler, we have difficulty in tracking how side-effects in the transaction
on other resources have occurred. This last point will become an issue when we
look at how per-processor local-allocation buffers are allocated from the garbage-
collected heap.

All of these issues—registration and identification of transactions, different
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uses of MP-RCS transactions, debuggability, restrictions on coding style—led us
to look for simpler mechanisms for implementing the notification mechanism and
for expressing MP-RCS transactions.

3.2 %asi -based MP-RCS

Before we consider how to express MP-RCS transactions in high-level languages,
let us first turn our attention to a simpler mechanism for notification of preemption.
Recall that the existing upcall-based mechanism requires both that we identify the
bounds of each transaction and that each transaction ends with a committing store
operation. In this section, we describe a SPARCR -specific mechanism that re-
quires no maintenance of per-thread or per-processor state in the MP-RCS kernel
driver, that needs no upcall handler, and with which we guarantee that we only
receive notification of preemption at precise points within a transaction.

The SPARC architecture provides a global Address Space Identifier%asi reg-
ister that affects the behavior of memory operations. In effect, the%asi register
informs the memory system how to interpret an address while executing certain
instructions, such assta (store into alternate). The SPARC architecture defines
%asi values that aid in refilling the TLB, in performing block and non-caching
moves, and even ones that interact with the floating-point subsystem. We have
chosen two values not ordinarily in use in user-level code that we identify as
ASI RCS and ASIINVALID. 2 These values have been chosen so that memory
operations through the%asi register when it is set to ASIRCS behave as if
they were ordinary load, store, or atomic operations, and so that the same op-
erations through the%asi register when it is set to ASIINVALID trap into a
signal-handler. Using these two values, we can now create more flexible forms of
MP-RCS transactions.

To begin an MP-RCS transaction, we need only set the%asi register to be
ASI RCS using a single ALU instruction. Having done this, we may proceed to
compute the new value we wish to store. Should this new value depend on the
processor on which we are executing, we may load thecpu id of the most recent
processor on which we have executed from our thread’sschedctl block. By
loading this value within the context of an MP-RCS transaction, we are guaranteed
that it reflects our current location of execution. To make obtaining thiscpu id as

2Note that to use this approach to MP-RCS notification, we should work to reserve to values
in the value space of the%asi register. For purposes of this study, however, the two values we
have selected, ASISECONDARY and ASINUCLEUS, allow us to prototype the approach and
evaluate its efficacy.
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(1) asi = ucontext(%asi);
(2) if (asi == ASI RCS)
(3) ucontext(%asi) = ASI INVALID;

Figure 4:%asi -based kernel driver

inexpensive as possible, we reserve a slot in each thread’s thread structure which
holds a reference to that thread’sschedctl block. Finally, we can detect that
the transaction has failed by testing the value of the%asi register and we can
attempt to commit the new value by using a store or atomic operation that makes
use of the%asi register.

As we noted above, this approach has many benefits: simplicity, fewer ker-
nel resources, the ability to control precisely where transactions abort or retry.
To appreciate these qualities, consider figure 4 which shows the actions that the
%asi -based MP-RCS kernel driver must perform as a thread transitions back onto
a processor: it need only flip the state of%asi register in that thread’s user-level
context, should its old value indicate that the thread has an open MP-RCS transac-
tion. Further, it allows us to form more flexible forms of transactions. Since each
memory operation through the%asi register does not, itself, side-effect that reg-
ister, we may chain together a sequence of such stores. In addition, if we register
program counters with the signal-handler that handles the trapping of failed com-
mitting memory operations, we need at most to register the particular program
counters of those operations themselves.

However, here we see an important advantage of this approach to implement-
ing the MP-RCS service: we need not explicitly register MP-RCS critical sections.
Instead, we may use a register, say%o5, to communicate success or failure of any
memory operation through the%asi register. Consider the following SPARC
instruction sequence:

mov %g0, %o5
sta %o1, [%o0]
subcc %o5, %g0, %g0

The first instruction clears the value of the%o5register, setting it to 0. The “sta”
instruction is a store-through-%asi instruction. If, when this instruction executes,
it succeeds, then the final comparison will find that%o5 is still 0. If it fails and
traps, however, we can employ a handler like that shown in figure 5. This handler
will test to see if we are in an MP-RCS transaction and toggle the%asi register
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( 1) pc = ucontext(%pc);
( 2) asi = ucontext(%asi);
( 3) if (asi == ASI RCS)
( 4) asi = ucontext(%asi) = ASI INVALID;
( 5) if (asi == ASI INVALID && isTrapping(*pc)) f
( 6) if (ucontext(%o5) == 0)
( 7) ucontext(%o5) = 1;
( 8) ucontext(%pc) += 4;
( 9) ucontext(%npc) += 8;
(10) return 1;
(11) g
(12) return 0;

Figure 5:%asi -based trap/signal handlerfixUContext()

if necessary (lines 3-4). Further, it will test to see if our%asi register is set to
ASI INVALID and if we are on a memory operation of interest (line 5). If so,
it changes the value of the register we have chosen to use to reflect success or
failure—here,%o5—to 1, and it adjusts the program counter to resume execution
at the instruction after the failing memory operation (lines 6-9). By not requiring
the explicit registration of MP-RCS transactions, it becomes much easier to sup-
port MP-RCS transactions in the presence of dynamically generated code such as
we find in the Java platform.

We will see in the next section that the%asi -based approach also fits well
with how we expose the MP-RCS in high-level languages. Basically, it allows the
application to clear an interference flag, perform some set of operations, and then
atomically commit the result of those operations so long as the interference flag
remains cleared. This simplicity allows the application to manage how, for exam-
ple, processor-local resources are managed. The approach also avoids the costs
and complexities of supporting upcalls from the MP-RCS kernel-driver. Further,
so long as MP-RCS transactions are not nested, it allows multiple application ser-
vices to make use of MP-RCS transactions for different purposes without the need
to arbitrate their uses of preemption notification.

Despite its overall simplicity, this approach does have some drawbacks. The
first is that it is oblivious to why a thread has been blocked or preempted and will
simply report such events without any attempt to detect benign cases of preemp-
tion. Instead, the application itself must decide of a failed transaction whether the
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transaction may be reopened because the relevant state on which that transaction
depends has not changed. Just as this detection and recovery has been pushed
onto the application, so too must the application now access processor-specific
resources through a dynamic index, namely thecpu id . These shifts in respon-
sibility both reflect an advantage in flexibility and control as well as a cost in
additional steps that the application must take on each transaction.

More subtly, we must be careful of how signal-handling interacts with this
mechanism. Signal delivery and handling presents two challenges for the%asi -
based approach to MP-RCS. First, it may be that a thread transitions back onto
a processor directly into a signal-handler. In this case, the context the kernel-
driver adjusts is for that signal handler’s frame. However, the underlying context
may, itself, be in an MP-RCS transaction, and without additional steps, its%asi
register will be restored to whatever value that register had prior to the delivery
of the signal when the signal handler returns. To handle such cases, we must
be sure to invalidate the underlying transaction by modifying the context for that
frame’s%asi register much as the kernel-driver does for the current context. This
modification can be achieved in one of several ways:

� underhooking signal delivery,

� underhooking signal exit by interposing onsetcontext , or

� wrapping all signal handlers in use.

We have chosen the second approach together with selective application of the
third approach for those signal handlers we do control. In both cases we call the
MP-RCS functionfixUContext , listed in figure 5.

The second challenge posed by the handling of signals is that in some contexts,
the signal handler itself needs to make use of MP-RCS transactions. In such
cases, it is simplest if such handlers invalidate any outstanding transactions in the
underlying stack frames of the thread handling the signal to avoid interference
with itself.

Finally, the%asi register is used for other kinds of operations. For example,
memset, memcpy, and related functions make use of the block-data properties
of the%asi register. In constructing an MP-RCS transaction, we must be careful
not to invoke such operations, or if we do, we must have some mechanism in place
to test whether the%asi register is still set to ASIRCS after those portions of
the transaction that are questionable so that we may either abort the transaction or
attempt to reopen it.
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4 The Critical Section Interface

To enable the expression of MP-RCS transactions in high-level languages, we
have introduced a library of primitives, theCritical Section(CS) interface. These
primitive operations allow a transaction to be constructed. Within a transaction,
they allow the application to query the status of the transaction and to condition-
ally perform memory operations that only succeed if the transaction is still valid.

The basic interface is shown in figure 6. An MP-RCS transaction is initiated by
a call tocsBegin() which returns the id of the current processor. Conditional
stores and atomic operations are provided through a number of entry points, each
specifying the types of the input arguments. The status of the current transaction
may be queried by callingcsValid() and the transaction may be ended or ter-
minated by invoking eithercsEnd() or csInvalidate() . These operations
are combined to form transactions that are similar in flavor to what one finds with
load-linked (LL)/store-conditional (SC). And like LL/SC, MP-RCS transactions
benefit from the fact that their use of committing operations is immune to A-B-A
issues [MS98]. The CS interface minimizes the amount of low-level code that
must be written and hides this code behind a simple interface. This modular-
ization allows applications to craft MP-RCS transactions to suit their needs with
complete control over how, for example, and where notification of preemption is
handled. Further, it leaves the organization and management of different sets of
processor-local resources entirely up to the application.

We have implemented the CS interface using the upcall-based MP-RCS ser-
vice. Doing so helped ameliorate some of the drawbacks of the upcall-based ap-
proach such as fixing the set of registered PC ranges to those functions in the
CS interface’s library. However, because the CS interface relies simply on noti-
fication of potential interference, the%asi -based implementation of MP-RCS is
ideally suited to supporting it. For example, figure 7 shows howcsBegin() and
csST32C() are implemented using the%asi register.

Figure 8 shows an example of an MP-RCS transaction making use of the CS
interface. It illustrates both the similarities with, and differences from, the kind
of MP-RCS transaction we saw in figure 3. Most notably, in this example, we
do not load a processor-specific pointer to a list; instead, we use acpu id to
index a table mapping processor id’s to lists. Further, when we happen to be pre-
empted before we reach a committing operation, control is always returned once
our interference flag—for example, the value in the%asi register—is properly
set. Finally, we are always notified of success or failure at each committing oper-
ation and we must check the status of the operation to determine what to do next.
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/* Start a transaction returning the current cpuid */
int csBegin();

/* Commit a transaction by performing a store.
Returns "0" for success; "1" for failure, */

/* 32-bit stores */
int csST32C(void *addr, int32_t val);
int csCAS32C(int32_t new, int32_t old, void *addr);
int csSTWC(void *addr, int val);
int csCASWC(int new, int old, void *addr);
int csSTC(void *addr, int val);
int csCASC(int new, int old, void *addr);

/* 64-bit stores */
int csST64C(void *addr, int64_t val);
int csCAS64C(int64_t new, int64_t old, void *addr);
int csSTXC(void *addr, int64_t val);
int csCASXC(int64_t new, int64_t old, void *addr);

/* pointer-wide stores */
int csSTPC(void *addr, void *val);
int csCASPC(void *new, void *old, void *addr);

/* Checks if the current transaction is still valid.
Returns "0" for failure; "1" for success */

int csValid();
/* Ends the outstanding critical section. */
void csEnd();
/* Marks the outstanding critical section as invalid. */
void csInvalidate();

Figure 6: Interface to the critical-section library
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! Returns cpu id as result in %o0

ld [%g7 + sc off], %o5

mov ASI RCS, %asi

retl

ld [%o5 + cpu off], %o0

(a) int csBegin()

! Returns 0 iff store succeeded

mov %g0, %o5

sta %o1, [%o0]

retl

mov %o5, %o0

(b) int csST32C(addr, value)

Figure 7: SPARC code for starting and committing actions using%asi -based
MP-RCS

A trivial example using a restartable critical section is a lock-free, memory
barrier-free, atomic instruction-free counter:

int count[MAXprocessorS] = f0g;

void countIt() f
restart:

int cpuid = csBegin();
int newVal = count[cpuid] + 1;
if (csST32C(&count[cpuid], newVal) != 0)

goto restart; // preempted
csEnd();

g

Simple extensions to this code could add a contention counter, or to do some
action predicated on a consistent snapshot of several cpu-specific variables. In the
next section, we describe a more realistic use of MP-RCS to manage per-processor
local-allocation buffers.
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ONPROC

trapped

H = Lists[C]−>head result = csSTC(&Lists[C]−>head, N)N = H−>next

interrupted

C = csBegin()

driver

TEST result

set failure, reset pc

User

Kernel

OFFPROC

BLOCKED

Figure 8: Manipulation of a processor-specific linked-list using the CS interface

5 Per-processor local-allocation buffers

Having presented the CS interface, let us now show that it is effective in man-
aging processor-local resources. Recall that our chosen area of application is the
scalable support of local allocation buffers. Our platform, the ResearchVM, al-
ready has support for associating LABs with threads. However, as the number of
threads exceeds the number of processors, our concern is that many suspended
threads will have partially unused allocation buffers and that this memory will not
be used before the LABs are discarded at the next collection. In this section, we
describe an alternative association, one that ties allocation buffers to processors
and so makes the LABs available to any threads that happen to be running.

5.1 Allocating from LABs

Replacing per-thread local-allocation buffers (TLABs) with per-processor local-
allocation buffers (PLABs) presents a significant challenge. First, because the
memory in a given TLAB is allocated by a single owning thread, there is no further
synchronization that is being removed. Second, the CS interface, itself, and the
accessing of processor-local data add cost to the operation of allocating memory
from a given PLAB. These additional costs result from:

� the starting of the transaction and accessing the currentcpu id ,
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( 1) allocateWordsInGenWithTLAB(Generation *Gen, Thread *thr,
( 2) Class *class, int numWords)f
( 3) labNum = Gen->labDescriptor->number;
( 4) labAvail = tlabAvail(thr, labNum);
( 5) newLabAvail = labAvail - numWords;
( 6) if (newLabAvail< 0) f
( 7) res = refillTLAB(thr, labAvail, class, numWords, labNum);
( 8) if (!res)
( 9) res = class->gen[Gen->number].allocateWords(Gen, thr, class, numWords);
(10) g elsef
(11) tlabAvail(thr, labNum) = newLabAvail;
(12) res = (word32 *)(tlab(thr, labNum) - labAvail);
(13) g
(14) return res;
(15) g

Figure 9: Pseudocode for allocating memory from a TLAB

� the accessing of that processor’s resources via thecpu id ,

� the testing for success or failure on the committing operation, and

� the need to include mechanisms to retry the allocation request in the pres-
ence of preemption.

To understand these costs, consider figures 9 and 10 that illustrate how objects are
allocated from TLABs and PLABs, respectively.

Beginning with figure 9, we identify the TLAB associated with the current
generation (line 3). Using this value, we measure whether the current allocation
request,numWords, may be satisfied from the existing LAB (lines 4-6). If there
is sufficient memory, we update the state of the LAB (lines 11 and 12). Otherwise,
we allocate memory for the requested amount together with memory for a new
LAB, discarding or merging the old one into the new LAB, if necessary (lines
7-9).

In contrast, allocation from a PLAB is somewhat more complicated. In fig-
ure 10, we begin as before by identifying the index of the allocation buffer as-
signed to the generation in which we wish to allocate an object (line 3). Now,
however, we must start an MP-RCS transaction and look up the processor on
which we are running (line 5). Further, if we find that we can allocate memory
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( 1) allocateWordsInGenWithPLAB(Generation *Gen, Thread *thr,
( 2) Class *class, int numWords)f
( 3) labNum = Gen->labDescriptor->number;
( 4) dof
( 5) cpuid = csBegin();
( 6) labAvail = plabAvail(cpuid, labNum);
( 7) newLabAvail = labAvail - numWords;
( 8) if (newLabAvail< 0) f
( 9) res = refillPLAB(thr, labAvail, class, numWords, labNum);
(10) if (!res)
(11) res = class->gen[Gen->number].allocateWords(Gen, thr, class, numWords);
(12) g elsef
(13) res = (word32 *)(plab(cpuid, labNum) - labAvail);
(14) if (csST32C(&plabAvail(cpuid, labNum), newLabAvail))
(15) res = PLABRETRY;
(16) g
(17) g while (res == PLABRETRY);
(18) return res;
(19) g

Figure 10: Pseudocode for allocating memory from a PLAB

from the current PLAB, we must use a committing store (line 14) to ensure that
our manipulation of the PLAB is properly isolated from interference from other
allocation requests. Finally, if either the request to refill the existing PLAB (line
9) or the attempt to commit our allocation request (lines 14-15) result inres hav-
ing a distinguishedPLAB RETRYvalue indicating the possibility of interference,
then we must retry the allocation request. All of these extra steps roughly double
the number of instructions required to satisfy an allocation request.

Recall that the ResearchVM’s allocation framework allows each generation
to register a set of allocation functions with each class as the class is loaded and
resolved. This flexibility may be seen in line 9 of figure 9 and in line 11 of fig-
ure 10 where allocation requests too large to be satisfied from an allocation buffer
are allocated directly from the heap. Because the instances of a given non-array
class are all uniform in size and share the same allocation functions, and because
LAB assignments to generations are runtime constants, the ResearchVM provides
specialized versions of the allocation functions for object sizes up to 40 words and
with the LAB indices compiled in as constants. Using these specialized allocation
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functions, the typical fast-path SPARC instruction sequence to allocate a small ob-
ject from a TLAB requires 2 loads, 1 branch, 3 ALU instructions, and 1 store for
a total of 7 instructions. In contrast, the facts that we must obtain the current pro-
cessor’s id from the thread’sschedctl block and that we must check whether
the committing store succeeds explain why the typical fast-path instruction se-
quence to allocate a small object from a PLAB requires 4 loads, 2 branches, 10
ALU instructions, and 1 committing store for a total of 17 instructions. Note that,
here, we inline the calls into the CS interface and rely on the property of%asi -
base MP-RCS to implicitly recognize when we are in an MP-RCS transaction to
minimize the additional instruction count.

So, even as PLABs may aid the throughput of highly threaded applications by
making better use of the memory dedicated to local allocation buffers, it must do
so well enough that it offsets a cost incurred in every allocation request.

5.2 Managing PLABs

Another challenge to the support of PLABs concerns how these buffers are, them-
selves, allocated or refilled. The refilling of a given PLAB presents a number of
issues. When a thread attempts to refill a given per-processor buffer, it only makes
sense for it to do so so long as it remains on that processor. So, the MP-RCS
transaction becomes important not only for ensuring that the thread has exclu-
sive access to update the state for the appropriate PLAB but also that the thread
is notified if it has been preempted so that it can check if it is now executing on
some other processor. The fact that in the midst of the transaction, the thread may
allocate memory from the heap—a relatively long and unrestricted operation that
may employmemset, for example, to initialize the newly allocated memory—
increases the likelihood that the transaction will not be valid after the memory for
the LAB is returned. If the transaction has failed but the thread has successfully
allocated memory for a LAB, we are left with the problem of what to do with that
LAB. One option would be to abandon it—turn it into a dead object in the heap
and retry our allocation request.

We have chosen an alternative strategy. Instead of abandoning the LAB, we
attempt to reopen the transaction. To do this, we start a new MP-RCS transaction
with csBegin() , check that thecpu id is the same as it was, and check that
the current allocation buffer’s bounds are unchanged. If so, we consider the in-
tervening interference to be benign and continue as before. Otherwise, we simply
terminate the transaction by callingcsInvalidate() . We do not, however,
leave the context of the transaction as we are not finished with the newly allocated
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LAB. Subsequently, if at the end of the transaction, we have not been able to
install the LAB for the current processor, we place it on a free-list of LABs avail-
able for use for the current generation. Other threads attempting to refill allocation
buffers from the same generation will preferentially take LABs previously side-
lined before allocating memory from the heap. These two strategies—reopening
transactions and sidelining unused LABs for later reuse—have proven effective
in reducing wasted memory. Key to their success is the fact that the CS interface
allows applications to control how MP-RCS transactions are structured.

Per-processor local-allocation buffers present other challenges. For example,
to update the bounds of the current LAB for a processor, we must atomically up-
date a pair of values—the limit address of the LAB and its size. Strategies we
considered employing included embedding this metadata in the LAB’s memory
and employing a multiword-commit protocol similar to that used by Johnson and
Harathi [JH94]. For expedience, however, we employed the 64-bitcsST64C()
method to write the pair with a single atomic store. This approach was possible
because our Java virtual machine assumes a 32-bit address space. On a different
platform, we would likely have to revisit this decision. In addition to these two
fields, there are a number of other fields governing LAB resizing and statistics. As
these are advisory, we exploit the fact that the committing store for the bounds of
the newly installed LAB leave the transaction open. Once this first store succeeds,
we then optimistically update the related statistics using committing stores until
we have either updated them all or one of them fails. Finally, to abandon an ex-
isting PLAB that contains unused memory, care must be taken within the context
of the MP-RCS transaction to force the number of words available in the LAB to
be zero with a committing store. This protocol ensures that if we then turn the
unused portion into a dead object or if we attempt to merge that portion with the
newly allocated LAB, no other thread that begins executing on the same processor
will attempt to allocate that memory for an object.

Despite all of these additional complexities, the refilling of a PLAB is only
slightly more expensive than refilling a TLAB. Further, since the sizes of buffers
are typically large enough to allow the allocation of between a few hundred and
a few thousand objects per buffer, this extra cost is easily amortized across those
individual allocation requests.

5.3 Flipping LAB association

In the next section, we evaluate the relative performance of per-processor and per-
thread local-allocation buffers for several sizing policies. In order to compare their
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behavior fairly, we benefit from the allocation framework in the ResearchVM that
allows us to easily customize object allocation and control LAB sizing policies.
This framework allows us to specify at the command line the LAB association
policy and the LAB sizing policy we wish to use. In each experiment, we are able
to control whether observed effects are due to differences in sizing or differences
in association, knowing that all other aspects of the platform are the same.

There are conditions when the use of per-processor resources leads to poor
memory utilization. For example, when the number of allocating threads is less
than the number of processors, or when threads are entirely compute-bound and
are not preempted between collections, threads allocating from PLABs may be
preempted and migrate among the processors, leaving partially-used buffers tied
to idle processors. While the amount of wasted memory with PLABs is bounded
by the number of processors (instead of threads with TLABs), it is still a concern
and indicates that the best strategy may be to use whichever form of association
works best for the application.

At each collection, we gather statistics on the allocation behavior of each
thread for each of the generations. Using the statistics for the youngest gener-
ation, we have implemented a simple policy that allows us to dynamically switch
association from threads to processors or back again. Initially, the application
begins with allocation buffers associated with threads. When the amount of mem-
ory left unused in TLABs exceeds the maximum LAB size times the number of
processors, we flip modes and begin associating allocation buffers with proces-
sors. Should the amount of unused memory exceed the maximum LAB size times
the number of allocating threads, we revert back to TLABs. An important rea-
son for the ease with which we are able to implement this switching policy lies
in the fact that the ResearchVM has a flexible allocation framework. When we
choose to switch modes, much of the work in making the switch lies in updat-
ing per-class allocation-function tables. The one challenge in this context is the
management of dynamically generated code that allocates objects. In the Re-
searchVM, all such allocations are done through direct calls to the appropriate
allocation functions. These functions’ addresses are retrieved from the appro-
priate class structures when the code was generated. To ensure that these direct
calls for allocation are properly updated, we segregate the allocation functions
by the kind of association of allocation buffers they employ and we patch the
disabled set of such functions to patch the calling sites redirecting them to the
correct corresponding functions in the other set. This approach allows those cases
of dynamically-generated code calling into the wrong set of allocation functions
to lazy adjust themselves to call the correct set.
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6 Performance

To evaluate the efficacy of associating LABs with processors, we consider three
applications:

� 213 javac—a single-threaded compiler for the Java programming language
compiling a set of class files,

� SPECjbb2000-1.03[Con]—a multi-threaded benchmark simulating a set
of warehouses processing orders, and

� VolanoMark 2.1.2 [Nef98]—a highly multi-threaded benchmark measur-
ing the Volano chat server.

We chose the213 javac from the SPECjvm98 [Con] benchmark suite because
it is single-threaded and because its performance is the most sensitive to the speed
of allocations and to the effects of collection. We chose SPECjbb2000 so that we
could study a relatively compute- and allocation-bound application with a mod-
erate and tunable number of threads. Finally, we chose VolanoMark because this
benchmark makes use of large numbers of bursty threads.

All of the experiments were run on an otherwise idle eight-processor Sun
FireTM 880 configured with 32GB of memory. Each of the eight processors is a
750MHz UltraSPARCR III with an 8MB external cache.

6.1 213 javac Results

The 213 javac benchmark allows us to understand the costs of MP-RCS and
PLABs for a single-threaded application. For this benchmark, we used a 2MB
fixed-sized young generation and an old generation that ranged in size between
8MB and 15MB. Table 1 shows the mean execution time, instruction count, and
cycle count across five sets of measurements taken running this benchmark on a
single processor. Given that the only difference between the two sets of runs was
whether LABs are associated with threads or with processors, the difference in
cost is due primarily to the use of MP-RCS transactions. This benchmark allocates
slightly more than 5.913 million objects in the course of each run. From this fact
and the data in the table, we can conclude that the measured impact of MP-RCS
enabled allocation adds 10.2 instructions and 13.9 cycles per allocation. These
measurements agree well with our analysis of the added costs described for the
MP-RCS enabled allocation fast-paths. Here, we both conclude that the cost of
MP-RCS transactions on the refilling of allocation buffers is well amortized across
the individual allocation requests and that the use of PLABs does come at a small
cost.
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Association Elapsed (secs) Instructions Cycles
per-thread 21.205 4.163 billion 6.636 billion
per-processor 22.004 4.223 billion 6.718 billion

Table 1: 213 javac with the default sizing policy.

6.2 SPECjbb2000 Results

The SPECjbb2000 benchmark emulates a set of client threads, one per warehouse,
processing orders through a middle tier where business logic is applied to the
requests and objects in a back-end database are updated. The benchmark is in-
teresting because there is little interaction between different warehouse threads
and, like 213 javac , the threads simply allocate and manipulate memory in
the heap, and so, is also sensitive allocation performance. During each run, there
is a 30-second ramp-up period in which the warehouse threads warm up and then a
two-minute window in which the rate of order-processing is measured. By varying
the number of warehouses, we show how our LAB-association and LAB-sizing
policies interact as the number of threads begins to exceed the number of proces-
sors.

In our experiments, we varied the number of warehouses from 1 to 64 (8 times
more threads than processors). We also used the the default policy described at the
end of section 2 in combination with three association policies: TLABs, PLABs,
and the flip-mode policy. We sized the young generation at 4MB so that collec-
tions occur once every 200-300ms. This ensures that threads are rescheduled one
or two times between collections. Each of the reported throughput rates represents
the mean of four runs.

The results, shown in figure 11, demonstrate that the flip-mode policy per-
forms well. So long as the number of warehouses—and so, threads—is close to
the number of processors, there is little wastage in unused LABs and the system
behaves similarly to the policy of TLABs. As the number of threads increases,
it does “flip” and begins to behave like the per-processor policy. With up to 8
allocating threads and the default LAB sizing policy, we see that PLABs do sig-
nificantly worse than either of the other two modes. This is largely due to the
added cost of allocating relatively small buffers and the reduced ability to amor-
tize this cost across individual allocation requests. Coupled with a slightly higher
preemption rate, PLABs perform significantly worse than TLABs.

Beyond 16 warehouses, we see that PLABs begin to behave consistently bet-
ter than TLABs. This improved performance is due to less wastage of memory in
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Figure 11: SPECjbb throughput scores for TLABs, PLABs, and flip-mode (de-
fault LAB sizing).
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unused portions of LABs, and hence a corresponding reduction in the frequency
of collections. The threads in this benchmark are compute-bound, and on a lightly
loaded machine, they are rescheduled only when they exhaust their quanta. With
collections occuring every 200 to 300 milliseconds, there is at most a fixed num-
ber of threads that are able to run, let alone be preempted, between each col-
lection. Because the benchmark reported an aggregate throughput of work-units
performed by all threads within the 2-minute timing window, we expect each of
the lines in the graph to flatten out and we see this pattern for both sizing policies.
The difference between PLABs and TLABs is due to the fact that the latter wastes
from 2% to 5% of the heap.

Note that having run these experiments on a lightly loaded machine biases the
effects towards TLABs. With more system activity, we would expect the rate of
preemption per thread to increase. In such environments, PLABs should begin to
do even better than TLABs.

6.3 VolanoMark Results

For applications like the the Volano Chat Server, there may be hundreds or thou-
sands of threads, most of which are suspended most of the time. We ran the
VolanoMark 2.1.2 benchmark varying the number of threads, the size of the young
generation, and LAB associativity and sizing policies. In all cases, we kept the
older generation fixed in size at 64MB. The results are shown in figures 12–14.

Each of the figures shows a pair of graphs, the first measuring the behavior
of TLABs and the second, the behavior of PLABs. Within each graph, we graph
the behavior of a particular LAB-sizing policy: the default adaptive sizing policy,
and fixed-sized policies using 4KB, 16KB, 64KB, 128KB, and 512KB LABs.
We varied the number of threads employed in the benchmark from 200 (for 10
simulated chat rooms) to 1,000 (for 50 chat rooms). For each combination of
parameters, we ran the benchmark 10 times and report the harmonic mean of the
rates of messages per second.

First, as the number of threads exceeds the number of processors, the per-
formance of PLABs is relatively insensitive to particular choices of LAB-sizing
policies. This resilience is in stark contrast to that of TLABs. Further, this indif-
ference to sizing policy increases as the size of the young generation increases.
Being able to support larger LABs without penalty aids certain kinds of collection
techniques and reduces the complexity of tuning JVMs for varying conditions,
whether these are heap-sizing policies or the number of threads. As table 2 shows,
with larger individual LABs, TLABs waste more memory—by up to 3 orders of
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Figure 12: Results of TLABs and PLABs with 2MB semispaces
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Figure 13: Results of TLABs and PLABs with 4MB semispaces
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Figure 14: Results of TLABs and PLABs with 8MB semispaces
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10 Rooms 50 Rooms
TLABs PLABs Flip-mode TLABs PLABs Flip-mode

# of young-gen collections 354 19 21 2256 98 103
# of old-gen collections 2 2 2 2 2 2
GC time (secs) 2.639 0.202 0.235 63.825 3.563 3.791
Using TLABs 354 0 4 2,256 0 4
Using PLABs 0 19 17 0 98 99
Words allocated in LABs 344,648,917 15,568,064 18,191,116 2,252,364,194 84,974,011 87,249,718
Invalid transactions 0 2 2 0 2 1
Number of parked LABs 0 4 4 0 3 3
Words in parked LABs 0 63,078 63,898 0 45,875 54,067
Number of unused parked LABs 0 0 0 0 98 0
Words of unused parked LABs 0 0 1,638 0 0 0
Number of partially used LABs 21,453 110 278 140,197 556 733
Words wasted in partially used LABs 339,230,649 451,588 2,961,602 2,233,391,754 1,922,212 4,278,650

Table 2: Per-GC LAB statistics for VolanoMark with 64KB LABs and a 4MB
young generation.

magnitude—and so incur many more collections.
Second, the default, adaptively-sized policy does remarkably well for both

TLABs and PLABs. So long as the collector used can efficiently support small
LABs, this policy makes TLABs competitive even in highly multi-threaded appli-
cations. Nonetheless, even with this policy, as we move to the right in the graphs,
we can see that PLAB performance improves by up to 15% over TLABs. The
disparity is larger when considering the various fixed-sized sizing policies, with
the improvement of PLABs over TLABs increasing with the size of the LABs.

Third, if we look closely at the graph of TLAB results in figure 12, we see that
the 256KB sizing policy does better than all but two other sizing policies. Further,
we see that the worst policy is for 64KB LABs. The reason for this unexpected
behavior is that as the youngest generation is exhausted, threads that can no longer
allocate LABs in that generation switch to allocating objects directly from what-
ever memory remains. The 256KB policy does better because more of the threads
spend time in the final phase, unable to allocate LABs, and this provides a buffer
of time in which extant LABs may be filled with newly allocated objects. Like-
wise, the 64KB policy does the worst because the threads efficiently claim most
of the memory for LABs and the remainder does not provide a sufficient buffer of
time for those still-allocated LABs to be filled. This behavior calls for a study to
determine when to cease allocating LABs.

7 Related Work

Much research has been done in the area of kernel assisted non-blocking syn-
chronization in the context of uniprocessors. In [Ber93] and [BRE92], Bershad
introduces restartable atomic sequences. Mosberger et al. [MDP94, MDP96] and
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Moran et al. [MJ92] describe a number of mechanisms for implementing such
restartable critical sections. Johnson and Harathi describe interruptible critical
sections in [JH94]. Takada and Sakamura describe abortable critical sections
in [TS94].

Our implementation makes use of therestoreCtx hook to install a device
driver to handle notification of preemption. This ON-PROC notification mech-
anism can be viewed as an impoverished—and less expensive—form of sched-
uler activation. Scheduler activations, explored in [ABLL92, SS95], make kernel
scheduling decision visible to user programs. Many operating systems provide a
similar way to hook into this thread transition point in order to support system
tracing tools. Modern SMP versions of Microsoft Windows [LS99] provide Ke-
SetSwapContextNotifyRoutine, for example. Likewise, the functional recovery
routines [OS/98] and related mechanisms of the OS/390 MVS operating system
allow sophisticated transactions of this type.

We have made use of the SPARC%asi register to force failing committing
stores to trap. Other processor architectures provide similar mechanisms that
could be employed to obtain similar results. The Intel IA32 architecture has
segment registers that could be used in a similar manner. Similarly, Hudson et
al. [HMSW00] propose a number of clever allocation sequences that use the pred-
icate registers of the IA64 to annul the effects of interrupted critical sections.

A primary influence on our development of MP-RCS and its application to
the implementation of PLABs is the paper by Shivers et al. [SCM99] on atomic
heap transactions and fine-grained interrupts. In that work, the authors describe
their efforts to develop efficient allocation services for use in an operating system
written in ML, how these services are best represented as restartable transactions,
and how they interact well with the kernel’s need to handle interrupts efficiently.
A major influence on their project is the work done at MIT on the ITS operat-
ing system. That operating system used a technique termed PCLSRing [Baw93],
which ensured that when any thread examined another thread’s state, the observed
state was consistent. The basic mechanism was a set of protocols to either roll a
thread’s state forward or backward to a consistent point at which the thread could
be suspended.

Our approach differs from these other efforts in several important ways. First,
our mechanism, MP-RCS, works on multiprocessors. Second, an important as-
pect of how we differ from the work of Bershad [Ber93, BRE92], for example,
is that we react to, rather than constrain, preemption. This difference allows us
to avoid limiting the decisions of the underlying scheduling mechanisms. Fur-
ther, we have demonstrated that the ability to reopen a transaction and check that
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the relevant state of the per-processor resources have not changed is effective in
overcoming the occurence of noninterfering cases of preemption. Finally, we
have exposed the MP-RCS service through the critical-section interface so that
processor-centric transactions may be expressed in high-level languages exposing
to the application full control over how the per-processor resources are organized
and how contention is handled.

8 Future Work

Directions for future exploration of MP-RCS fall into two categories: implemen-
tation and extension of the service, and new areas of application.

8.1 Implementation

One benefit lost with%asi -based MP-RCS is the ability to maintain thread-
locally cached information about per-processor resources and to exploit this in-
formation to reduce the cost of locating these resources in MP-RCS transactions.
We are considering adding support for thread-local state that is cleared during
ON-PROC notification but that is otherwise available for this purpose. This sup-
port would enable MP-RCS transactions to make use of cached information about
the locations of per-processor resources without the need to recalculate those lo-
cations unless the thread is preempted.

We are also considering other approaches to implementing the basic service.
One thought is to replace use of the %asi register in favor of state in each thread’s
schedctl block. Doing so would enable us to avoid some current limitations—
inability to make calls tomemset, for example—but would come at the cost of
using memory operations to initiate MP-RCS transactions.

8.2 Areas of application

In terms of new areas of application, there are many opportunities. One is to
revisit our work on lf-malloc [DG02] in order to remove the remaining mutexes,
to improve the affinity of superblocks to processors, and to make the allocator
truly lock-free.

Dave Dice has developed a facility to support multiword transactions on per-
processor data using MP-RCS. We would like to investigate this facility and see
how it may be used to simplify the kinds of transactions we saw, for example,
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when refilling PLABs. Among the challenges are how different uses of such mul-
tiword transactions by different services compose and what the overhead of the
facility is.

When waiting to perform some action on behalf of a particular processor, we
envision using ON-PROC notification to implement smarter spin-loops and hand-
offs between threads. For example, if a thread is spinning to gain exclusive access
to a global resource so that part of that resource may be allocated to the thread’s
current processor, and that thread is preempted before it gains that access, then we
do not want that thread to continue spinning once it resumes execution.

We are also interested in investigating how MP-RCS preemption notification
may be used to augment scheduling decisions, for example, within a JVM. Such
events seem opportune moments to sample or profile the state of the thread, to
decide to remain suspended if we are at a safe point and the system wishes to
suspend all threads, or to choose to yield control to a different thread if we wish
to override the scheduler’s choice.

9 Conclusion

In this report, we have continued our study of Multiprocessor Restartable Criti-
cal Sections (MP-RCS). We have presented a new mechanism based on the use
of the SPARC%asi register that simplifies the implementation of this kind of
service. We have presented a library, the Critical Section interface, that allows
MP-RCS transactions for managing processor-specific resources to be expressed
in high-level languages. Finally, we have applied the MP-RCS service to the
implementation of per-processor local-allocation buffers. In so doing, we have
demonstrated that it is competitive with per-thread local-allocation buffers despite
the fact that its use does not remove any synchronization, and that as the number
of allocating threads exceeds the number of available threads, support for per-
processor local-allocation buffers both aids the throughput of the application by
reducing the frequency of garbage collections and reduces the need to carefully
tune the sizing policies used to manage the allocation of local allocation buffers.
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