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Abstract
For the last decade, the Java Virtual Machine (JVM) has
been a popular platform to host languages other than Java.
Language implementation frameworks like Truffle allow the
implementation of dynamic languages such as JavaScript
or Ruby with competitive performance and completeness.
However, statically typed languages are still rare under Truf-
fle. We present Sulong, an LLVM IR interpreter that brings
all LLVM-based languages including C, C++, and Fortran
in one stroke to the JVM. Executing these languages on the
JVM enables a wide area of future research, including high-
performance interoperability between high-level and low-
level languages, combination of static and dynamic opti-
mizations, and a memory-safe execution of otherwise unsafe
and unmanaged languages.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - Run-time environments, Code
generation, Interpreters, Compilers, Optimization

Keywords Sulong, LLVM, Truffle, dynamic compilation,
static compilation

1. Introduction
In recent years the Java Virtual Machine (JVM) has be-
come a popular platform for languages other than Java and
Scala. Frameworks like Truffle (Würthinger et al. 2013) al-
low building high-performance language implementations
on top of a JVM. There are already Truffle implementa-
tions for high-level languages such as JavaScript, Ruby, R,
or Python with competitive performance and completeness.
However, apart from C (Grimmer et al. 2014), Truffle still
lacks implementations for statically typed languages such
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Figure 1. Sulong System Overview

as C++, D, Fortran, Objective-C, and Objective-C++. We
present Sulong, an ecosystem that can execute and dynami-
cally compile LLVM IR on a JVM, and can thus handle any
language that can be compiled to LLVM IR. In this position
paper we outline three future research directions based on
Sulong. First, we want to use Sulong to efficiently imple-
ment native interfaces of high-level languages. Second, we
want to investigate optimization opportunities when com-
bining sophisticated static program analysis with speculative
dynamic optimizations. Finally, we want to extend Sulong so
that it guarantees spatial and temporal memory safety when
executing programs.

2. System Overview
Sulong is a modular ecosystem that reuses different LLVM
front-ends such as Clang (C/C++) or GCC with DragonEgg
(Fortran) that compile a program to LLVM IR. This LLVM
IR is the input of our Truffle language implementation,
which executes it on top of a JVM (see Figure 1).

2.1 LLVM
LLVM is a modular compiler framework engineered primar-
ily for statically typed languages that envisions to perform
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analysis and transformations during the whole life-time of
a program (Lattner and Adve 2004). To achieve this goal,
many parts of the framework work on a common IR, namely
LLVM IR. LLVM’s Clang front-end and other front-ends
translate languages such as C, C++, and Fortran to LLVM
IR. LLVM then performs compiler optimizations on the IR
level before compiling the IR to machine code. However,
we do not use the machine code but rather take the LLVM
IR as the input for our Truffle interpreter. Executing LLVM
IR minimizes implementation work, since existing LLVM
front-ends already parse and compile the source languages
to LLVM IR. Also, LLVM IR is platform independent and
significantly easier to process than the source languages. For
example, there are no OOP concepts in LLVM IR, and the
interpreter does not have to deal with virtual function calls
when executing C++ programs but only with plain function
calls and function pointer calls.

2.2 Truffle Language Implementation
The core of Sulong is a Truffle language implementation
for LLVM IR. Truffle is a framework for building high-
performance language implementations in Java. Truffle
language implementations are executable abstract syntax
tree (AST) interpreters. These ASTs are self-optimizing,
i.e, they use run-time feedback to replace certain nodes
of the AST with more specialized versions during execu-
tion (Würthinger et al. 2012). A typical use case is type
specialization for dynamically typed languages, for which
nodes speculate on the data types of their operands. For
example, the semantics of an add operation in JavaScript
depends on the types of its operands. Truffle nodes special-
ize themselves according to type feedback, e.g., a general
add operation node can replace itself with a faster integer
add operation node if its operands have been observed to be
integers.

When an AST execution count exceeds a predefined
threshold, the Truffle framework assumes that the AST is
stable. Then, Truffle uses the Graal compiler (Duboscq et al.
2013) to dynamically compile the AST to highly optimized
machine code. When a speculative optimization (i.e., node
rewriting) turns out to be wrong at run time, the VM discards
the machine code and continues execution in the interpreter,
until the compilation threshold is reached again.

In previous work we presented TruffleC (Grimmer et al.
2014), a C implementation on top of Truffle that implements
speculative optimizations for C. For example, TruffleC mon-
itors values of variables and replaces them with constants if
they do not change over time. It also builds polymorphic in-
line caches for function pointer calls with varying call tar-
gets. Our dynamically compiled C code reaches a peak per-
formance which is competitive with that of static optimizing
compilers such as GCC or Clang. With Sulong we want to
apply these optimizations to a broader scope of languages,
e.g., we want to provide polymorphic inline caches also for
C++ virtual function calls.

2.3 Sulong
Sulong is a modular and feature-rich ecosystem. It reuses
different LLVM front-ends and can therefore execute lan-
guages such as C, C++, Objective-C, Swift, Fortran, and oth-
ers. Compiling programs to LLVM IR prior to execution also
allows us to reuse existing tools in the LLVM framework to
transform the IR. For example, we can use the static opti-
mization tool opt to apply static optimizations to the LLVM
IR, and then use llvm-link to link several LLVM IR files to
a single file. Eventually, we construct a Truffle AST from
the LLVM IR and execute it using tree-rewriting specializa-
tions and dynamic compilation from the Truffle framework.
This way, we can implement speculative optimizations for
statically typed languages.

3. Research Directions
3.1 Language Interoperability and Native Interfaces
Modern software projects tend to be written in multiple dif-
ferent languages. Multi-language applications allow choos-
ing the most suitable language for a given problem, gradu-
ally migrating code from one language to another, or reusing
existing code. The Truffle framework features a mechanism
for cross-language interoperability between different lan-
guages (Grimmer et al. 2015b,c), which allows executing
multi-language applications. This mechanism allows calling
and inlining of functions across any language boundary and
exchanging data without marshalling or conversion. With
Sulong we add low-level, statically typed languages such as
C/C++ and Fortran to this ecosystem. We want to use Sulong
to provide an efficient implementation of the different native
interfaces of various high-level languages.

While most foreign function interfaces have to convert or
marshall between language boundaries, a Truffle language
implementation can instead use Sulong to efficiently call
native code. For example, we want to run native modules
of NodeJS on Sulong or use Sulong to execute native R
packages.

To evaluate the feasability of using Sulong as a Truffle na-
tive interface, we intend to make case studies on executing
Ruby programs that use C extensions and R programs that
rely on R native packages. In these case studies we want to
evaluate the performance compared to conventional native
interfaces and demonstrate the flexibility of Truffle’s inter-
operability mechanism.

3.2 Static vs. Dynamic Optimizations
Static compilers such as LLVM or GCC can apply time-
intensive analyses and optimizations, since all this happens
before distributing and running the program. In contrast, dy-
namic compilers can use profiling information and specula-
tive optimizations to increase peak performance, but cannot
apply time-intensive optimizations since they would have to
be performed every time a program is executed.
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Previous approaches showed that the upper boundary of
static compilation approaches can be further pushed by ap-
plying profiling information (Bala et al. 2000; Nuzman et al.
2013). We want to further experiment with this approach, by
combining both static and dynamic optimizations to improve
the peak performance of C, C++, and Fortran programs.

We intend to use LLVM to apply optimizations based
on pointer analysis such as promotion of memory to virtual
registers or elimination of memory loads on the LLVM IR
before execution. During execution, we use our interpreter
to perform speculative optimizations, such as value profil-
ing (Calder et al. 1997), polymorphic inline caches (Hölzle
et al. 1991), and branch probability recording. Peak per-
formance profits from the expensive static optimizations by
LLVM, as well as from our dynamic optimizations at run
time. Following this approach, we expect to top the peak per-
formance of pure static or dynamic compilation approaches.

To evaluate peak performance we intend to use the Com-
puter Language Game benchmarks but also the larger SPEC
CPU benchmarks. For a static compilation baseline we will
use Clang O3 to compile the benchmarks to binaries, execute
them and measure the execution time. For a dynamic compi-
lation baseline, we will use Clang to compile them to bitcode
files without applying static optimizations and execute them
with Sulong. For the combined approach where we addition-
aly apply static optimizations on the bitcode file, we will
create a matrix of benchmark run-times with a combination
of static optimizations on one axis, and dynamic optimiza-
tions on the other axis. Due to the phase ordering problem
and thus the infinite number of possible optimization com-
binations (Touati and Barthou 2006) we will only be able
to select a subset of combinations. We want to demonstrate
that we can find a combination of static dynamic optimiza-
tions that will on average top both the static and dynamic
baselines.

3.3 Memory Safety
Memory errors (e.g., accessing memory outside of objects)
rank among the most serious security threats in languages
such as C or C++ and still have not been addressed ad-
equately (van der Veen et al. 2012). Although there are
countless memory safety approaches, existing approaches
either suffer from performance overhead, incompatibility
with legacy software, incomplete protection, or a depen-
dency on the compiler chain (Szekeres et al. 2013).

With Sulong, we want to re-use the JVM’s type and
bounds checking as well as automatic memory management
to guarantee spatial and temporal memory safety. Spatial
memory safety guarantees that no accesses occur outside
of objects, while temporal memory safety ensures that no
dangling pointers are accessed (Szekeres et al. 2013). By
using Java allocations and relying on a garbage collector,
Sulong can obtain complete memory safety.

In our previous work we implemented a memory safe
version of TruffleC, which guaranteed spatial and temporal

memory safety while only being 15% slower than GCC
with optimizations turned on (Grimmer et al. 2015a). With
Sulong, we want to apply this approach to the execution
of LLVM IR to support memory safety for arbitrary LLVM
languages. We also want to demonstrate that memory safety
scales to large C/C++ programs in terms of execution speed.

To evaluate peak performance, we want to apply both
static and dynamic optimizations and use the benchmarks
mentioned in the previous section. To evaluate memory
safety, we want to use NIST’s Juliet test suite (Center for
Assured Software 2012) which provides synthetical tests for
various vulnerability classes including memory errors. We
expect that Sulong can detect all memory errors that are
exhibited during run-time. Also, we want to validate mem-
ory safety on real world programs to demonstrate that Su-
long is a sound approach in practice. To find programs with
attack vectors, we will use NIST’s National Vulnerability
Database (NIST 2016).

4. Limitations
While we expect that Sulong will provide excellent peak
performance, warm-up will contribute to the total execu-
tion time, especially for short-running applications. Also,
while traditional static compilation approaches have pre-
dictable performance; warm-up and invalidated speculations
cause dynamic compilation approaches to have varying per-
formance. This can especially be a problem in real-time sys-
tems and security-critical applications that are sensitive to
timing-based attacks. Although we cannot offer a complete
solution for this problem, one way to significantly improve
interpreter speed is to use the SubstrateVM, where the Su-
long interpreter is compiled to an executable instead of being
run on a JVM.

Another issue is that real world programs often rely on
undefined behavior for which most static compilers produce
programs that match the programmer’s intent. An example
are handcrafted pointers obtained by converting pointers to
integers, performing computations on them, and converting
them back to pointers. Sulong will not attempt to support all
such cases, but similarly to ManagedC provide a relaxed and
strict mode. In relaxed mode certain operations (e.g., type
punning) that result in undefined behavior are supported, and
in strict mode undefined behavior results in an error. Thus,
Sulong will not be able to support all real world programs.
On the other hand, Sulong will improve the portability of
programs similarly as GCC’s and LLVM’s undefined behav-
ior sanitizers.

5. Summary
With Sulong, we will bring a variety of additional languages
such as C, C++, and Fortran to the JVM. Sulong will al-
low us to experiment with the improvement of native func-
tion interfaces by basing on the multi-language environment
given by the JVM. We also want to top the performance of
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static compilers, by combining both static and dynamic opti-
mization approaches. Finally, we want to guarantee memory
safety for C/C++ by relying on the type and bounds check-
ing as well as on the memory management of the underlying
JVM.
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