
Dynamic Adaptation of User Migration Policies in
Distributed Virtual Environments

David Vengerov
Oracle Labs, Oracle Corporation

501 Island Parkway
Belmont, CA 94002

david.vengerov@oracle.com

Abstract—A distributed virtual environment (DVE) consists of
multiple network nodes (servers), each of which can host many
users that consume CPU resources on that node and communicate
with users on other nodes. Users can be dynamically migrated
between the nodes, and the ultimate goal for the migration policy
is to minimize the average system response time perceived by
the users. In order to achieve this, the user migration policy
should minimize network communication while balancing the
load among the nodes so that CPU resources of the individual
nodes are not overloaded. This paper considers a multi-player
online game as an example of a DVE and presents an adaptive
distributed user migration policy, which uses Reinforcement
Learning to tune itself so as to minimize the average system
response time perceived by the users. Performance of the self-
tuning policy was compared on a simulator with the standard
benchmark non-adaptive migration policy and with the optimal
static user allocation policy in a variety of scenarios, and the self-
tuning policy was shown to greatly outperform both benchmark
policies, with performance difference increasing as the network
became more overloaded.

I. INTRODUCTION

Distributed virtual environments (DVEs) have become a ma-
jor trend in distributed applications. These highly interactive
systems simulate a virtual world where multiple users share
the same scenario. DVE systems are currently used in many
different applications such as civil and military distributed
training, virtual shopping malls, collaborative design, and e-
learning [10]. However, the most popular application domain
for DVE systems is that of commercial multiplayer online
games (MOG) environments. In a typical MOG users interact
with the game and with each other by generating independent
and short-lived tasks, which can run on any network node
(computing server). Each node has its own scheduler that
assigns CPUs to incoming tasks. The migration of users
between the nodes in a MOG network is the subject of active
research.

Because of the very large scale of the online game world and
of DVEs in general, the policy for migrating users needs to be
fully distributed so that no single node can be fully responsible
for migrating users in the whole network. Since the users care
about system response time the most, the objective for such
policy would be to minimize the time-average response time
of all tasks in the system. While it is easy to develop some
fixed rules for migrating users in response to an overload
of computing resources on some node or an overload of the

internode bandwidth due to increased communication between
some users, such rules would not constitute the optimal policy
and could perform very poorly in some circumstances.

In general, the task of finding the optimal user migration
policy requires solving a stochastic optimal control problem.
The Reinforcement Learning (RL) theory [13] has been de-
veloped for solving this problem in the case when equations
governing the system’s dynamics are unknown and the policy
can only learn from experience by interacting with the envi-
ronment and observing some feedback signal. The standard
RL theory deals with a single agent interacting with a fully
observable environment. It is not a simple matter to apply this
theory to a large-scale DVE, where the user communication
pattern changes dynamically over time and each node does not
have the full observability of the complete network.

The main contributions of this paper are:
1) A distributed reinforcement learning framework for

DVEs, which learns to continually improve the user
migration policy so as to minimize the expected future
system response time when both the workload and the
user communication pattern are changing stochastically.

2) Simulation experiments demonstrating that the proposed
RL framework can maintain the same average task
response time in a DVE as competing algorithms but
using fewer resources (network servers).

II. RELATED WORK

An adequate solution to the problem of migrating users
away from the overloaded servers is crucial for achieving
a good performance in a DVE, and many researchers have
proposed solutions for this problem. One of the earlier and
more fundamental works is [7], where the authors proposed
to perform user migrations so as to minimize a linear com-
bination of the imbalance in computational load among the
servers and the network communication cost of the resulting
user allocation. They showed that this problem is NP-complete
and provide an iterative heuristic algorithm for solving it.
The usefulness of their cost function was questioned in [9],
where the authors showed through simulations that a linear
combination of CPU load and bandwidth utilization does not
have a good correlation with the average system response time,
which increases nonlinearly as server CPU utilization becomes
close to 100%. They proposed an algorithm that is triggered



when a server’s CPU utilization rises above 99% and that
migrates users to the server with the lowest CPU utilization
in such a way that the resulting estimated CPU utilization
of the original server is reduced to 90%. In a later work [10],
the authors proposed a migration algorithm that distributes the
extra workload of the original server among the least loaded
servers in the system instead of migrating this workload to a
single server.

The migration algorithms proposed in [9] and [10] are
similar to most of the other migration algorithms we found
in the literature, which are focused on balancing the resource
utilization among the servers. For example, the authors in [11]
used thresholds on CPU utilization and network utilization,
and when either one of these thresholds is exceeded for a
server, the server migrates enough users to the least loaded
server in the neighborhood so as to reduce both its own CPU
and network utilization below 90% of the thresholds used
to initiate migration. In [16], the proposed migration policy
is triggered when a server’s CPU utilization rises above a
predetermined threshold, and the users are then migrated to
the neighboring server with the smallest migration cost if
that server is not expected to get overloaded as a result of
migration. In [1], the migration algorithm attempts to minimize
the maximum resource utilization of the servers while at the
same time minimizing the cost of migration, measured by the
time spent on migration.

Some migration algorithms focus on balancing the number
of users across the servers (e.g., [6]). A similar but a slightly
more sophisticated migration algorithm is proposed in [3],
where each server determines whether the cause of a perceived
quality of service violation (measured in terms of the user
response time) is client load or inter-server communication and
triggers either load shedding (to the neighboring nodes with
the smallest number of users) or load aggregation, respectively.
The load aggregation is performed by splitting the virtual
space into regions and making sure that each server is handling
the workload only from the neighboring regions.

The works described above form a representative sample
of the user migration algorithms found in the literature. We
have not found any existing algorithms that try to formally
optimize the expected future system response time when both
the workload and the user communication pattern are changing
stochastically. Hence, the distributed reinforcement learning
approach proposed in this paper for tuning user migration
policies, which is able to perform such an optimization, makes
it possible to deploy DVEs that work faster and/or use fewer
resources.

III. REINFORCEMENT LEARNING BACKGROUND

We first describe the “classical” single-agent RL theory. The
agent in RL theory refers to the decision-making entity that
attempts to learn the policy that maps observed state variables
into action to be taken in each state. The agent’s state evolves
as a Markov chain conditional on its current state and the ac-
tion taken in that state, forming a Markov Decision Processes
(MDPs) described by a quadruple (S,A,R, T ) consisting of:

• A finite set of states S
• A finite set of actions A
• A function c : S × A × S → < describing the feedback

(cost) signal received by the agent after each step
• A state transition function T : S × A → PD(S), which

maps the agent’s current state and action into the set of
probability distributions over S.

At each time t, the agent observes the state st ∈ S of the
system, selects an action a ∈ A and the system changes its
state according to the probability distribution specified by T ,
which depends only on st and at. The agent then receives
a real-valued cost signal c(st, at, st+1). The agent’s objective
is to find a stationary policy π : S → A that minimizes the
average future cost per time step starting from any initial state.

For a stationary policy π, the average cost per time step is
defined as:

ρπ = lim
T→∞

1

T

T−1∑
t=0

c(st, π(st), st+1), (1)

The optimal policy π∗ from a class of policies Π is defined
as π∗ = argmin

π∈Π
ρπ . The cost-to-go Cπ(s) of a state s under a

policy π is defined as the expected sum of the differences of
observed step costs minus the average cost for all states:

Cπ(s) = E[

∞∑
t=0

(c(st, π(st), st+1)− ρπ)|s0 = s]. (2)

The above definition implies the following recursive relation-
ship:

Cπ(st) = E[c(st, π(st), st+1)− ρπ]

+ E[

∞∑
τ=t+1

(c(sτ , π(sτ ), sτ+1)− ρπ)]

= E[c(st, π(st), st+1)− ρπ] + Cπ(st+1),

which can be re-written as

E[c(st, π(st), st+1)− ρπ] + Cπ(st+1)− Cπ(st) = 0.

Defining

δt = c(st, π(st), st+1)− ρπt + Cπ(st+1)− Cπ(st), (3)

the quantity δt can be interpreted as the “error” term, for
which the above analysis implies E[δt] = 0. Therefore, if one
defines Ĉπ(s) to be the approximation to Cπ(s), then if after
transferring to state st+1 from state st one observes δt > 0
(due to a larger than expected c(st, π(st), st+1)), then one can
conclude that Ĉπ(st) had probably underestimated the true
value of Cπ(st) and should be adjusted upwards. Similarly,
if one observes δt < 0 (due to a smaller than expected
c(st, π(st), st+1)), then one can conclude that Ĉπ(st) had
probably overestimated the true value of Cπ(st) and should
be adjusted downwards.

This forms the basis for a well-known procedure called tem-
poral difference (TD) learning for iteratively approximating
Cπ(s), which lies at the core of many reinforcement learning



methods such as Policy Iteration [5]. Its simplest form is called
TD(0):

Ĉπ(st)← Ĉπ(st) + αtδt, (4)

where αt is the learning rate, and ρπt is updated as follows:

ρπt ← (1− αt)ρπt + αtc(st, π(st), st+1). (5)

In this fashion, for every state s, Ĉπ(s) has been proven to
converge [14] to the true value Cπ(s), which represents the
cost-to-go from state s under the policy π.

The TD approach based on assigning a cost to each state
becomes impractical when the state space becomes very large
or continuous, since visits to any given state become very
improbable. In this case, a function approximation architecture
needs to be used in order to generalize the cost-to-go function
across the neighboring states. The architectures that are linear
in tunable parameters are easiest to implement, and in this
paper we use such an architecture: Ĉ(s, p) =

∑M
i=1 p

iφi(s),
where p is a vector of tunable parameters and φi(s) are
fixed non-negative basis functions. This architecture can be
thought of as a classical 3-layer neural network where only the
connection weights between the hidden layer (which consists
of the basis functions φi(s)) and the output layer (which
consists of the single “answer” unit) are tuned. A more
complex architecture for Ĉ(s, p) can instead be “plugged into”
the distributed RL framework proposed in this paper, where
each state dimension has its own scaling parameter and the
shape of each basis function is controlled by parameters as
well.

For any approximation architecture Ĉ(s, p), the parameter
vector p can be updated using the general “backpropagation”
principle used in neural networks, which consists of computing
at each step the partial derivative of the observed squared
error with respect to each parameter and then adjusting each
parameter in the direction that minimizes the squared error:

pit+1 = pit + αt
∂

∂pi
δ2
t

= pit + αtδt
∂

∂pi
Ĉπ(st, pt)

= pit + αtδtφ
i(st), (6)

where the average cost estimate ρt is updated as in equation
(5). The notation pit refers to the value of the parameter pi

at time t during the learning phase. Note that when δt > 0,
the value of Ĉπ(st, pt) should be increased (using the same
logic as the one used for equation (4)), which is achieved by
increasing the value of all components of the parameter vector
p, with the increase of each component i being proportional
to the sensitivity of Ĉπ(st, pt) to that component (which
is given by ∂

∂pi Ĉ
π(st, pt)). Also note that when the simple

approximation Ĉπ(s, p) = p is used for some scalar parameter
p, equation (6) reduces exactly to equation (4).

The iterative procedure in equation (6) is guaranteed to
converge to the locally optimal parameter vector p∗ (the one
giving the best approximation to Cπ(s) in its neighborhood)
if certain conditions are satisfied [14]. First, the underlying

Markov chain of states encountered under policy π has to be
irreducible and aperiodic (i.e., the system can transfer from
any state to any other state using n, n + 1, n + 2, ... time
steps for n greater than some value N ) and the learning
rate αt has to satisfy

∑∞
t=0 αt = ∞ and

∑∞
t=0 α

2
t < ∞.

For example, αt = 1/t satisfies these conditions. The final
condition for convergence of the iterative parameter tuning
process in equation (6) is that the basis functions φi(s) have
to be linearly independent and the states for update have
to be sampled according to the steady-state distribution of
the underlying Markov chain for the given policy π (which
happens naturally when the states are updated along the path
traversed by the agent).

IV. DISTRIBUTED GAMING ENVIRONMENT

Before describing the details of the proposed distributed
reinforcement learning approach for tuning user migration
policies, we need to give a brief description of the simulation
environment within which the learning will be happening. As
an instance of a DVE we chose to simulate a distributed
gaming environment. In such an environment, the state of
each user is saved in a data object, and user-generated tasks
access other data objects in the network (the tasks change the
user’s state and maybe also the states of some other players).
Some data objects do not represent any users and instead just
represent some information about the game.

Each user keeps track of LocalLinks (number of other users
on its current node with whom the user is communicating) and
GlobalLinks (number of users on the other nodes with whom
the user is communicating). The KeyNode for each user is
the node that contains the data objects with which the user is
communicating most often. The user communication pattern
is updated once every K time steps by having each user, with
probability pc, add a communication link with a randomly
selected new user or remove an existing communication link.
The KeyNode is changed with probability pkey (randomly
selected from the list of all nodes in the system) once every
K time steps. The simulation results in Section VII are given
for the case when pc = 0.5, pkey = 0.01, and K = 10. We
tried perturbing these values, but the relative performance of
considered user migration policies remained the same.

The tasks generated by users in a game environment are
usually short lived, on the order of a few milliseconds, and
each task requires a single CPU for execution. At every time
step, the scheduler on each node checks if any CPUs are
available, and if the number of available CPUs n > 0, then n
tasks are scheduled. Each of the n tasks is chosen from the
user task queues on that node in a round-robin fashion. We
modeled the task execution time as a random variable whose
mean increased if the user is not located on his/her KeyNode
and as the proportion of GlobalLinks for this user increased.
If a user starts interacting with more other users then these
interactions are expected to result in new tasks that the user has
to perform. Thus, we modeled the number of tasks generated
by each user at each time step as a random variable (with a



Poisson or a Zipf distribution) whose mean increased as the
total number of communication links for this user increased.

V. A DISTRIBUTED REINFORCEMENT LEARNING
FRAMEWORK

A. Choosing the Basis Functions

The choice of the function approximation architecture for
generalizing the cost-to-go function across the neighboring
states is one of the key decisions that needs to be made
when applying RL to any large-scale problem. The basis
functions φi(s) for the approximation architecture Ĉπ(s, p) =∑M
i=1 p

iφi(s) should ideally be chosen to be sensitive to
changes in each individual dimension of the state vector s.
We follow [15] in using basis functions of the form φi(s) =
φi1(s[1]) · φi2(s[2]) · ... · φin(s[n]), where n is the dimension
of the vector s and φij is either equal to ψfallj (a “falling”
function that is equal to 1 for s[j] < smin[j], falls linearly
from 1 to 0 over the range [smin[j], smax[j]] and stays at 0
for s[j] > smax[j]) or ψrisej (a “rising” function that is equal
to 0 for s[j] < smin[j], rises linearly from 0 to 1 over the
range [smin[j], smax[j]] and stays at 1 for s[j] > smax[j]).
If each function ψj were to fall from 1 to 0 or rise from
0 to 1 as a step function at s[j] = (smin[j] + smax[j])/2,
then ψj could be visualized as “boxes” that cover the space
of possible values of s, so that whenever s belongs to box i,
Ĉπ(s, p) = pi. However, in the proposed “soft” neural network
implementation, each “neuron” φi gets activated to the extent
specified by φi(s), and the final output is a linear combination
of parameters pi and neuron activations φi(s).

The choice of the basis functions described above implies
that there will be M = 2n different basis functions for an
n-dimensional state vector. Since the number of the basis
functions φi(s) increases exponentially with the dimension of
the state vector s, a centralized learning algorithm that learns
a single cost-to-go function for the whole network would be
computationally infeasible: if the state of each network node is
described by 4 variables (which is what we propose in Section
V-B), then for a small network with 25 nodes, the algorithm
would need to keep updating 2100 parameters.

In order to avoid this difficulty, we propose to use a
distributed reinforcement learning framework, where each
network node (agent) j learns its own cost-to-go function
Ĉj(sj , pj) that predicts the expected future response time for
all tasks it will be executing in the future based on its own
parameter vector pj .

B. Forming the State Vector

The RL theory was originally developed for Markov Deci-
sion Processes (MDPs), where the agent’s state evolves as a
Markov chain conditional on its current state and the action
taken in that state. However, each agent (network node) has
to make decisions in a Partially Observable Markov Decision
Process (POMDP), where partial observability refers to the
fact that no node can observe all relevant information for
predicting the future evolution of its state (which depends on

what is happening with the other network nodes and all users
in the DVE).

A good overview of methods for learning the cost-to-go
functions in POMDPs is given in [4]. Some researchers have
reported that memoryless approaches, where the agent uses
only the locally available observations, also give good results
in practice. Since the goal of this paper is to demonstrate
that RL can be used to find good user migration policies
(that are better than any fixed migration rules) in DVEs rather
than discovering the best possible algorithms to plug into the
framework we propose, we will use a simple memoryless
approach, where each network node uses only the locally
available information for making the user migration decisions.
That is, the agent simply assumes that it acts in a fully
observable MDP, and the observation vector is treated as the
state vector. The experimental results in Section VII show that
even this simple approach gives very good results.

The accuracy of a node’s cost-to-go function approximation
architecture Ĉ(s, p) depends greatly on how useful the com-
ponent variables of the vector s are for predicting the average
response time of all tasks completed on that node in the near
future. Therefore, one might be tempted to include all relevant
variables into the state vector. However, if too many variables
are used, the learning process will be very slow. Below is the
list of variables that we chose to represent compactly the state
of each node, with the expectation that the cost-to-go function
C(s) will be an increasing function in each of these variables.
• s[1]: The total number of communication links on the

node, which is expected to be correlated with the rate at
which tasks are generated on this node (users with more
communication links are expected to generate more tasks)

• s[2]: The degree of nonlocality of the communication
pattern of the users on this node (which we computed as
the sum of GlobalLinks/TotalLinks for each user plus the
number of users for whom this node is not the KeyNode,
everything divided by the number of users on the node)

• s[3]: Number of current users on the node
• s[4]: Total number of queued tasks at the node

C. Making Migration Decisions

Assume that the approximate cost-to-go function Ĉj(s, p)
for each node j has been tuned to some extent using equation
(6) to reflect the expected future task response time on that
node. We will now denote such a function as Ĉj(sj , pj) so as
to see clearly which node’s state vector and parameter vector
are used to compute C as a linear combination of state features
and parameters. Then, any particular user migration decision
between two nodes i and j can be evaluated to see whether it
would reduce the expected future average task response time
on these nodes. More specifically, a user migration decision
between nodes i and j is beneficial if

Ĉi(s
′
i, pi) + Ĉj(s

′
j , pj) < Ĉi(si, pi) + Ĉj(sj , pj), (7)

where si is the state of node i before the migration and s′i is
its state after migration. The optimal user migration decision



between nodes i and j would be the one that minimizes
Ĉi(s

′
i, pi) + Ĉj(s

′
j , pj).

In the experiments presented in Section VII, the user mi-
gration decisions were made once every 10 time steps either
based on a fixed benchmark policy or based on the migration
criterion described above. In the latter case, the migration
algorithm performed the following steps:

1) Iterate through the list of all nodes in the network
2) Each node i iterates through its present users
3) For each user k, the node i iterates through the list of its

neighboring nodes and computes Bkj – the difference
between the right hand side and the left hand side of
the migration criterion (7), which represents the benefit
realized in the network if user k were to be migrated
from node i to node j.

4) Let k∗ and j∗ be such that Bk∗j∗ >= Bkj for all k
and j.

5) If Bk∗j∗ > 0, then migrate user k∗ from node i to node
j∗. Otherwise, do nothing.

In reality, the above migration algorithm would be imple-
mented asynchronously on each node, which can use any
appropriate network protocol to establish a list of neighboring
nodes that can potentially accept users from this node. Thus,
the above algorithm can scale to any number of nodes in the
network.

It is interesting to point out that the above approach to
taking actions in each state allows one to use an online RL
approach, where the cost-to-go function C(s) is used to make
user migration decisions while its parameters are being tuned.
In contrast, the classical approach in equation (6) requires
using a different (fixed) policy π for taking actions while the
parametes of the cost-to-go function are being tuned. If an
online RL approach is desired, then the classical approach is
to learn future cost functions Q(s, a) for state-action pairs
using Q-learning [13]. While it is pretty straightforward to
come up with a description of the state space in the user
migration problem, it is much more difficult to come up with
a description of the action space.

The action selection approach proposed in this section
avoids the difficulty of defining the action space. It uses
the insight that the state evolution in the distributed gaming
environment described in Section IV (and in many other
task-based DVEs) happens in two stages: first the impact of
changing the state of each node is quickly observed, and then
the state change at each node due to externally arriving tasks
is observed at the next state reconfiguration opportunity. As a
result, it is possible to reduce the noise in parameter updates
by defining the state st in equation (6) to be the one observed
right after implementing a user migration decision, while the
state st+1 (that is used to compute δt) is the one observed
right before making the next user migration decision.

VI. IMPLEMENTATION DETAILS

A. Benchmark policies
The distributed RL framework described in Section V

was compared against several benchmark (non-adaptive) user

migration policies that represented reasonable rules for this
domain. We called the first benchmark the SlowestUser policy,
since it selects on each node the user with the largest expected
task execution time and tries to migrate it to a neighboring
node where this user’s tasks would be expected to complete
sooner. If there are several neighboring nodes that satisfy
this requirement, then the node with the smallest expected
execution time is chosen. The expected task execution time
for a user j on node k is monotonically related to the degree
of non-locality of that user’s communication pattern, which we
can define as L(j, k) = (ratio of global to total communication
links the user j would have on node k) + I(j, k), where I(j, k)
is an indicator function that is equal to 1 if node k is not the
KeyNode for user j and is equal to 0 otherwise. For simplicity,
the SlowestUser policy uses L(j, k) in its computations in
place of the difficult to compute expected task execution time.

We also implemented another benchmark policy, called
the LongestQueue policy, which differs from the SlowestUser
policy in only one respect: it considers for migration the user
with the longest task queue. Our experiments showed that the
average task response time of this policy was higher than that
of the SlowestUser policy in all scenarios, and the difference
between them increased as the average task generation rate
increased for each user. This can be explained by the fact
that by trying explicitly to minimize the task execution time,
the SlowestUser policy increases the throughput of the system,
which on average leads to a smaller backlog of tasks and hence
a smaller average task response time.

The SlowestUser policy is an instance of the most popular
class of user migration algorithms described in Section II,
which migrate users so as to balance the CPU load in the
network while trying to preserve the locality of user commu-
nication (if the CPU load is balanced across all nodes, then the
node where the user’s tasks can be executed the fastest is the
node that contains most of the data objects with which the user
is communicating). Because of its performance superiority
over the LongestQueue policy, the SlowestUser is used as
THE benchmark non-adaptive user migration policy. The final
benchmark policy was the optimal static user allocation policy,
which performed no user migrations while keeping an equal
number of users on all nodes.

B. Parameter tuning for the adaptive policy

While the learning rate αt = 1/t used in equation (6) works
in theory, in practice it decreases too quickly and does not
allow parameters to reach near-optimal values during short
learning episodes (in practice, the agent should learn a good
policy as quickly as possible). Moreover, the parameters for
which the basis functions have very small values get updated
much slower than the other parameters. In order to avoid these
problems, in experiments presented in Section VII a separate
learning rate is used for each parameter i: αit = α0/[1 +
(
∑t
τ=0 φ

i(sτ ))/N ], where α0 = 0.2 and N = 50.
The exact shapes of the basis functions φi(s) depend on

the interval [smin[j], smax[j]] chosen for each dimension j
within which the corresponding functions ψfallj and ψrisej are



changing, as explained in Section V-A. Assuming that each
node is allowed to have at most Umax users and there is a total
of UTOT users in the network, the widest possible ranges were
selected for variables s[1], s[2] and s[3], which were, corre-
spondingly, [0, Umax · (UTOT −1)], [0, 2] and UTOT . The task
of defining ranges for the variable s[4] is more complicated,
since there is no maximum value that it can take. Therefore,
instead of using linear functions ψfall4 and ψrise4 , we decided
to use ψfall4 (x) = e−b·x, where b = − ln(0.05)/10, so that
ψfall4 (0) = 1 and ψfall4 (10) = 0.05. The function ψrise4 (x)
was defined as ψrise4 (x) = 1− ψfall4 (x).

We tried updating the average cost per time step ρt for each
node using the classical equation (5), where c(st, π(st), st+1)
was computed as the total response time (waiting time plus
execution time) for all tasks executed on that node since
the last parameter update divided by the number of tasks
executed during that period. However, we found that better
results were obtained when ρt was computed in a more stable
fashion as the total response time of all tasks executed since
the beginning of the simulation divided by the number of
tasks executed. Also, we found it necessary in equation (3)
to multiply c(st, π(st), st+1) − ρt by the number of tasks
executed since the last parameter update so that each agent
could learn to avoid states from which MANY tasks are
expected to incur larger than average task response time. We
also found it beneficial to start the parameter updating process
only after the average cost ρt had stabilized somewhat, and so
we executed the SlowestUser policy for the first 30000 time
steps in order to compute the initial value of ρt.

Parameters of each node’s cost-to-go function were tuned
for 570000 time steps, after each K time steps, right before
making user migration decisions. At the end of the learning
process, a testing phase of 200000 time steps would be
executed, during which the user migration decisions would be
performed using the migration criterion described in Section
V-C based on Ĉj(sj , pj,2) as the cost function for each node
j. Ten trials were conducted for each experiment (which
consisted of a learning phase and a testing phase), so that
the standard deviation of the observed average task response
time divided by the mean response time would be less than
1%. While 600000 time steps might seem like a long learning
time, the tasks in a usual game environment are very short
lived, on the order of a few milliseconds. If the average task
duration is assumed to be 2 milliseconds, then 600000 time
steps would be on the order of 600 seconds, which is not too
long.

We have also evaluated a learning approach that is similar
in spirit to the Policy Iteration (PI) RL approach developed
by Ronald Howard [5]. In this approach, the SlowestUser
benchmark policy would first be executed for 200000 time
steps (policy iteration 0), and the parameter vector pj,0 would
be updated for each node j using the procedure described
in equation (6). During the next 200000 time steps (policy
iteration 1), the user migration decisions would be performed
using the migration criterion (7) based on Ĉj(sj , pj,0) as
the cost function for each node j, while at the same time

using equation (6) to update a new parameter vector pj,1.
During the next 200000 time steps (policy iteration 2), the user
migration decisions would be performed using the migration
criterion (7) based on Ĉj(sj , pj,1) as the cost function for
each node j, while at the same time using equation (6) to
update a new parameter vector pj,2. At the end of the learning
process (which consisted of policy iterations 0, 1, and 2), a
testing phase of 200000 time steps would be executed, during
which the user migration decisions would be performed using
the migration criterion (7) based on Ĉj(sj , pj,2) as the cost
function for each node j. This PI approach is supposed to
be more stable than the online RL that we described earlier,
but we found that as the average number of users per node
increased in the network, the PI approach “blew up” earlier
than the online RL approach (stopped being able to converge
to user migration policies that allowed the network to process
all tasks that were generated without the task queues blowing
up). Therefore, we choose the online RL approach as the
“reference” learning approach in Section VII.

VII. SIMULATION EXPERIMENTS

Performance of the distributed RL approach described in
Section V for learning user migration policies was evaluated
by comparing it with the optimal static user allocation pol-
icy and with the SlowestUser benchmark migration policy
described in Section VI-A.

The tasks for each user were generated (and placed in that
user’s task queue) using a Poisson stochastic process, where
the task generation rate for each user j was a linear function
rj = a1 + ρ · b1 · (LocalLinksj + GlobalLinksj), where
a1 = 1, b1 = 0.1 and ρ is a variable parameter whose impact
is described below. We have also simulated a heavy-tailed
process, where the number of tasks generated per time step
was rj ·k with probability 1/k, where k is an integer randomly
sampled from a uniform distribution on {1, 2, ..., 25}. The
results for the heavy-tailed case were almost identical to those
in the Poisson case when the process parameters were chosen
so that the average number of tasks generated per time step
was the same in each case. Therefore, we chose to present the
results for only one case – Poisson task generation process.

When a task for user j was scheduled, its execution time
was determined as Tj = X + Yj + Zj , where X is a
random integer from the set {1, 2, 3}, Yj = 1 with proba-
bility GlobalLinksj/(LocalLinksj + GlobalLinksj) and 0
otherwise (so that that tasks that need to access many remote
objects take longer to execute), and Zj = 1 if the user j is
not on its KeyNode and is 0 otherwise.

Figure 1 shows the average task response times (over all
tasks executed in the network during the testing period) of dif-
ferent policies for the simple scenario of 15 users migrating in
a network of 5 nodes, with the task generation rate parameter
ρ (described above) being plotted on the x-axis. The figure
shows that the relative advantage of the user migration policy
based on RL-tuned cost functions increases as the system load
increases. This is a natural result for a queuing system, since
the expected queue length grows to infinity if the task service



Fig. 1. Average task response time for 15 users on 5 nodes as a function of
the task generation rate

Fig. 2. Average task response time as a function of the number of nodes in
the network if Users/Nodes=3

rate becomes less than or equal to the task arrival rate due
to suboptimal scheduling/load balancing decisions. It is worth
noting that the RL-based policy migrated during the testing
period only 0.3% of tasks (that were in the task queue of the
user being migrated) in the low load scenario and 6% of tasks
in the high load scenario, which shows that a small amount of
smart migration is sufficient to obtain large benefits in DVEs.

Figure 2 plots the average task response time for different
policies as a function of the total number of nodes in the
network while the average number of users per node was kept
at 3 and the tasks for each user were generated using the
Poisson process with the ρ parameter fixed at 0.1. This figure
shows that the average task response time increases for all
policies as the total number of nodes increases. This is so
because the average task execution time for each user increases
when the number of network node increases, since each user’s
chance of being located on its KeyNode decreases, its expected
ratio of GlobalLinks to LocalLinks increases, and the task
generation rate rj = a1+ρ·b1·(LocalLinksj+GlobalLinksj)
increases.

Figure 3 plots the average task response time for different
policies as a function of the number of users in our test
network of 5 nodes. As expected, as the number of users
increases, the average task response time for all policies

Fig. 3. Average task response time as a function of the number of users for
5 nodes.

Fig. 4. Parameter values learned by RL for 12 nodes, 36 users, and task rate
= 0.1

increases because more tasks need to be processed on each
node. The RL policy scales much better than the other two
policies because it learns to migrate the users appropriately
and keep the computational load on each node to a minimum.

In order to get a better idea of what the RL policy has
learned, Figure 4 shows the final parameter values at the end
of the learning process for the case corresponding to the last
data point in Figure 2, where the network consisted of 12
nodes and 36 users, with the task generation rate parameter of
0.1. “SumA” and “LR” for each rule i are, correspondingly,∑t
τ=0 φ

i(sτ ) and αit, whose computation was explained at
the beginning of Section VI-B. The parameter values are
all negative because the average cost per time step in our
implementation adapts slower than the parameter values (and
hence the policy for making migrations), implying that the
difference c(st, π(st), st+1) − ρt in equation (3) is always
negative (initially ρt is pretty large because the SlowestUser
policy is used for the first 30000 time steps, as was described
in Section VI-B). As one can see from Figure 4, the RL policy
learns that a smaller average cost per time step will be obtained
in states where each state variable s[j] is small and hence
the neurons φi(s) composed mostly of “falling” functions are
activated to a larger extent than those composed mostly of



the “rising” functions, as was explained in Section V-A. This
corresponds to the intuition stated in Section V-B about the
cost function being increasing in each state variable.

Finally, we would like to point out that if the task generation
rate multiple is reduced below the one we used in our
experiments and if it is assumed to scale slower as the total
number of communication links for each user increases, then
all considered user migration policies will be able to keep the
average task response time stable when more nodes and users
are present in the network.

VIII. CONCLUSIONS

This paper presented an adaptive distributed and scalable
user migration framework for a distributed virtual environ-
ment, where each network node uses Reinforcement Learning
to tune its migration policy so as to minimize the average
task response time in the whole network. During experimental
evaluation, the proposed framework has outperformed all
considered benchmark policies, with performance difference
increasing as the network became more overloaded. The
distributed reinforcement learning framework for tuning user
migration policies presented in this paper is very general and
can apply to many other DVEs besides the one considered in
this paper, with a virtual machine (VM) migration in a data
center being another very important potential application area.
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