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Abstract
Conditional constant propagation is a compiler optimiza-

tion that detects and propagates constant values for expres-

sions in the input program taking unreachable branches

into account. It uses a data flow analysis that traverses the

program’s control flow graph to discover instructions that

produce constant values.

In this paper we document our work to adapt conditional

constant propagation to the Sea of Nodes program repre-

sentation of GraalVM. In the Sea of Nodes, the program is

represented as a graph in which most nodes ‘float’ and are

only restricted by data flow edges. Classical data flow anal-

ysis is not possible in this setting because most operations

are not ordered and not assigned to basic blocks.

We present a novel approach to data flow analysis opti-

mized for the Sea of Nodes. The analysis starts from known

constant nodes in the graph and propagates information

directly along data flow edges. Most nodes in the graph

can never contribute new constants and are therefore never

visited, a property we call lazy iteration. Dependences on

control flow are taken into account by evaluating SSA 𝜙

nodes in a particular order according to a carefully defined

priority metric.

Our analysis is implemented in the GraalVM compiler.

Experiments on the Renaissance benchmark suite show that

lazy iteration only visits 20.5 % of all nodes in the graph.

With the constants and unreachable branches found by our

analysis, and previously undetected by the GraalVM com-

piler, we achieve an average speedup of 1.4 % over GraalVM’s

optimized baseline.

CCS Concepts: • Software and its engineering→ Just-
in-time compilers; Dynamic compilers; Correctness.
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1 Introduction
Constant Propagation is a compiler optimization that tries

to perform as many calculations as possible at compile time,

minimizing execution time by not needing to calculate those

values at run time. Because detecting every compile time

constant is generally an undecidable problem [5], the best

one can do is to employ an algorithm with reasonable time

complexity that, although not finding every possible con-

stant, finds most constants and does so without reporting

non-constant values as constant.

The state of the art in constant propagation isWegman and

Zadeck’s Sparse Conditional Constant (SCC) algorithm [7].

It uses a data flow analysis on a program represented as a

control flow graph (CFG) consisting of basic blocks of instruc-

tions in Static Single Assignment (SSA) form [3]. The analysis

is sparse as it exploits SSA form to associate constants found

with SSA variables, as opposed to earlier non-SSA algorithms

which associated analysis results with pairs of variables and

program points. SCC is conditional in that the found con-

stants are also taken into account when evaluating branch

conditions and to mark unreachable program paths which

do not need to be analyzed. Skipping unreachable paths, in

turn, allows finding more constants, so that this composi-

tion of simple constant propagation and unreachable code

elimination is more powerful than arbitrary iterations of the

separate analyses [1].

In this work we adapt sparse conditional constant prop-

agation to the Sea of Nodes program representation in the

GraalVM compiler (see Section 2.3). Graal IR is in SSA form,

but most instructions ‘float’ rather than being assigned to

specific basic blocks [4]. While SCC propagates values across

the SSA data flow graph, it also needs the CFG for marking

control flow edges as reachable or unreachable, and for visit-

ing all instructions in a block. Our algorithm also propagates
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values over the data flow edges of the Graal IR graph, but

control flow reachability is propagated differently.

The main contributions of this work are:

• Data flow analysis using lazy iteration: Most nodes in

the IR graph never need to be visited because they will

never produce a constant, even if they can be executed.

This is in contrast to Wegman and Zadeck’s algorithm,

which needs to visit every reachable instruction in the

program.

• The worklist priority ordering: Optimistic data flow

analysis using lazy iteration is only correct if SSA 𝜙

nodes are visited in a particular order, for which we

developed a priority ordering (Section 3.5.2).

We present experimental data that shows that lazy itera-

tion is very effective, visiting only 20.5 % of all nodes in the IR

on average. It finds new constants not previously detected by

the GraalVM compiler, which only features a non-optimistic

version of constant propagation that does not compute opti-

mistic fixed points over loops. The detected constants and

unreachable CFG edges lead to an average speedup of 1.4 %

on the standard Renaissance benchmark suite.

2 Background
2.1 Sparse Conditional Constant Propagation
The following summary of sparse conditional constant prop-

agation is based on Wegman and Zadeck [7].

0. . . -1 . . .1

Figure 1. Three-tier value lattice.

SCC uses a three-tier data flow lattice shown in Figure 1.

The lattice element for each variable is initially ⊤, represent-
ing a value that is yet unknown but may be determined to

be a constant by the analysis. The constant elements in the

middle tier represent values that will always evaluate to the

given constant at runtime. The ⊥ element denotes values

for which the analysis cannot guarantee a constant value.

Lattice values are combined using the meet (greatest lower

bound, ⊓) operation. Thus values can only be ‘lowered’ until

a fixed point is reached.

The analysis tracks reachability of CFG edges using a

two-tiered lattice, initially assuming that all edges are un-

reachable. At a control flow split, the analysis evaluates the

split condition using its current information. Depending on

whether the result is constant or not, only one or all outgoing

control flow edges are marked as reachable and enqueued in

Listing 1. Example of optimistic conditional constant propa-

gation [1]. The if-branch inside the loop is never taken, and

the function always returns 1.

public static int exampleCC(int a) {

int x = 1;

do {

if (x != 1) {

x = 2;

}

} while (a-- >= 1);

return x;

}

a worklist for further iteration. Once a CFG edge is marked

as reachable, it cannot become unreachable again.

Sparse conditional constant propagation is an optimistic

analysis: When a control flow join point is reached but anal-

ysis information for some of the control flow predecessors is

not yet available, the analysis can optimistically assume that

the corresponding 𝜙 inputs are ⊤ and continue propagat-

ing information under this assumption. If the corresponding

control flow paths are reachable, the algorithm guarantees

that they will be traversed by the analysis at some point. If

at that point the analysis provides a new value for a 𝜙 input,

the optimistic assumption is invalidated, and program parts

are re-analyzed with the new, lowered, information.

Optimistic analyses can discover more information than

pessimistic ones, but they can only guarantee correctness

if the analysis runs to completion, while pessimistic analy-

sis can be interrupted at any time and still provide correct

information [1]. Sparse conditional constant propagation

is optimistic and integrates constant propagation with the

analysis of unreachable code: Unreachable code paths are

never analyzed and, by being associated with ⊤ data flow

information, do not affect the analysis at all.

Listing 1 shows a small example adapted from [1] for

a constant that cannot be found by any sequence of dead

code elimination and simple constant propagation but can be

found by conditional constant propagation. This is because

of a cyclic dependency between data flow and control flow

analysis. To detect x as constant, it must be known that the

assignment statement x = 2 is unreachable. To detect this

statement as unreachable, it must be known that x is con-

stant. This constant can only be found by first optimistically

assuming x to be constant and subsequently verifying that

the assumption was correct.

2.2 GraalVM
GraalVM

1
is a high-performance polyglot virtual machine.

It executes programs written in Java, other languages that

1https://www.graalvm.org/
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compile to JVM bytecode, and any other programming lan-

guage implemented using GraalVM’s Truffle language imple-

mentation framework. All input languages are transformed

into a uniform internal representation and compiled to high-

performance native code by the GraalVM compiler. GraalVM

supports both just-in-time (JIT) and ahead-of-time (AOT)

compilation of JVM languages.

2.3 Graal IR
The GraalVM compiler’s intermediate representation (Graal

IR) [4] is based on the Sea of Nodes concept [1]. This IR
represents a program as a directed graph. Each node in the

graph represents an operation. Edges between the nodes

represent data and control dependences. Nodes are doubly-

linked, i. e., from each node we can iterate efficiently both

over its inputs and its usages.

Control flow edges only exist between so-called fixed
nodes that must be strictly ordered because they have side

effects (e. g., memory writes or method calls) or because

they represent control flow transfers (branches, operations

raising exceptions, or control flow merge points). All other

nodes are floating nodes that are only constrained by data

flow dependences. Floating nodes that are not connected

via dependences are not ordered with respect to each other.

Floating nodes are not assigned to any particular basic block.

For final code generation and for certain optimizations, the

GraalVM compiler computes a full schedule of the graph

which assigns all nodes to blocks and imposes a strict order

on them. Scheduling is an expensive operation, therefore

most optimizations should work without a schedule.

Loops in the input program must be reducible, i. e., have a
single loop entry. Graal IR uses a LoopBegin node to repre-

sent this entry point. Exits from the loop are represented as

LoopExit nodes, and backedges are represented by LoopEnd
nodes. Two-way control flow splits are represented as If
nodes (multi-way Switch nodes are also available). The

merging of control flow paths except loop backedges is rep-

resented as Merge nodes.
Graal IR uses SSA form, with 𝜙 nodes at loop begin and

merge nodes, with one input per control flow predecessor.

A 𝜙 node is a floating node but is connected to its fixed

merge point by a control dependence edge. At a loop begin,

the 𝜙 ’s first input is always the initial value on loop entry.

At the point in the compilation pipeline when our constant

propagation runs, the graph is in loop-closed SSA form: Values

defined inside a loop must not be used directly outside the

loop. Instead, special proxy nodes at loop exits mark the

points where a value flows out of the loop.

Figure 2 shows a slightly simplified Graal IR generated

for the method from Listing 1. In calculations, a constant

input is directly shown in the node instead of connecting

the node to the appropriate constant node in order to reduce

the number of edges in the figure.

LoopBegin

If

LoopExitBegin

LoopEnd

Return

ValueProxy

If

Merge

Begin Begin

End End

Phi (x')

Phi (x)

C(1)

C(2)

!= 1

Phi (a)

- 1

P(a)

>= 1

B0

B1

B2 B3

B4

B5

Start

B6

Figure 2. IR for the example presented in Listing 1.

A red dotted downward arrow represents a control flow

successor, a black upward arrow depicts a control depen-

dence, while a blue upward arrow with an empty head repre-

sents a data dependence. All nodes with rounded corners are

fixed nodes and can therefore be directly attributed to a basic

block, denoted by a dashed green outline enclosing multiple

nodes. All nodes with sharp corners are floating nodes. Light

gray nodes denote constants (C) or method parameters (P).
The LoopEnd node causes a jump back up to the LoopBegin

node with which it is connected via a control dependence

edge. The LoopExit node denotes control flow leaving the

associated loop. ValueProxy nodes, which are connected

with a loop exit, are inserted for values used inside the loop

before any usage outside the loop.

The GraalVM compiler already performs constant propa-

gation, but does not compute optimistic fixed points for loops.

It also includes a general data flow analysis framework, but

only for fixed nodes. This is sufficient for implementing its
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Partial Escape Analysis [6] but is not appropriate for anal-

yses that reason about floating arithmetic nodes, as would

be needed for constant propagation. The GraalVM compiler

currently has no data flow analysis framework that would

take floating nodes into account. This work is the first step

in a project to formulate such a general framework without

needing to compute a schedule of the graph.

3 Approach
The approach presented in this paper aims to minimize anal-

ysis time of the graph by only lazily iterating over the parts

of the graph relevant for finding constants while maintaining

the power of Conditional Constant Propagation (CCP). This

is in stark contrast to previous algorithms like Sparse Condi-
tional Constant Propagation (SCCP) and Sparse Simple Con-
stant Propagation (SSCP) which evaluate the entire (reachable
portion of) the graph [7]. Additionally, while SCCP in the

form described in the paper by Wegman and Zadeck [7]

would require us to calculate a full schedule and to subse-

quently iterate over the entire reachable portion of the graph,

our Lazy Sparse Conditional Constant Propagation (LSCCP)

algorithm works directly on an unscheduled version of the

Sea of Nodes representation.

Leaving parts of the graph unevaluated means that LSCCP

needs to deal with unevaluated values as inputs for nodes

and cannot assume that such nodes will be analyzed again

later when complete information about all reachable inputs

is available. Thus it needs to discern whether an input is

unevaluated because the analysis has not reached it yet, or

because this input will never generate a constant value and

will therefore never be evaluated throughout the analysis.

The idea to mitigate this problem is to generally evaluate

the program graph in a forward traversal order consistent

with the order of execution which we refer to as a ‘top-down’

order (Section 3.5). This allows assumptions substituting

missing information about inputs to be made safely.

Since LSCCP operates on an unscheduled Sea of Nodes

representation where no global order of operations is known,

we designed a priority metric for the work list based only on

the available information. The priority metric enforces an

order at critical points of the analysis where value flow anal-

ysis and reachability analysis influence each other (𝜙 nodes

and control split nodes). This allows value flow analysis and

reachability analysis to be kept up to date with each other

to provide each other with the best information possible.

Unlike classical data flow analysis where the order of

evaluation is only relevant for the speed of the analysis, in

our algorithm the order in which nodes are evaluated is

essential for correctness.

3.1 Evaluation Domains
LSCCP uses two separate lattices to represent information

in its value flow and reachability analysis respectively.

Value lattice. Values are represented by a lattice as in

SCC. To avoid confusion with the values of the reachability

lattice, we refer to the value lattice’s ⊤ element as UNSEEN
(no value known yet), the middle tier values as CONSTANT,
and the ⊥ element as UNRESTRICTED (no constant can be

guaranteed). We use the name UNSEEN as a shorthand: It de-

notes both nodes that have never been visited by the analysis

as well as nodes that have been visited but that have UNSEEN
inputs.

Reachability lattice. In LSCCP all CFG edges are an-

notated with a reachability. Unlike SCC’s two-tiered CFG

reachability lattice, our reachability lattice contains three

elements: UNKNOWN (⊤), UNREACHABLE and REACHABLE (⊥).
Using a lattice we can use logic in the reachability analysis

that is similar to the value flow analysis when dealing with

unevaluated inputs.

3.2 General Value Propagation
Initially all nodes in the graph are marked as UNSEEN. Due
to the fact that value propagation starts at constants and

not the CFG entry, evaluation may hit cases where a node’s

input is UNSEENwhile it would be UNRESTRICTED if the input
had been evaluated.

For example, consider evaluating the inequality check

node representing the comparison Phi(𝑥) ≠ 1 in the graph

in Figure 2. The first time we encounter this node in the

analysis, one input is a constant 1 while the other input

(Phi(𝑥)) is still UNSEEN. We do not want to prematurely lower

this to UNRESTRICTED since the UNSEEN input will become a

constant later on, in which case we will want to produce a

constant value for this node.

When visiting such a node, we treat all UNSEEN inputs

as UNRESTRICTED. This still allows us to correctly treat an

expression like a * b as 0 if a has been evaluated to 0 while b
is still marked as UNSEEN. However, if any input was UNSEEN
and the result of the visit would be UNRESTRICTED, we still
propagate an UNSEEN result to signal that the result may be

lowered to a constant later.

This allows us the flexibility to revisit nodes while pre-

serving the overall invariant that a node’s lattice value may

only change to a lower value. In contrast to SCCP, an UNSEEN
value for a node does not imply that the node has not been

visited by the analysis yet.

3.3 Handling of 𝜙 nodes
The evaluation of 𝜙 nodes depends on both the value lattice

elements for the 𝜙 ’s inputs and the reachability lattice ele-

ment of the control flow edge associated with each input. For

inputs coming from edges marked UNKNOWN, an assumption

needs to be taken to evaluate the 𝜙 node. In general, a 𝜙

node can be evaluated using a pessimistic or an optimistic as-
sumption regarding reachability. This means that incoming

control flow edges with UNKNOWN reachability can be either

5
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pessimistically interpreted as REACHABLE or optimistically

interpreted as UNREACHABLE. A pessimistic assumption only

retains maximum precision when we are sure that UNKNOWN
edges will not be lowered to UNREACHABLE in the future.

3.3.1 Straight-Line𝜙 nodes. Generally non-loop𝜙 nodes

are evaluated pessimistically. The top-down order of evaluat-

ing the graph ensures that the reachability information has

already been calculated when evaluating the 𝜙 node, given

that this 𝜙 node does not depend on backedges for which

reachability can not yet be known and is subject to change.

To show why we need pessimistic evaluation here, consider

the following structure inside a loop:

if (condition)

if (true)

x1 = 1;

else

x2 = 2;

else

x3 = 3;

x4 = 𝜙(x1, x2, x3);

Here condition is not constant and will never be visited

by our analysis because it cannot be evaluated at compile

time, thereby leaving the reachability of the x3 input of the 𝜙
instruction UNKNOWN. The inner condition can be evaluated,

leaving x1 as REACHABLE and x2 as UNREACHABLE. If we now
optimistically assumed x3 to be UNREACHABLE, we would

propagate the constant 1 into x4 which is an incorrect result.

We would not recover from this mistake because condition
will stay unevaluated throughout the analysis, thereby not

triggering a reevaluation.

For a pessimistic evaluation to be admissible, it is required

that UNKNOWN inputs are stable, which is the case for straight-

line 𝜙 nodes as described in Section 4.2.

3.3.2 Loop 𝜙 nodes. Our handling of loop 𝜙 nodes com-

bines both optimistic and pessimistic evaluation: We treat

them optimistically when first entering a loop, but pessimisti-

cally after visiting the loop body.

In contrast to non-loop 𝜙 nodes, final reachability infor-

mation for loop 𝜙 nodes is not yet available when a loop 𝜙 is

evaluated for the first time when reaching a loop begin node.

As the running example from Listing 1 demonstrates, a pes-

simistic assumption at this point would lose precision: Evalu-

ating 𝑃ℎ𝑖 (𝑥) pessimistically would never allow the CONSTANT
1 to enter the loop, thereby inhibiting the path through B2

to be found unreachable. This discovery is needed, however,

to conclude that x is not modified inside the loop. Therefore,

the loop 𝜙 must be evaluated optimistically to find that x is

constant.

On the other hand, SCCP’s optimistic analysis relies on

the fact that every reachable block in the program will be

visited, and every reachable control flow edge will be explic-

itly marked as reachable during the analysis. This allows the

analysis to find the final value for a loop 𝜙 once the reach-

ability information has stabilized. We cannot do the same

kind of optimistic analysis since our analysis does not visit

and mark all reachable control flow edges.

Therefore, we handle loop 𝜙 nodes as follows: When a

loop is first entered, the loop begin’s 𝜙 nodes are evaluated

optimistically. This means that we assume that any UNKNOWN
backedge may in fact be unreachable, and we ignore the

associated input values. This allows us to propagate any

constants entering the loop into the first loop iteration. At

the same time, we schedule any loop 𝜙 with a not-UNSEEN
lattice value for reevaluation after the entire loop (see Sec-

tion 3.5.2). The organization of the worklist guarantees that

the entire body is evaluated as far as possible before revisit-

ing the loop 𝜙 nodes. At this point, the reachability of any

UNKNOWN loop ends is guaranteed to be final (Section 4.2), and
the loop 𝜙 node can safely be evaluated pessimistically, i. e.,

assuming that any still UNKNOWN backedge is now reachable.
This may replace optimistically assumed constant values

with the correct UNRESTRICTED value.

3.4 Reachability Propagation
To detect conditional constants, in addition to value flow,

reachability needs to be taken into account. This information

is tracked on a per edge basis because tracking it on a per

block basis can lead to imprecisions, inhibiting detection

of constants as shown by Click [1]. Processing, however, is

done on blocks instead of edges by taking the reachabilities

of the block’s predecessor edges and its input values into

account to calculate the reachability of its successor edges.

For a block to be considered reachable, it either has to

be the start block of the CFG, or it has to have at least one

predecessor edge that is not marked as UNREACHABLE. We can

ignore backedges in this case because they can only occur

on loop begins which have to be traversed to reach these

backedges in the first place.

If a block has more than one successor, it must end with a

control split node. In this case, the control split node is eval-

uated given its inputs and the successor edges are marked

with the appropriate reachability lattice element. Similar to

value flow explained in Section 3.2, immediately lowering

successor edges from UNKNOWN to REACHABLE while prede-

cessor edges are still UNKNOWN may inhibit future discovery

of UNREACHABLE edges later on. Therefore, if an edge is con-

sidered reachable while predecessor edges are still UNKNOWN,
we propagate UNKNOWN to signal that this edge might still be

lowered later on.

To ensure that the control split nodes to be evaluated

do in fact have up-to-date information from the value flow

analysis, instead of immediately propagating reachability

through them, they are scheduled using the worklist. While

propagating reachability along the CFG, the reachability of

6
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input edges of 𝜙 nodes may change. This new information

triggers a reevaluation of all affected 𝜙 nodes.

3.5 Top-Down Analysis of the Graph
LSCCP evaluates nodes directly involved or closely related

to control flow (such as 𝜙 nodes) in a forward traversal order

consistent with the order of execution. Loops are analyzed to

completion before information is propagated out of the loop,

and predecessor blocks of control flow merges are evaluated

before the merge. It creates conditions suitable for making

assumptions about unevaluated inputs and to ensure that

the best correct result can be calculated. This is achieved by

the use of a priority-ordered worklist.

In the presentation that follows, lower numeric values

denote higher priorities.

3.5.1 Base Priority Metric. In a quick pass over the CFG,

a base priority is calculated for each block. This base priority

is based on the minimal visit depth of a CFG block in a re-

verse postorder traversal [2]. A block’s depth is calculated by

incrementing the maximum of the depths of its predecessors

by 1, ignoring loop backedges. The start block has a depth

of 0.

The LSCCP base priority metric follows the same structure

but extends it by adding one extra condition: If a block is a

loop exit, its base priority does not only depend on its im-

mediate predecessors but also all loop ends of the associated

loop. All these loop ends are therefore regarded as predeces-

sors of the loop exit while calculating the base priority. This

effectively moves the loop exit below the entire loop in the

priority.

B1

B2 B3

B4

B5

B6

0

1

2

3

4

B0

5

Figure 3. CFG for the IR presented in Figure 2.

Recalling the example introduced in Section 2.1, Figure 3

depicts the CFG from Figure 2. To the right of the CFG, the

base priority of the blocks in the given line is given. Blocks

that do not affect each other (in this example B2 and B3) can

have the same base priority since the order in which they

are processed does not affect the result of the analysis. The

loop exit block B6 has a lower priority than any block in

the loop, including the backedge block B5. This ensures that

the loop is fully evaluated before evaluating any usages of

values which depend on the given loop.

3.5.2 Priority-Ordered worklist. LSCCP uses a single

priority-orderedworklist for both value flow and reachability

analysis. This worklist internally consists of two queues.

The first one is an unordered queue used for scheduling

pure value flow nodes, such as arithmetic nodes. Elements

are first removed from the unordered queue. Only if this

queue is empty are elements from the second queue taken.

Whenever a node from either worklist is visited, its usages

are enqueued in the appropriate worklists if the analysis

information associated with the current node changed.

This second queue is a priority queue. Elements are visited

highest priority first (lowerst numeric priority value first).

BEGIN BODY SPLIT RE-PHI

Base Priority Class nClass n-1 Class n+1

......

n 4+1 n 4+2 n 4+3n 4

BEGINRE-PHI

Figure 4. Internal layout of a block’s base priority class.

The actual priorities used in the second queue are laid out

as presented in figure 4. To maintain an approximation of the

order of nodes within a basic block, the block’s base priority

𝑛 is quadrupled to allow us four priority classes per block. A
priority class is a set (an equivalence class) of nodes with

the same numeric priority value. We are not interested in

the ordering of nodes within a priority class, and we do not

need to represent the classes as explicit data structures. We

only need nodes in higher-priority classes to be processed

before nodes in lower-priority classes, which is ensured by

the queue.

Nodes at the start of a CFG block and 𝜙 nodes are sched-

uled in the BEGIN class of their block’s base priority class to

ensure they are processed before any nodes in the current

block that might use the value produced by this node.

Normal fixed nodes that can produce constant values (e. g.,

fixed division nodes that may raise an exception) are then

scheduled using the BODY class. Finally, control split nodes

that terminate blocks are scheduled after all fixed nodes

in a block in the SPLIT class to ensure that all values that

originate in the current block, in particular the condition

controlling the split, are evaluated before the split itself.

In addition to scheduling a node given its base priority

and position within a block, the worklist offers a second

scheduling mode for 𝜙 nodes on loop begins (loop 𝜙 nodes

for short). As will be discussed below (Section 3.3.2), loop 𝜙

nodes must be re-evaluated after the loop body has been

fully evaluated. Therefore every loop 𝜙 is scheduled again in

the RE-PHI class in the loop’s last loop end (backedge) block

in the priority queue.

7
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Recalling the IR graph from Figure 2, Phi(𝑥) is initially
scheduled with priority 4, which is the BEGIN class of the

base priority class 1 of its associated loop begin. Scheduling

the If node with the condition x==1 shows why maintaining

an order within a basic block is necessary. The If node uses

a value which depends on Phi(𝑥) in the same basic block.

Therefore the If needs to be evaluated after the given 𝜙

node in the SPLIT class, resulting in a scheduling priority

of 6. To reschedule Phi(𝑥), we first obtain the maximum base

priority class of any associated loop end (which is 4 for B5).

Then, to ensure we capture all values produced by this block,

we schedule it using the RE-PHI class resulting in an effective
priority of 19.

If the node Phi(𝑎) were ever to be scheduled, it would

receive the same priority as Phi(𝑥) because their relative

positions in the graph are the same. This collision does not

matter: Control split nodes and𝜙 nodes that receive the same

priority are guaranteed to be independent and can therefore

be evaluated in any order. In practice, the data structure used

is a priority queue, therefore nodes with the same priority

are evaluated in a first-in-first-out manner.

The worklist keeps track of currently scheduled nodes,

ensuring each node only exists in the list once. If a node is

trying to be scheduled a second time with a different priority,

the original priority is kept.

Overall our priority-ordered worklist captures the same

relative ordering information between nodes that we would

need from a schedule of the graph. However, as we only

need ordering information between certain fixed nodes and𝜙

nodes, and as nodes are only added to the priority queue on

demand as required by the analysis, the computation of this

ordering information is much cheaper than the computation

of a full schedule.

3.6 Putting Everything Together
Finally, we present the full Lazy Sparse Conditional Constant

Propagation in Algorithm 1.

We start by setting the value lattice elements of all nodes

(denoted by 𝜆(𝑛𝑜𝑑𝑒)) to UNSEEN and the reachability lattice

elements of all CFG edges (denoted by Λ(𝑒𝑑𝑔𝑒)) to UNKNOWN.
Then we initialize the worklist with all constant nodes in the

graph. LSCCP processes nodes until the worklist is empty.

Finally, we replace all nodes for which we found new con-

stants.

3.7 Example of LSCCP analysis
In this section we present a full run of LSCCP on the running

example program with its graph shown in Figure 2. Table 1

shows the states of the worklist throughout the example

run. The worklist is separated into the value queue holding

floating arithmetic nodes, and the priority queue holding

fixed nodes as well as 𝜙 and proxy nodes.

Algorithm 1 LSCCP

1: procedure LSCCP
2: initialize all nodes with UNSEEN
3: initialize all CFG edges with UNKNOWN
4: initialize worklist with all constants

5: while worklist has items do
6: 𝑐 ← worklist .next ()
7: if 𝑐 is a 𝜙-node then
8: ProcessPhi(𝑐)

9: else if 𝑐 is a control flow node then
10: ProcessControlFlowNode(𝑐)

11: else
12: ProcessValueFlowNode(𝑐)

13: replace all nodes found to be constant

14: procedure ProcessPhi(𝑝ℎ𝑖)
15: if 𝑝ℎ𝑖 is a loop 𝜙 node ∧ 𝜆(phi) = UNSEEN then
16: 𝑛𝑒𝑤 ← 𝜆(first input of phi)
17: reschedule phi if lowered
18: else
19: 𝑛𝑒𝑤 ← meet(𝜆(reachable inputs of phi))
20: UpdateValueLatticeElement(phi, new)
21: procedure ProcessControlFlowNode(flow)
22: for all 𝑒 in successor edges of flow do
23: if CFG block of flow is reachable then
24: new ← true if flow is no control split or 𝑒

is reachable according to

𝜆(flow.condition) else false
25: else
26: new ← false
27: UpdateReachability(𝑒, new)
28: procedure ProcessValueFlowNode(val)
29: new ← evaluation of val given its inputs

30: UpdateValueLatticeElement(val, new)

31: procedure UpdateValueLatticeElement(node, elem)

32: if elem < 𝜆(node) then
33: 𝜆(node) ← elem
34: schedule usages of node
35: procedure UpdateReachability(edge, reachable)
36: target ← target of 𝑒

37: if reachable is false then
38: new ← UNREACHABLE
39: else if Λ(𝑒) = UNREACHABLE then
40: new ← REACHABLE
41: else return
42: Λ(edge) ← new
43: schedule 𝜙-nodes at the start of target
44: schedule target

8
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Table 1. Worklist states throughout the example run

Step Current Node Evaluation result Value Queue (after) Priority Queue (after)

0 (initial state) C(1), C(2)

1 C(1) 1 C(2), ≠1, -1, ≥1 4: 𝑃ℎ𝑖 (𝑥)
2 C(2) 2 ≠1, -1, ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
3 ≠1 UNSEEN -1, ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
4 -1 UNSEEN ≥1 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
5 ≥1 UNSEEN 4: 𝑃ℎ𝑖 (𝑥), 12: 𝑃ℎ𝑖 (𝑥 ′)
6 𝑃ℎ𝑖 (𝑥) 1 ≠1 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
7 ≠1 true 6: If(B1), 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
8 If(B1) Λ(B1→ B2) := UNREACHABLE 8: Begin(B2), 12: 𝑃ℎ𝑖 (𝑥 ′), 19: 𝑃ℎ𝑖 (𝑥)
9 Begin(B2) Λ(B2→ B4) := UNREACHABLE 12: 𝑃ℎ𝑖 (𝑥 ′), 15: If(B4), 19: 𝑃ℎ𝑖 (𝑥)
10 𝑃ℎ𝑖 (𝑥 ′) 1 15: If(B4), 19: 𝑃ℎ𝑖 (𝑥), 20: ValueProxy
11 If(B4) 19: 𝑃ℎ𝑖 (𝑥), 20: ValueProxy
12 𝑃ℎ𝑖 (𝑥) 1 20: ValueProxy

13 ValueProxy 1 21: Return

14 Return

Steps 0–2. First we start by adding the two constant nodes
C(1) and C(2) to the worklist. As these nodes are neither

fixed nodes nor 𝜙 nodes, they are inserted into the value

queue of the worklist. Now we remove C(1) from the work-

list, set its value to a CONSTANT 1 and schedule all its usages.

The inequality, subtract and greater-equal nodes are sched-

uled in the value queue of the worklist (recall that for brevity

the usage of C(1) in these nodes was not indicated by edges),

while Phi(𝑥) is scheduled in the priority queue with priority

4 (= 1 · 4 + 0, see Section 3.5.2). Evaluating C(2) similarly

causes its value to be set to a CONSTANT 2, and its usage

Phi(𝑥 ′) is scheduled with priority 12 (= 3 · 4 + 0).

Steps 3–5. Evaluating the previously scheduled inequal-

ity, subtract and greater-equal nodes yields UNSEEN: Each of

these nodes has one UNSEEN and one constant input. Eval-

uation results in an unknown value which is propagated

as UNSEEN to signal the possibility that the value may still

become a constant in the future (see Section 3.2). Because

this does not change the lattice values for these nodes, their

usages are not scheduled.

Step 6. Now the value queue of the worklist is empty,

therefore we remove the first element of the priority queue,

which is Phi(𝑥). As explained in Section 3.3.2, we optimisti-

cally assume the second input of Phi(𝑥) to be UNREACHABLE
and propagate the CONSTANT 1 through this node. To check

this assumption later on, we reschedule Phi(𝑥) with priority

19 (= 4 · 4+3). Because we lowered the value of Phi(𝑥), all its
usages will be scheduled, causing the inequality and Phi(𝑥 ′)
to be scheduled. Since Phi(𝑥 ′) already exists in the worklist,

it is not inserted a second time (see Section 3.5.2).

Step 7. The next node to be evaluated is the inequality

node. This node now has two constant inputs and can be

evaluated to a CONSTANT true, scheduling the associated If
node with priority 6 (= 1 · 4 + 2).

Steps 8–9. Evaluating the If node scheduled right before,

we see that the false branch of this condition is unreachable

because of the CONSTANT true input. Therefore, we set the
edge from B1 to B2 to UNREACHABLE and schedule the begin

node of B2 with priority 8 (= 2 · 4 + 0) to represent the entire
block for reachability analysis, see Section 3.6. This node

is immediately removed from the worklist and since the

only predecessor edge is UNREACHABLE, the successor edge
from B2 to B4 is marked UNREACHABLE and the If node at

the end of B4 is scheduled (see Section 3.6) with priority

15 (= 3 · 4 + 3) to represent B4 for reachability analysis.

Additionally, 𝑃ℎ𝑖 (𝑥 ′) at the start of B4 would be scheduled

if it were not already in the worklist.

Step 10. Now Phi(𝑥 ′) is the next node to be evaluated. Its

inputs are a CONSTANT 2 on the first input and a CONSTANT 1

on the second input. However, the first input value is con-

sidered unreachable because it corresponds to the CFG edge

from B2 to B4, therefore the CONSTANT 1 from the second

input can be propagated. We would schedule its usage (i.e.

the loop Phi(𝑥) with priority 4), but because it is already in

the worklist with priority 19, we do not re-schedule it. The

second usage of Phi(𝑥 ′) is the ValueProxy node which gets

scheduled in its loop exit block with priority 20 (= 5 · 4 + 0,
see Section 5).

Step 11. The next node to be evaluated is the If node at
the end of the basic block B4. B4 is considered reachable

because it does not exclusively have UNREACHABLE edges as
predecessor edges (the edge from B2 to B4 is UNKNOWN which
is interpreted as REACHABLE, see Section 3.4). This in combi-

nation with the UNSEEN input coming from the greater-equal

9
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node results in both successor edges being considered reach-

able, resulting in no change to their associated reachability

lattice level.

Step 12. Then Phi(𝑥) is reevaluated to check if the pre-

vious assumption for this node still holds. Both incoming

control flow edges are UNKNOWN and therefore considered

reachable, but both inputs to the 𝜙 are also associated with a

CONSTANT 1. Therefore, this node is evaluated to CONSTANT 1
which confirms our optimistic assumption made earlier and

the value of Phi(𝑥) is not lowered further.

Steps 13–14. The next node to process is the ValueProxy
which propagates its input CONSTANT 1, resulting in the

Return node to be scheduled with priority 21 (= 5 · 4+ 1, see
Section 3.5.2). Finally, the Return node is processed. Since it

does not produce a value it is not analyzed further, thereby

leaving the worklist empty.

End. This concludes the analysis for conditional constants.
We found four nodes (Phi(𝑥), inequality, Phi(𝑥 ′) and Value-
Proxy) that can be replaced with constants at their usages.

Additionally we found two CFG edges (B1 to B2, B2 to B4)

and one basic block (B2) to be unreachable. These can be

eliminated from the CFG.

4 Correctness and Precision
This section provides reasoning for the assumptions made in

Section 3 that are needed to ensure that LSCCP finds at least

as many constants as SCCP while not erroneously reporting

values as constant.

4.1 Isolated Analyses
Looking at the general value flow analysis presented in Sec-

tion 3.2 in isolation, we can conclude that for any given input,

this analysis produces a correct result that is at least as high

as the one generated by SCCP when interpreting UNSEEN as

UNRESTRICTED, because we propagate constants as soon as

possible while never blocking future analysis. All evaluation

functions are designed to lower a value from UNSEEN as soon
as possible without blocking future discovery of constants.

If at any point in the analysis all inputs of a general value

flow node were not UNSEEN and no CONSTANT value can be

calculated, the evaluation function is required to result in

UNRESTRICTED for all future queries, to uphold the assump-

tion that during the evaluation of the first loop iteration we

have the maximum amount of values assumed to be constant

for Section 4.2.

Inspecting the pure reachability analysis (without control

splits), it is easy to conclude that propagating the blocks

reachability onto the successor edge if the block itself is

considered unreachable, generates a correct result for these

edges when interpreting UNKNOWN as REACHABLE. Since any
unreachable edge must transitively depend on a constant

value which in turn again depends on a constant, our analysis

will find all of these edges.

4.2 Combination of value and reachability analyses
Reachability analysis and value flow analysis interact at con-

trol split nodes and 𝜙 nodes. Control splits depend on the

reachability of their predecessor edges as well as the condi-

tion or value on which they split to produce results in the

reachability analysis. The analysis of 𝜙 nodes depends on

the reachability of the predecessor edges of their connected

Merge as well as their input values to produce a result in the

value flow analysis. To analyze such nodes without gener-

ating incorrect results while still finding at least as many

constants as SCCP, we need to be able to draw reliable conclu-

sions about the true values of UNSEEN and UNKNOWN inputs.

Control splits. These nodes are handled very similarly

to pure reachability analysis (recall Section 3.4). Given the

value which the control split depends on is correct, it is easy

to see that evaluation of these nodes yield the best correct

result. The ordering in the worklist in combination with

the initial optimistic evaluation of the loop 𝜙 nodes (recall

Section 3.3.2) ensure that, any of the split’s successor edges

that is not UNREACHABLE on the first evaluation, will always

be reachable throughout the analysis.

Straight-line 𝜙 nodes. Straight-line 𝜙 nodes can safely

assume that during their first evaluation all inputs associated

with ⊤ lattice elements will stay that way throughout the

analysis due to the worklist ordering, the initial optimistic

evaluation of loop 𝜙 nodes and the evaluation functions of

general value flow analysis as shown in Section 4.1. Such in-

puts can therefore be safely assumed as their ⊥ counterparts

resulting in a correct result that is at least as good as the one

produced by SCCP.

Loop 𝜙 nodes. When re-evaluating a loop 𝜙 node we rely

on the fact that during the first evaluation of the loop, we

work with the maximum amount of values that are assumed

to be constant (which is ensured by the initial optimistic

evaluation of said loop 𝜙 node), which would cause all CFG

edges that might at some time be UNREACHABLE to be low-

ered to this reachability lattice element. This allows us to

safely conclude that all edges that are UNSEEN after the first

evaluation of the loop, are sure to stay that way throughout

the analysis, which we rely on as mentioned in Section 3.3.2.

This creates the necessary preconditions to treat the loop 𝜙

node as a straight-line 𝜙 node upon re-evaluation, meaning

it can be evaluated pessimistically, guaranteeing correctness

upon convergence without lowering precision below SCCP.

4.3 Conclusions
Because all parts of the analysis end up generating correct

results we can conclude that the analysis as a whole gen-

erates a correct result. Termination is guaranteed because
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the transfer functions for all nodes are monotone and the

lattices have finite height.

Because all lattice elements that are UNSEEN or UNKNOWN
throughout the analysis (which are the only lattice elements

in the analysis for which this assumption is taken) can be

safely assumed as their ⊥ counterparts, and because the

value lattice tracks at least as many elements as SCCP, the

result generated by LSCCP is at least as good as the one

generated by SCCP.

5 Implementation
We developed a prototype implementation of the LSCCP

algorithm in the GraalVM compiler.

In our implementation, we assign priorities to loop exit

nodes and the associated proxies (see Section 2.3) so that

these are only visited once the loop’s fixed point has been

reached. Otherwise, if optimistic constant values or reacha-

bility information were to leak out of loops, we would waste

effort analyzing code after the loop which would have to be

re-analyzed once the fixed point is reached.

Additionally, in the procedures UpdateValueLatticeEle-

ment and UpdateReachability, checks were inserted to

guarantee that monotonicity is upheld. In UpdateValueLat-

ticeElement 𝑒𝑙𝑒𝑚 ≤ 𝜆(node) must hold, otherwise mono-

tonicity would be violated while in UpdateReachability

the condition reachable ∨ Λ(𝑒𝑑𝑔𝑒) ≠ REACHABLE must hold

for monotonicity to be upheld.

5.1 Four-tier Value Lattice
In our implementation, the data representation of the value

lattice uses the GraalVM compiler’s existing ‘stamp’ infras-

tructure for representing ranges of values. While we do not

propagate ranges in general, we use the fact that integer

stamps provide a ‘known to be nonzero’ flag. Thus, in con-

trast to previous constant propagation algorithms which

usually operate on a value lattice with three tiers (as pre-

sented in Section 2.1), our value lattice for integers actually

has four levels: An extra level below all nonzero constants is

added expressing that a value is not known to be constant

but known not to be zero. Similarly, we track floating point

values with a four-level lattice with a ‘not-NaN’ level, as well

as object references with a ‘not-null’ level. We refer to these

not-zero, not-NaN, and not-null values as the ‘non-special’

tier in the lattice.

The additional non-special tier is useful for evaluating

common conditions such as value != 0 (e. g. before a divi-

sion) or reference != null (before a memory access that

would otherwise raise an exception). The non-special tier is

also useful for tracking Boolean values. In the JVM, Booleans

are internally treated as 32-bit integer values where true
is defined as any value != 0.2 Therefore, true values are
harder to track because they may not have a constant value

2https://docs.oracle.com/javase/specs/jvms/se22/jvms22.pdf section 2.11.1

associated with them internally, but the non-special tier in

the value lattice allows for easy reasoning.

non-nullnon-zero

null0. . . -1 . . .1

.  .  .

. . .

Figure 5. Four-tiered value lattice used by LSCCP.

The four levels described above are illustrated in Figure 5.

The lattice elements between ⊤ and ⊥ are color-coded to

represent types. Integer values are outlined in orange (solid)

while object references are outlined in green (dashed). The

three dots on the left-hand side indicate that there are more

types (e.g. floating point values) in this lattice than shown

in the figure.

5.2 Conditional Nodes
The GraalVM compiler has conditional nodes representing

the computation condition ? trueValue : falseValue,
which are a fusion of a control split followed by an immediate

merge and a phi node. This floating node poses an interesting

problem because it has no ties into the control flow portion

of the graph and is therefore hard to schedule with priority

using the worklist.

While in the case of 𝜙 nodes, the condition and its asso-

ciated control flow are guaranteed to be evaluated before

the 𝜙 node, this is not the case with conditional nodes. Con-

sider the case of a conditional condition ? 1 : 2, where
the condition is still associated with the UNSEEN state. We

might want to propagate the non-zero value for the result of

this expression. However, if the condition became a known

constant later, we would have to change this result from

non-zero to a constant. This would violate monotonicity, as

the non-zero tier is below the constants in the lattice, and

values must only change to lower lattice elements.

To resolve this issue, we prevent the evaluation of a con-

ditional node to non-zero if its condition is associated with

UNSEEN. While this may inhibit further discovery of values,

tests showed that this case rarely shows up in practice. It

would be possible to handle this case precisely by adding

another kind of ‘non-zero’ tier above the constant layer in
the value lattice. We decided that this case was not worth

11
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Figure 6. Results obtained for the Renaissance Benchmark Suite.

the extra complexity and prefer the slight imprecision from

propagating UNSEEN instead.

6 Evaluation
Our implementation passes the unit test suite of GraalVM

and the compilation of the entire Java Standard Library.

6.1 Benchmarking setup
We evaluated our implementation of LSCCP on the Renais-

sance benchmark suite
3
. The system used for testing runs

Ubuntu 22.04 on an Intel 11th Gen Intel Core i7-1165G7 pro-

cessor equipped with 64GB of RAM. A command line switch

was built into GraalVM to disable the newly implemented

conditional constant propagation phase to test baseline and

the implementation of LSCCP on the same build. For each

benchmark, warm-up runs are executed, followed by timed

runs which contribute to the final result. The per-benchmark

default number of warm-up and timed runs specified by the

Renaissance benchmarking harness were used in this eval-

uation. In an effort to reduce the effect of noise, the entire

benchmark suite was executed 15 times for both baseline

and LSCCP. Baseline and LSCCP runs were carried out alter-

nately to increase fairness.

3https://renaissance.dev/

6.2 Results
Figure 6 shows average results over the 15 benchmark runs

for the 20 benchmarks of the Renaissance benchmark suite

that are supported on the platform used for testing. The er-

ror bar indicates the standard deviation encountered over all

timed iterations of the 15 LSCCP runs. As expected, LSCCP

performs slightly better (though still mostly within margin

of error) than baseline for most cases. No benchmark has

seen any reliably measurable performance regression. The

mean increase in performance measured over all 20 bench-

marks in this suite was 1.4 % (minimum -0.28 %, maximum

5.25 %, median 1.43 %). LSCCP found on average 0.15 % of

the values in the graphs to be constant, excluding constants

found earlier through non-optimistic constant propagation.

The ‘par-mnemonics’ benchmark has seen the largest per-

formance improvement of 5.25 %. In this benchmark, 0.29 % of

all nodes were newly evaluated to be constant by LSCCP. The

worst performance regression was measured for ‘philoso-

phers’ with 0.28 %, for which only 0.03 % of all nodes were

newly evaluated to constant by LSCCP. Since the conditional

constant propagation phase does not change the graph if

no new constants were found, the difference produced by

LSCCP was negligible for this benchmark. We conclude that

this result is within margin of error to baseline.

Our evaluation also showed that lazy iteration is very

effective, as LSCCP only evaluates 20.5 % of the nodes in the

graph on average. This is a significant improvement over the
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previous state of the art, which would evaluate the entire

reachable portion of the graph, which makes up 99.3 % of all

basic blocks in the evaluated benchmarks. For the nodes that

are visited by the analysis, the average number of visits per

node is 1.1, indicating that the analysis quickly converges

towards a fixed point.

Overall our optimization improves peak performance by

an average of 1.4 % over GraalVM’s optimized baseline on

the Renaissance benchmarks, although this is mostly within

the measurement noise on these benchmarks.

6.3 Discussion
As discussed before, GraalVM already performs conditional

constant propagation, but only computing pessimistic fixed

points for loops. Therefore any difference in our results vs.

GraalVM’s baseline analysis can only come from certain de-

generate loop patterns, where our optimistic LSCCP analysis

can prove that the loop will be exited on its first iteration, or

that a variable used in the loop is a loop-invariant constant.

We do not provide a more detailed comparison of the

two approaches: As GraalVM performs its non-optimistic

constant propagation on the fly while simplifying nodes

during other phases, there is no distinct non-optimistic con-

stant propagation phase. Therefore, a more direct compari-

son against GraalVM’s existing constant propagation would

not be possible to do fairly since constant folding and prop-

agation is deeply intertwined with the ‘canonicalization’

cleanups that run many times during compilation. Most com-

piler phases expect the program to be in canonical shape

before they process them. Removing constant folding from

canonicalization would have a very large detrimental im-

pact on most of the compiler. Running a specialized baseline

constant propagation pass at one or a few points in the com-

pilation pipeline would be possible, but it would not make up

for optimization opportunities lost from compiler phases that

were unable to do their work on non-canonical inputs. Any

such restructuring of the compiler would produce entirely

artificial results.

7 Conclusions and Future Work
We presented a formulation of conditional constant prop-

agation in a Sea of Nodes, exploiting the properties of its

floating nodes and carefully organizing the iteration order

of the analysis to connect data flow to control flow. Our ap-

proach features lazy iteration to reduce the portion of the

graph necessary to be evaluated for finding all conditional

constants. The evaluation of our prototype showed that lazy

iteration is very effective, only evaluating 20.5 % of the graph.

In a next step, this analysis could be extended to allow

if and switch statements to generate new data flow facts

in the respective branches for the usages of the values they

depend on. To achieve this, an approximation of a schedule

must be calculated for values those values to find the correct

usages to inject the data flow facts into.

This work is part of a larger project aimed at implement-

ing a general data flow analysis framework in the GraalVM

compiler. To our knowledge, this is the first general data flow

analysis on the data flow component of a Sea of Nodes graph.

Click’s thesis [1] presents a powerful combined analysis that

identifies constants, unreachable code, and congruences be-

tween values in the Sea of Nodes. However, this is a custom

analysis that is not formulated in terms of a general data

flow analysis framework.
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