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A Many-core Architecture for In-Memory Data Processing

ABSTRACT
We live in an information age, with data and analytics guiding
a large portion of our daily decisions. Data is being generated
at a tremendous pace from connected cars, connected homes
and connected workplaces, and extracting useful knowledge
from this data is a quickly becoming an impractical task.
Single-threaded performance has become saturated in the last
decade, and there is a growing need for custom solutions to
keep pace with these workloads in a scalable and efficient
manner.

A big portion of the power in analytics workloads involves
bringing data to the processing cores, and we aim to optimize
that. We present the Database Processing Unit or DPU, a
shared memory many-core that is specifically designed for
in-memory analytics workloads. The DPU contains a unique
Data Movement System (DMS), which provides hardware
acceleration for data movement and preprocessing operations.
The DPU also provides acceleration for core to core com-
munication via a unique hardware RPC mechanism called
the Atomic Transaction Engine or ATE. Comparison of a
fabricated DPU chip with a variety of state of the art x86
applications shows a performance/Watt advantage of 3× to
16×.

1. INTRODUCTION
The end of Dennard scaling and dark silicon [9] have sat-

urated the performance of x86 processors, with most new
generations devoting larger areas of the die to the integrated
GPU [15]. With more companies gathering data for use in
analytics and machine learning, the volume and velocity of
data is rapidly rising, and massive computation and memory
bandwidth is needed to process and analyze this data in a
scalable and efficient manner. The slowdown in CPU scal-
ing means that only alternative for traditional server farms is
scale out, which is expensive in terms of area and power due
to additional uncore overheads.

Custom architectures have traditionally faced resistance in
datacenters due to their high programmability and bootstrap
cost, however, with Moore’s law slowing down, most big ven-
dors are considering application specific hardware as a way to
get higher performance at lower power budgets. Intel recently
announced their foray into a hybrid FPGA solution [11], Mi-
crosoft is exploring FPGAs in their datacenters [21], Google
is building custom accelerators for machine learning [16] and
all major cloud vendors offer GPUs as part of their offerings.

GPUs are quickly becoming an attractive choice in dat-
acenters for their compute capabilities and corresponding
power efficiency [2] [1] [14] [13]. However, they are hard to

program due to their SIMT programming model and intoler-
ance to control flow divergence. Their dependence on high
bandwidth graphics memory to sustain the large number of
on-die cores severely constraints their memory capacity. A
single GPU with 300+ GB/s of memory bandwidth still sits
on a PCIE 3.0 link, reducing their data load and data move-
ment capabilities, which is essential for high ingest streaming
workloads as well as SQL queries involving large to large
joins.

We analyzed the performance of complex analytics queries
on large data structures, and identified several key areas that
can improve efficiency. Firstly, most analytics queries needs
lots of joins and group-bys. Secondly, these queries need
to be broken down into simple streaming primitives, which
can be efficiently partitioned amongst cores. Thirdly, this
level of scaleout also means that core to core communication
must be fast and power efficient. We present the architecture
and runtime capabilities of the Database Processing Unit
(DPU), designed for database query processing and complex
analytics. The DPU is designed to scale to thousands of nodes,
terabytes of memory capacity and terabytes/sec of memory
bandwidth at rack scale, focusing on a precise compute to
memory bandwidth ratio while minimizing power.

The DPU is a shared memory many-core, the hardware
reduces power over a commodity Xeon processor by sacri-
ficing features such as out-of-order, superscalar execution,
SIMD units, large multi-tier caches, paging and cache co-
herence, and instead provides acceleration for common data
movement operations. A DPU consists of 32 identical db-
Cores, which are simple dual issue in-order cores with a with
a simple (and low power) cache and a programmer managed
scratchpad (Data Memory or DMEM). For an equal power
envelope, DPUs provide higher memory capacity and higher
aggregate memory bandwidth as well as compared to GPUs,
making them a better choice for big data workloads. DPUs
achieve this efficiency by recognizing data movement and
inter-core communication as key enablers of complex analyt-
ics applications, and provide hardware acceleration for these
functions.

The DPU programming model is based on scalability and
reaching peak memory bandwidth, as each DPU is designed
with a balanced compute to memory bandwidth ratio of 2
cycles of compute per byte of data transferred from DRAM.
A DPU relies on a programmable DMA engine called the
Data Movement System (DMS), that allows it to efficiently
stream data from memory. The DMS allows for efficient
line speed processing of in-memory data, by allowing data
movement and partitioning between DRAM and a dbCore’s
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scratchpad asynchronously, leaving the dbCore to perform
useful work. The DMS can perform many common stream
operations like read, write, gather, scatter and hashes at peak
bandwidth, allowing for efficienct overlap of compute and
data transfer. This also means that dbCores are less reliant on
caches, allowing us to dramatically simplify the cache and re-
duce power consumption. The DMS also communicates with
the dbCores via a unique Wait For Event (WFE) mechanism,
that allows for interrupt-free notification of data movement,
further reducing power and improving performance.

Unlike conventional DMA block engines, the DMS is inde-
pendently programmable by each dbCore, through the use of
specialized instructions called descriptors that are populated
and stored in the dbCore’s scratchpad. Chaining descriptors
together to form a pipeline allows for the DMS to be used in
a variety of ways. For example, efficient access to large data
structures requires hardware support for partitioning opera-
tions. [24]. The DMS allows for efficient data partitioning
across any/all cores, either based on a range of values, or
based on a radix, or on the basis of a CRC32 hash across any
number of keys. The results of these partitioning operations
are placed in the respective dbCore’s scratchpad for further
processing.

x86 processors focus on programmability and single thread
performance, GPUs focus on compute bandwidth, DPUs fo-
cus on programmability and aggregate memory bandwidth/Watt
at scale. The DPU is envisioned as part of a larger system,
where thousands of DPUs are connected via an Infiniband
tree at rack scale, providing > 40000 dbCores, > 10 TB/s
of aggregate memory bandwidth and > 1 TB/s of network
bandwidth at 20 kW of power. Achieving rack scale gains
requires fulfillment of two objectives - Improved algorithms
for scalability across these tens of thousands of cores, and im-
proved performance/Watt on a single DPU, which translates
into improved performance/Watt of a rack. We taped out and
manufactured a DPU using a 40 nm process for benchmark-
ing purposes, and focus our evaluation on this single DPU
for this work. Our primary contributions are:

• We present the Data Processing Unit (DPU), a many-
core architecture for in memory data processing focused
on highly parallel processing of large amounts of data
while minimizing power consumption.

• We introduce the Data Movement System (DMS), a
DMA engine which provides efficient data movement,
partitioning and pre-processing capabilities. The DMS
has been uniquely designed to minimize the amount of
software needed to control the DMS in critical loops.

• We present an Atomic Transaction Engine (ATE), a
mechanism that implements synchronous and asyn-
chronous Remote Procedure Calls from one core to
another, some of which are executed in hardware, al-
lowing fast execution of functions without interrupting
the remote core.

• We design and fabricate the DPU, and evaluate its per-
formance across a large variety of workloads, achieving
3× to 15× improvement in performance/Watt over a
single socket Xeon processor.

Figure 1: Block diagram of a DPU

Figure 2: Block diagram of a Macro

• We showcase unique hardware software co-design as-
pects of our approach towards DPU application perfor-
mance across a variety of workloads.

Section 2 describe the energy efficient architecture of the
DPU and its core components. Section 3 briefly describes
the runtime used to simplify application development on the
DPU. We then evaluate the performance of our hardware
using a few microbenchmarks in Section 4. Finally, we look
at the performance and energy efficiency of the DPU across
a variety of real world applications in Section 5.

2. DPU ARCHITECTURE
The DPU is a System-On-a-Chip (SoC) that defines a ba-

sic processing unit at the edge of a network topology. The
DPU is designed with power efficiency and maximizing data
parallelism as its principle constraints. Figure 1 shows the
block diagram of a DPU. The DPU is designed in a hierarchi-
cal manner, 8 identical dbCores form a macro, and the DPU
contains 4 such identical macros. DbCores in a macro share
a L2 cache (Figure 2, and each macro can be power gated
independently of other macros. The primary computation
in a DPU is carried out on 32 identical dbCores, which can
communicate via an ATE interface. Each dbCore reads/writes
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to main memory (DRAM) using the DMS, or via a 2 level
simplified cache hierarchy. Each DPU has a dual core ARM
A9 processor on board as well, which manages the Infiniband
networking stack, and provides a high bandwidth interface
to other DPUs or a host machine. A Cortex M0 processor
serves as a Power Management Unit to control the various
power modes of the DPU and provides health monitoring
functionality for the board. A Mailbox messaging interface
provides a peer to peer communication interface between the
dbCores, ARM cores and the M0 processor.

2.1 DbCore Architecture
The DbCore features the Extensible RISC Instructions for

Queries, ERIQ, instruction set architecture. The instruction
set provides a base instruction set for general purpose comput-
ing as well as specialized instruction set to facilitate efficient
processing of database queries. Each dbCore is designed to
nominally operate at 800MHz, although capable of 1GHz
speeds with voltage and frequency scaling.

All instructions in the ISA are 32-bits long and are aligned
on a 32-bit boundary. The executable is always loaded in the
0-4GB physical address range in memory to allow addressing
with a 32-bit instruction pointer. The ISA consists of 32 64-
bit registers with instructions that explicitly operate on either
32-bit quantities or 64- bit quantities. The ISA permits the C
language int type to be 32-bits to encourage software to oper-
ate on 32-bit quantities, while allowing for the pointer type
to be 64-bits. Instructions that operate on 32-bit quantities
sign-extend the result to 64-bits when saving to the register
file.

ALU operations. The dbcore supports common arith-
metic operations (addition, subtraction, multiplication, divi-
sion, modulo), logical operations (shift, rotation), and bitwise
(and, or, xor, bit set, clear and population count) operations
on word (32-bit), double word (64-bit) or subword (8-, 16-
bit) operands. Explicit instructions that operate on 32-bit
quantities enable the pipeline implementation to minimize
power consumption while meeting computing performance
goals. The primary motivation for this 64-bit ISA is memory
addressing, specifically the pipeline load/stores addressing far
more than 4GB of DRAM when processing database queries.
The secondary motivation was ease of handling 64-bit colum-
nar data types. In general, instructions that operate on 32-bit
quantities produce a 32-bit result and sign-extend the result
to 64- bits when saving to the register file. The motivation for
sign-extending 32-bit results stems directly from the load/s-
tore instructions. The load/store instructions utilize 64-bits to
form an effective addresses. The hardware does not support
floating point arithmetic natively.

Comparisons and Branches. Compare instructions oper-
ate on word or double word registers and set a single bit
in the resultant register. Conditional branches are fused
compare-and-branch operations that only operate on 32-bit
values. Target address is 16 bits but yields a signed, 18-bit
PC-relative range (the lower 2-bits are implied zeros since
instructions must be aligned on a 32-bit boundary). Uncondi-
tional branches directly identify the branch target via immedi-
ate or register operands and can result from explicit branches
(’goto’ statements), function calls and return statements or
while handling exceptions.

Memory operations. In general, all loads read the value
from an address in memory and either sign- or zero-extend
the value to 64- bits as the value is written into the register
file. Two addressing modes are available. The offset ad-
dressing mode adds an immediate value to a base register
value to form the address. The scaled indexed addressing
mode adds two registers together to form the address, the first
register being a base and the second register being an index,
where the index is scaled by 1, 2, 4 or 8 prior to adding to
the base register. All load/store accesses must be naturally
aligned. Conditional stores examine the least significant bit
of a register to determine whether or not to perform the store.

Address spaces and protection. The address space is
broken into physically addressed DRAM regions (up to 8GB
DDR memory on RAPIDv1), control, configuration and spe-
cial purpose register spaces, and a core-local data memory
(scratchpad SRAM, called DMEM—32 KB in RAPID-v1).
In the absence of a conventional memory management unit
(MMU), hardware watchpoint registers allow the loader soft-
ware to set sentinel boundaries demarcating legal code and
data regions. Any dbcore executable overreaching these
boundaries causes a hardware exception, thus preventing
memory errors and potential vulnerabilities. The DMEM is
core-local SRAM mapped at a fixed base address outside the
physically addressed DRAM range. Any load or store to the
32 KB address region offset from this base address results in
an in-pipeline (cache-hit latency) access to this memory. Soft-
ware manages the contents of this scratchpad memory with
explicit data-movement commands to the DMS. In contrast to
the software managed DMEM, each dbcore is also equipped
with traditional data and instruction caches (16 KB And 8 KB
respectively in RAPID-v1). Hardware populates and evicts
these direct-mapped caches on load and store misses to phys-
ical memory. In addition a set of 8 dbcores (dbcore macro),
share a 256 KB, 4-way associative level-2 cache, which is
also implicitly managed by hardware on misses to the L1
instruction and data caches.

Consistency and Coherence. The dbcore does not per-
form invalidations or updates to remote (i.e., other dbcores)
caches when populating or evicting a dbcore’s cache (L1 or
L2) in response to misses. Instead, the ISA provides explicit
operations (CacheOps) which can be issued from the dbcore
pipeline to invalidate or writeback L1 or L2 cache blocks by
address or index. Software uses these CacheOp instructions
in conjunction with the remote procedure call mechanism
(described below) to ensure coherent memory accesses. All
load and store misses cause the pipeline to stall. An explicit
sync instruction ensures all previous memory operations (in-
cluding evictions) and serves as a memory fence to ensure
program consistency.

Data processing operations. The dbcore supports bit-
vector load (BVLD), filter (FILT), and CRC32 hashcode
generation as single-cycle instructions to accelerate database
operations such as filters, joins and late materialization. The
CRC32 instruction computes a seeded 32-bit Castagnoli poly-
nomial which can be used for certain hash-value computa-
tions, and for checksums. The BVLD and FILT instructions
are designed to filter through sparsely populated columns effi-
ciently in a loop. The program first populates the column into
a contiguous buffer in the DMEM address space, notes the
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base address in a special register, then repeatedly performs
the BVLD And FILT operations to compute offset of the next
valid column item, load the element from DMEM, and per-
form the filter comparison operation. The instructions also
enable efficient generation of operations such as population
counts and scatter-gather masks.

Event and FIFO processing. The pipeline issues instruc-
tions also to the Atomic Transaction Engine (ATE) to perform
remote procedure calls, and to the Data Movement System
(DMS) to move data between the DMEM and DRAM. The
program first constructs descriptors for such operations, then
enqueues the descriptor by invoking a push instruction iden-
tifying the engine (ATE, or DMAC queue as the case may
be). To receive completions for the pushed operations, the
ISA defines a wait-for-event (WFE) instruction with an event
identifier. The above mechanisms allow the dbcore pipeline,
and thus the software to: (i) utilize the DMS engines with
concurrently pending, programmed memory requests, and (ii)
execute operations on a specific dbcore and receive the return
value.

Interrupts and Exceptions. The dbcore is designed pri-
marily to execute data processing operations and expect lim-
ited interruptions. Specifically, there are three external inter-
rupts which switch execution context.

• When a dbcore pushes an ATE descriptor, the ATE
controller raises an interrupt on the target dbcore (which
could be the issuing dbcore itself). The ATE interrupt
handler causes the pipeline to execute instructions from
the remote procedure until it explicitly returns from the
interrupt. This feature enables software to construct
critical sections and shared data structures.

• When a dbcore or ARM core pushes a mailbox mes-
sage into a target dbcore’s FIFO, the mailbox controller
hardware raises an interrupt on the target dbcore. The
mailbox interrupt handler minimally enqueues the mail-
box FIFO message into a software structure for further
processing and returns to the main context. This feature
allows software to communicate with external nodes
across network fabrics.

• The DPU’s System Interrupt Controller (SIC) can be
programmed to deliver general purpose I/O interrupts
to the dbcore. While most such interrupts are handled
by the one of ARM cores in the system, the timer in-
terrupt allows user code running on the DPU to make
scheduling and priority decisions.

Exceptions arising from within the dbcore pipeline, such
as unaligned data and instruction accesses or divide by zero
errors, cause hardware to switch the program counter to spec-
ified offsets into an exception vector table. The architecture
also implements a special debug exception which allows an
external debug process to attach to a dbcore executable’s
instruction stream.

Pipeline execution throughput. The dbcore can issue in-
structions on two pipelines each cycle. One pipeline issues
integer and branch instructions to the ALU, while the other
pipeline issues memory operations to the load store unit. Cer-
tain instructions (e.g., sync) prevent dual issue. Hardware
features such as two sets of BVLD/FLIT column base reg-
isters are designed to extract full pipeline throughput when

coupled with software techniques such as loop unrolling and
pipelining. Multiply, divide and modulo instructions stall the
ALU pipe for multiple cycles until they complete execution,
and bypass their results to downstream instructions. A 12
entry instruction buffer captures tight loops and issue such
basic blocks while bypassing the instruction cache. Condi-
tional branches are predicted to be taken when backward, and
not taken when forward. Mispredictions cause the pipeline
to stall for two cycles. The ATE controller may additionally
issue load and store requests to cacheable memory or to the
DMEM. No instructions are issued from the instruction cache
or loop buffers during these cycles.

2.2 Atomic Transaction Engine (ATE)
Traditional synchronization mechanisms like locks and

mutexes are costly and complex to implement and the pro-
grammer needs to ensure visibility of the state of the synchro-
nization mechanism throughout the system. We implement
an "Atomic Transaction Engine" (ATE) which enables the
execution of remote procedure calls (RPC) on other dbCores
on the DPU. The ATE guarantees that two RPCs to the same
dbCore will be executed atomically, which then allows them
to implement mutually exclusive code segments. This also
means that all operations to "shared" data must be performed
using the ATE, to ensure that data read write ordering is
maintained. Atomic RPCs were first explored in the context
of distributed systems to ensure consistency in case of node
failures [18]. Our use of hardware accelerated atomic RPCs
to provide synchronization in a multicore system is novel to
the best of our knowledge.

The ATE adds two instructions to the dbCore ISA - RPC
No Return (RPCNR) which is used for routines that do not
require data to be returned to the calling dbCore, and RPC
With Return (RPCWR), we returns data to the calling dbCore.
These instructions require 2 operands, a RPC identifier and
the address in DMEM for the first payload word. The ATE
is programmed with descriptors, which are sent over the
ATE network to the other dbCore. The descriptor is a 32
byte structure, and the arguments to the RPC need to be
packed into these 32 bytes. If the arguments exceed the space,
arguments can be placed in DRAM as well and only a pointer
to the arguments will be shipped over the ATE. In this case,
due to lack of cache coherence, the runtime system and the
application need to ensure visibility of the arguments to the
remote dbCore.

When a dbCore issues a RPC instruction, it is routed over
the dbCore interconnect to another dbCore, or potentially
itself. The ATE on the receiving dbCore places the RPC and
its payload in the ATE Receive Queue (reserved in DMEM).
The ATE contains a state machine which removes RPCs from
the ATE Receive Queue and executes them. The ATE pro-
vides hardware support for simple atomic operations like
read, write, increment and compare and swap. These low
latency routines are executed in hardware, and the remote
dbCore is not interrupted. For RPCs which are not executed
by hardware, an interrupt is sent to the dbCore and a soft-
ware interrupt service routine interrogates the RPC Descriptor
Register to determine the RPC ID and processes the RPC ap-
propriately.

2.3 Data Movement System (DMS)
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Figure 3: Data Movement System (DMS)

A majority of database operations are focused more on
data movement rather than on computation. To support these
operations, we have implemented an intelligent DMA engine,
termed the Data Movement System, or DMS. Unlike conven-
tional block DMA engines, the DMS understands database
data formats and can perform a variety of functions, including
data partitioning and projection, hash computation, and array
transposing (row-major to column-major or vice-versa), all
while transfering data. The DMS is fully programmable by
software using linked descriptors in the dbCore’s DMEM,
enabling software to combine the capabilities of the DMS in
a flexible manner to suit various processing needs.

Figure 3 shows the overall architecture of the DMS, a data
highway built from three separate units. The central DMA
Controller or DMAC performs all tasks that are common to
all 32 dbCores such as descriptor parsing and is responsible
for the bulk of the data movement in the DMS. It comprises
most of the control, buffering and data path processing of
DMS, allowing most of the DMS logic to be shared across
dbCores. The DMA DMEM unit (DMAD) performs the tasks
that are unique to each dbCore. It is designed to be as simple
as possible and is duplicated on all 32 dbCores. The third
unit is the DMA Crossbar (DMAX) which serves as a switch
or crossbar in each macro. It acts as a bridge between the
eight DMADs to the DMAC.

The DMS provides efficient data movement between the
main memory (DDR) and scratch pad memory (DMEM) in
the dbCores. While moving data, the DMS can also effi-
ciently perform some preprocessing operations such as scat-
ter/gather, computing hashes and partitioning the data. The
DMS provides a robust interface to minimize the software
overhead involved in programming it, through the use of de-
scriptors. Descriptor based DMA has previously been used to
program on-chip NICs [4], however, our use of the DMS to
efficient move data from DRAM to the dbCores for is unique.

The DMS is also fully aware of database tuples (multiple
columns), and supports multiple data types. Multiple descrip-
tors can be queued up in a hardware managed linked list for
processing. A special loop descriptor is used to reuse these
programmed descriptors multiple times. These descriptors
provide ways to specify auto-incrementing the effective ad-
dress, allowing large columns of data to be moved to DMEM
without reprogramming the DMS. These unqiue aspects of
the DMS dramatically simplify the programming interface,
improving efficiency for operations involving small buffers,
where the programming cost cannot be amortized.

For efficient communication with the dbCores, the DMS
software interface uses the Wait For Event (WFE) mechanism,
allowing buffer flow control without the overhead and latency
of interrupts. The DMS interface exposes 31 DMS events
per dbCore that software can use to communicate with the
DMS hardware. DMS descriptors have a notify event field
that specify the event to be asserted when the operation is
completed. They also have a Wait event field that specifies
which event the descriptor to be waited on. Software can set
or clear the specific events directly. Software can also wait
on a specific event using WFE instruction. It should be noted
that while the dbCore is waiting for an event using the WFE
instruction, it is automatically put in to a low power state
where most clocks are gated. The WFE instruction can be
thought of as hardware managed low power polling.

Software can use two channels per DMAD (read and write)
to submit the descriptors to DMS. DMS descriptors are 16
bytes long, which encodes the source address, destination
address and other control information such as auto-increment,
event mangement in a compact way. Software programs the
DMS by pushing the address of the descriptor to the DMAD’s
active list, using the FIFO interface on one of the channel.
DMAD walks the active list and processes the descriptors in
order. Before it executes the descriptor, it checks descriptor
from the DMEM and executes the descriptor once the other
conditions such as synchronization, events readiness are sat-
isfied. The descriptor information is passed up to DMAC
through DMAX. The DMAC executes the descriptor by per-
forming the operations such as moving data from the main
memory to DMEM or partitioning the data etc., Upon com-
pletion of the operation, it returns the descriptor to DMAD
through DMAX. Once the completion notification is reached
DMAD, DMAD retires the descriptor. When it retires, it also
notifies the core if it is programmed to raise an event.

Table 1 shows the various type of DMS descriptors avail-
able to program the DMS. The data movement descriptors
are used to program the DMS to move the data betweeen the
main memory, core’s DMEM, and DMS internal memory.
DMS internal memory are buffer space provided by DMS
to store column data during data operations. For example,
it provides the space for key columns while DMS computes
the CRC32 and provides space for columns while data is
partitioned among the cores using the hash or range. Loop
descriptors specifies the looping operations on the descrip-
tors. AUX descriptors provide a way to provide additional
information needed to process other descriptor. This provides
a way to extend the descriptors with backward compatibility.
Subsection 3.3 describes how the DMS is programmed and
presents an example.
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Descriptor Type Main Purpose

DDR->DMEM Moving data from the main memory to DMEM
DDR->DMS Moving data from the main memory to DMS internal memory
DMEM->DDR Moving data from DMEM to the main memory
DMEM->DMS Moving data from DMEM to the DMS internal memory
DMS->DMEM Moving data from DMS internal memory to DMEM
DMS->DDR Moving data from DMS internal memory to the main memory
DMS->DMS Moving data between the DMS internal memory
Loop Specifies looping operations
Event Provides a way for DMS to wait on events and clear events
HARE Controls HASH and range functions
AUX Used to provide any additional information needed to process other descriptors
Program Configures DMS control registers

Table 1: DMS descriptor types

2.4 Mailbox Messaging
The Mailbox Controller (MBC) is used for managing com-

munication between the dbCores, the A9 cores and the M0
processor. It maintains a total of 34 mailboxes, one for every
dbCore, one for both A9 cores and one for the M0. The
controller is located on the AXI bus, and it is accessible via a
standard AXI slave interface by all cores.

For each mailbox the MBC maintains a set of memory
mapped data (wr/rd) and control (wr/rd) registers that are used
to write (send) or read (receive) messages to and from the
corresponding mailbox, along with the corresponding logic
that implements the send and receive protocol. An SRAM
memory module, which is shared among all mailboxes, is
used to store all messages delivered but not consumed yet.

A source core that wants to send a message to a destination
core, first acquires exclusive access to the destination mailbox,
by accessing atomically the destination WR control register.
Once given exclusive access, it checks for available free space
and then sends the message, by performing consecutive writes
to the WR data register. Finally, it marks send completion by
updating the WR control register. The MBC logic updates the
counter of received messages for the corresponding mailbox,
causing an interrupt to be delivered to the destination core.

Following similar steps, the destination core, upon a mail-
box interrupt, will read the RD control register to see how
many messages are available. It will then read the data of
each message, by performing consecutive reads from the RD
data register. The first word of a message is expected to con-
tain the number of words each message consists of, in order
for the destination core to identify message boundaries. After
the destination core has read all individual words, it updates
the RD control register to mark the consumption of the mes-
sage. At that time, the message counter for this mailbox is
decremented and if there are no other messages available the
interrupt signal is de-asserted.

The messages exchanged over MBC are always a multiple
of 4 bytes, and their size varies between one word and one
mailbox’s capacity (128 words). The goal of the MBC is
to facilitate quick exchange of light-weight messages (i.e.,
sending a pointer to buffer in memory), while the bulk of the

Figure 4: dbCore processor implementation

data are communicated through main memory. The network
communication among the nodes and the RDBMS is based
on this property. For example, a node will place the results of
the query execution in a buffer in memory and send a mailbox
message to A9 with a pointer to the buffer. Upon receiving
the message, the A9 will pass the pointer to the network stack,
which will then forward the buffer to its destination.

Overall, the latency of a mailbox message may not be as
low as the latency of a more integrated network (i.e., ATE).
However, we observed the MBC message throughput to be
sufficient to sustain a network message rate that keeps the
dbCores utilized, without introducing any communication
bottlenecks to the system.

2.5 Fabrication
We fabricated the DPU using a 40 nm process, with a sili-

con area of 90.63 mm2 and 540 millions transistors, of which
268 million transistors are used for memory cells. Figure
4 shows the implementation of a single dbCore. We went
through an extensive physical design and verification process,
the details of which are beyond the scope of this paper. We
used formal verification techniques as well, and almost 16%
of our RTL bugs were found via formal tools. The DMS
proved to be one of the most challenging blocks to verify, due
to deep corners in design. We also created a detailed virtual
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prototype in software for verification, allowing us to perform
end-to-end black box testing of the DMS.

Any hardware is only as good as the software that runs on
top of it. We next look at the our runtime. Creating a runtime
for the DPU was based on the same principles as its hardware,
maintaining a balance between efficiency and programmer
productivity. and how we

3. THE DPU RUNTIME
The low power design of a DPU delegates a majority of

scheduling and memory management decisions to software.
The DPU runtime is guided by same principles, providing a
intuitive and powerful API to the programmer, while maxi-
mizing optimization potential through the use of the DMS
and the ATE messaging interfaces. The guiding principle
behind the DPU runtime is energy efficiency by fully exploit-
ing all levels of compute and memory parallelism, and our
focus on achieving peak memory bandwidth. Programming
the DPU essentially involves asking the following questions:

• How can I partition my data across all dbcores to maxi-
mize compute parallelism?

• How can I layout my data in DMEM so I can concur-
rently load, compute and store data?

• How can I layout my data in main memory to allow the
DMS to fetch and store contigous buffers, and achieve
maximum memory bandwidth?

3.1 DbCore Programming
The dbcore comes out of reset in a bare state, and the

runtime is responsible for reserving the stack and heap in
DRAM. It also reserves some space in DMEM for the ATE
message queues and runtime state. After initializing the
interrupt handlers, control is transferred to the main routine.
A dbCore is similar in architecture to an embedded MIPS
core, allowing for rapid prototyping. We provide standard C
library routines such as printf, memory and string APIs using
the newlib library [23]. Subsequent optimization relies on
moving data from the caches into DMEM, and overlapping
compute with memory transfer using the DMS.

The programmer must be aware of incoherent caches, and
we use the ATE to simplify core to core communication.
The DPU allows executing a function pointer on a remote
core. This mimics remote procedure calls where an API is
called which executes on a remote endpoint as well. This
mechanism can be employed to build data structures to which
accesses must be performed in a mutually exclusive fash-
ion. We define a serialized interface to allows execution of
software RPCs on remote cores.

void* dpu_serialized(core_id_t _id, void(*rpc)(void*),
void* args, visitor_fp args_visitor, visitor_fp
return_visitor);

A target core id as well as a function pointer which will be
executed on the remote core are specified. In addition to that,
the arguments supplied to the RPC function pointer on the
remote core are supplied as parameters. To achieve coherency
in this 1 to 1 communication style, a visitor specifying the

coherency contract for the arguments struct as well as another
visitor for the returned data structure are supplied.

The non-coherent caches require that the programming
model enforces the programmer to specify how shared struc-
tures should be made coherent by the underlying layers. The
vistor has a memory operation argument that defines which
operation should be executed and will be filled in by the
runtime. This argument modifies the visitor to either flush
the data structure on the calling core, and invalidate the data
structure on the remote core ensuring coherence is maintained.
The visitor essentially defines a coherence contract, which
can be used by the runtime to perform the necessary actions.

3.2 Scheduling
Each dbCore maintains an independent thread of execution,

and a list of pending tasks that are executed in order. The
scheduler is designed to be lightweight and runs as a part of
this main event loop, and puts the dbCore in a sleep state if
the task queue is empty using a wfe instruction. We create a
lightweight messaging API on top of ATE Software RPCs,
and an ATE interrupt on a dbCore adds a task to the local
task queue, and wakes up the dbCore. The scheduler resumes
execution, and processes all tasks in the task queue. The
scheduler relies on the programmer to yield control at the end
of a task.

We create a lightweight barrier by using the ATE hardware
RPCs. A master core (the core where the barrier is created)
acts as the coordinator, and initializes a local variable count
in its DMEM to zero. Other cores increment this variable by
using the atomic add with return ATE RPC, and once count
reaches the total number of cores, all cores leave the barrier.
Cores can check the value of this shared variable via a poll
based mechanism using the ATE, however that would create
significant contention on the coordinator core. We create a
scalable barrier, where each core uses a local wait variable,
and spins on this variable after atomically incrementing count.
Once all cores enter the barrier, the coordinator notifies all the
other cores by modifying the local wait variable using an ATE
atomic write operation. This would cause the coordinator to
perform 31 sequential writes once all cores enter the barrier.
We further optimize this based on our architecture, and the
coordinator notifies macro masters, which in turn notify the
cores within their macro, creating a scalable tree like barrier.
This improves the time taken for the last core to leave the
barrier from 30 us for the sequential case to 12 us for the tree
barrier.

3.3 DMS Programming
The DMS in the DPU is fully programmable with the

DMS Descriptors as mentioned in the Subsection 2.3. DMS
descriptors are like macro instructions or commands which
instructs the DMS to move data between the main memory,
DMEM, and DMS internal memory, to partition the data, to
perform looping operation and to deliver events when data
movement is complete.

Listing 1 illustrates how the DMS is programmed for a
simple DMA access with double buffering. In this example,
the DMS is programmed such that the program consumes 4
million rows of a 4 byte column. First we setup two DDR-
>DMEM descriptors is setup to read 256 rows with same
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Figure 5: DMS Descriptors

source address and destination address, but with different
events. Even though the same destination address is used, the
effective address is different due to the auto-increment feature
in the DMS. Second, we setup the loop descriptor such that it
loops to the first descriptor for 8191 times such that it reads all
4 million rows. Finally, we push the descriptors to the DMS
and thereby we trigger the data transfer to DMEM. Figure 5
shows the state of the descriptors in the active list after they
are pushed. Once the data is fully transfered to DMEM for the
first descriptor (desc0), it will notify the core by raising the
event1. The DBCore waits for event1 to be raised and then
start consuming the rows. Meanwhile DMS start transfering
the data corresponding to the second descriptor (desc1) to
DMEM without waiting for dbcore to finish consuming the
data. After finish transfering the data, DMS will loop back
to first descriptor and wait for the event1 to be cleared. After
consuming the data for the first descriptor (desc0), dbcore
clears the event, signaling the DMS that the first buffer is free.
The overlapping of computation (consume_rows()) and the
transfering of data with double buffering enables the DPU to
process data with high throughput.

dms_descriptor* desc0 = dms_setup_ddr_to_dmem(256,
src_addr, dest_addr, event0);

dms_descriptor* desc1 = dms_setup_ddr_to_dmem(256,
src_addr, dest_addr, event1);

dms_descriptor* loop = dms_setup_loop(desc0, 511);
dms_push(desc0);
dms_push(desc1);
dms_push(loop);
count = 1;
buffer_index = 1;
events[] = {event1, event2};
do {
dms_wfe(events[buffer_index]);
consume_rows();
clear_event(events[buffer_index]);
buffer_index = 1 - buffer_index; // toggle buffer

index
} while (++count != 8192);

Listing 1: DMS Programming Example

3.4 Memory Management
The memory available in the system consists of the main

memory, which is shared among dbCores and DMS, and the
DMEM scratch space locally available to every dbCore. Each
one of these two spaces are managed in different way.

3.4.1 Heap Space Allocator

We keep in DRAM instructions (i.e., dbCores’ binary im-
age) and data, such as stack space for each dbCore, heap
space and global data. The lack of an OS or of a virtual mem-
ory management scheme, has led to having all these regions
fixed in the memory address space, and share their location
with the compiler (i.e., position of the stack) or expose them
to the dbCore programmer, either directly or through an API.

The largest fixed memory region is the heap space. We
implemented a two-level dynamic memory allocator, that
overlooks the heap space and provides dynamic buffer man-
agement. The lower level implements a fast buffer alloca-
tion/free core-local path that handles the majority of the re-
quests. When a core-local allocator runs out of buffers, it
requests for additional memory from the global allocator,
which may choose to reply with either a set of buffers of the
requested size or a chunk of memory, which the core-local
allocator will use to produce buffers of the requested size.
Similarly, if the number of free buffers in a core-local alloca-
tor exceeds a pre-defined parameter, the core-local allocator
will return a number of buffers to the global allocator. Each
core can reach the global allocator by performing an ATE
request to a specific core, which is tasked with running the
global allocator. The code for the global allocator, is always
executed within the context of an ATE interrupt, and thus is
designed to be as short as possible.

Internally, both allocators are organized as a set of seg-
regated free-lists. The core-local one maintains buckets of
sizes ranging from 64 bytes to a few MBs, forwarding any
request for larger buffers directly to the global allocator. The
global allocator maintains the same set of free lists, to collect
returned buffers from the cores and an additional linked list
for all the remaining buffer sizes.

The memory allocator participates in the system-wide ef-
fort of maintaining (software) cache coherence. At any given
time a buffer can be in one of the following three states:

• It can be in the global allocator, which means no part of
such a buffer can be found in any part of the memory
hierarchy, other than the main memory, and it is not
going to be accessed by anyone.

• If in the local allocator and marked as cache-only, it can
be accessed only through ld/st instructions executed by
dbCores, and parts of the buffer can be in different lo-
cations in the memory hierarchy (i.e., different caches).
It is the programmers responsibility to further enforce
which core is the owner of the buffer at any given time.

• If in the local allocator and marked as DMS-only, it can
be accessed only through DMS operations, and cannot
be loaded on any cache.

The state of any buffer can change only when the buffer is
free, and either moves to/from the global allocator or it is in
the local allocator and the allocator chooses to transition the
buffer based on requests and availability. All state transitions
require the address range of the buffer to be invalidated, apart
from the ones moving from DMS-only to any other state.

3.4.2 DMEM Memory Management with a Stack Al-
locator
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The DMEM holds data input to operators as well as in-
termediate results, shared across operators. The lifetime of
this data is short, as the chain of operators forming a task, is
usually short and the result of a task is copied back to DRAM.
To avoid the overhead of dynamically managing the avail-
able DMEM space through a malloc-like API, the operators
runtime uses DMEM in a stack-based fashion. Every new
operator appends its result to the end of the used DMEM
space. At the end of the last operator, the whole stack space
is released and made available for the next task.

4. MICROBENCHMARKS
We fabricated a test DPU using a 40 nm process, with 8

GB of DDR3 memory. We first evaluate the performance
of the DMS and the dbCores for several small test cases,
and ensure that functionality on the DPU works as designed,
and measure peak performance of the DMS and ATE across
several use cases.

4.1 Read and Write
We first take a look at the Read and Write performance

of the DMS. Each dbcore reads 4096 rows from DRAM
into DMEM using the DMS, and write the same rows from
DMEM to DRAM. Each dbcore reads/writes a buffer of mul-
tiple rows at a time containing all columns. We vary the num-
ber of columns from 2 to 32 and width of each column from
1 byte to 4 bytes. The data is stored in column major format.
Figure 6(a) shows the read bandwidth achieved across all db-
cores across different buffer sizes and column widths. There
is a small decrease in bandwidth as the number of columns
increase. The DMS fetches data one column at a time, and
more columns mean more non-contigous DRAM pages are
opened, which incurs a small latency for each buffer. Larger
buffer sizes amortize fixed DMS overheads achieve higher
bandwidths. Using the DMS, the DPU achieves a bandwidth
of > 9 GB/s for a buffer size of 8 KB(128 rows/buffer, 4
columns, 4B column widths) which is almost 75% of the
peak DDR3 bandwidth, and this is bandwidth we observe in
many real applications as well.

4.2 Gather
We study a basic bitvector gather operation, where we

gather rows from DRAM corresponding to 1s in a given
bitvector into DMEM. Gather is fundamental to the filter op-
erator, wherein we gather rows from DRAM corresponding
to ones in a given bitvector. and . We test the DMS against
a dense (0xF7) and a sparse (0x13) bitvector. The DMS is
designed to perform gather at line speeds, however, due to
a RTL bug, the first version of our chip could not utilize the
DMS to its full potential(Figure 7). In brief, when all 32 cores
issue gather operations, a FIFO that hold bitvector counts in
the DMAC overflows and starts dropping counts. DMAD
channels in the corresponding dbCores that are waiting for
these counts get stuck, causing some dbCores to hang. We
create a software workaround for this issue by serializing
descriptors across dbCores, ensuring only a single dbCore
issues a gather operation at a time, causing low gather band-
widths(Figure 7).

4.3 Hardware Partitioning

Partitioning is critical for achieving high efficiency for
data processing operations and we study the efficiency of
the partitioning engine in the DMS in terms of its achievable
memory bandwidth. The input to the microbenchmark is a
relation with four 4 byte columns. The relation is stored in
column major format. The microbenchmark uses the DMS’s
partition engine to partition the input relation into 32-way
partitions. First, the DMS is programmed to move the data
from the main memory into the DMS internal memory. Once
the data is in the DMS internal memory, DMS then triggers
the hash or range engine to compute the index of the output
partition. Finally, DMS moves the payload column data
from the DMS internal memory and sends them to output
partitions which are in a core’s DMEM. We pipeline these
three stages since that DMS uses different resources in each
stages. In addition, we used multiple cores to submit the
DMS descriptors to reduce the DMS programming overhead
per core and used all four available memory controller to
maximize the input bandwidth to the hardware partitioning
engine.

Figure 8 shows the effective bandwidth achieved with dif-
ferent partition schemes available in the DMS. Radix parti-
tioning uses 5 bits from a key column to partition the data
into 32 ways. Hash partitioning first uses the hash engine to
compute the CRC32 from one or multiple key columns and
then uses the CRC32 bits to partition the data. In all the parti-
tioning scheme, the DMS achieves 9.3 GB/s and outperforms
the previous published state of art hardware accelerator for
partitioning [24], where the partitioning throughput is only
3.13 GB/s. The DMS achieves high efficiency by pipelining
the partitioning operations into three stages, by using efficient
hash and range engine desigh, which runs at 800 MHz, and
the usage of the low latency scratchpad memory to process
the partitions.

4.4 Atomic Transcation Engine
The ATE is designed for fast core to core communication,

and allows dbCores to perform atomic operations on shared
data in DMEM or DRAM. We measure the latency of dif-
ferent ATE operations and different payload sizes (Figure
9. Looking at read, an atomic read from a remote dbCore
incurs a latency of 80 ns for an 8B value. Writes are faster,
as the local dbCore does not need to wait for a return value.
Similarly, an atomic addition that returns a value to the caller
dbCore takes 100 ns. Software RPCs are much slower due
to interrupt overhead, incurring almost 400 ns to read an 8B
value.

4.5 Mailbox
The mailbox controller is responsible for the communica-

tion between the dbCores and the A9 cores. We evaluated its
peak performance with the following traffic patterns:

• A9 to dbCore0, back to back messages of variable size.

• dbCore0 to A9, back to back messages of variable size.

• A9 to dbCores, back to back messages on both direc-
tions. dbCore0 is the recipient of A9 messages and
dbCore1 the sender. A9 alternates between sending and
consuming a message.
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(a) Columnwidth = 1B (b) Columnwidth = 4B

Figure 6: Bandwidth achieved across 32 dbcores for reading (a) and reading and writing(b) data via the DMS. Each line shows
the bandwidth achieved for given number of rows per buffer and column width

Figure 7: Bandwidth achieved across 32 dbcores for the
bitvector gather operation using the DMS. The x-axis

• round-trip messages of minimum size, exchanged be-
tween A9 and dbCore0.

Figure 10 shows the message throughput rate in thousands
of messages per second, as a function of the message payload
size (in 4-byte words), for the three traffic patterns that ex-
change back-to-back messages. The message processing rate
at the two ends of the message exchange is different, with A9
having to involve the kernel interrupt to receive the messages
and deliver them to the user space of the destination process.
On the other side, when a dbCore is receiving a message,
the processing path is much shorter. As a result, there is
higher throughput when A9 sends messages to dbCores than
when receiving. The combination of the two patterns, results
naturally in lower throughput, as the A9 has more work to do
compared to either previous scenario.

Finally, we evaluated the round-trip throughput of the mail-
box communication channel, by having A9 and dbcore) ex-
change the same message multiple times. We measured the
average message rate under that traffic pattern to be 64.184
round trips per second.

Figure 8: Bandwidth achieved with DMS partitioning engine

4.6 SQL Operations

4.6.1 Filter
The filter operation is a basic database operation (SQL

WHERE clause), used to identify elements of a column that
satisfy a given condition. We program the DMS to fetch
a single column of data (columnwidth = 1B), and vary the
number of rows from 512 to 16384. The DMS fetches a tile
of the requested size into DMEM, and the dbCores gener-
ate a bitvector in DMEM corresponding to the ≤,<,≥,>,=
comparisons with a constant. We accelerate these operations
by using the bvld and filt instructions in the dbCore ISA,
and pipeline these operations together with the DMEM read.
A single dbCore achieves a bandwidth of 482 millions tu-
ples/second (Figure 11), which translates to 1.65 cycles/tuple.
We can see a saturation in dbCore performance as the number
of rows are increased, as fetching larger buffers causes the
DMS to approach peak memory bandwidth. For 16K rows/d-
bCore, this allows us to achieve a peak memory bandwidth
of almost 9.6 GB/s for 32 dbCores.

4.6.2 Binary Expressions
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Figure 9: Performance of ATE SW and HW RPCs for differ-
ent payload sizesMessaging rate & Bandwidth
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Figure 11: Performance achieved for a single dbCore for the
filter primitive

Figure 12: Performance achieved for a single dbCore for the
filter primitive

We evaluate binary expressions on the DPU, which are
defined as operations on columns of the form ColA EXPR
ColB, where ColA and ColB are two database columns, and
EXPR is one of ADD, SUB, MUL or DIV. We also evaluate
the CASE expression defined as ColA > Const1 then ColB
else Const2. We fetch 1024 rows per column using the DMS
into DMEM, and measure the achieved bandwidth for dif-
ferent columns widths (Figure 12). The bandwidth for the
ADD/SUB expression increases with larger column widths,
due to larger buffer being transferred by the DMS. MUL
and DIV achieve their peak bandwidth at a column width
of 4 bytes, and become compute bound for higher column
widths. The CASE expression bandwidth increases linearly
with increasing column widths, due to improved DMS band-
width. CASE achieves lower bandwidth than ADD/SUB due
to higher branch misprediction penalties.

5. APPLICATIONS: OPTIMIZING FOR THE
DPU

We designed the DPU to be able to perform in memory an-
alytics at peak memory bandwidth and corresponding power
efficiency, and we look at applications spanning a variety of
domains that are a good match for our hardware. We find
state of the art algorithms from research for these applica-
tions, and implement them both on x86 and the DPU. In most
cases, similar code runs on both architectures, with threads
on x86 translating to dbCores, and cache-friendly memory
operations are converted to DMS operations. The DMEM
and LLC on the DPU are much smaller than Xeon processors,
and we perform additional optimizations to allow working
sets to fit in DMEM.

We compare our numbers to a Xeon server, with two In-
tel Xeon E5-2699 v3 18C/36T processors and 256GB (16
* 16GB Samsung 16GB DDR4 2133MHz) DRAM running
at 1600 MHz. For our DPU experiments, all datasets were
converted to 10.22 fixed point. There has been a increasing
amount of research on using fixed point for machine learning
algorithms [12] [7], and we observed no losses in accuracy
while comparing with a floating point implementation. A
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Figure 13: Power efficiency gains of the DPU for several
applications

simple 10.22 fixed point approach works due to the fact that
most machine learning algorithms require data normaliza-
tion, which constrains the range of the numbers involved,
leaving 22 bits to handle precision. We create optimized
routines for fixed point multiply, divide, dot product, and
exponential functions. For the dot product, we use hand-
coded assembly to make sure the element-wise loop fits into
the loop buffer, making the backwards branch free. To com-
pute performance/Watt, we assume a TDP of 145 W for the
Xeon, and 6 W for the DPU. Figure 13 shows the perfor-
mance/Watt advantages of the DPU for several applications
that we looked at normalized to a corresponding optimized
x86 implementation.

5.1 Support Vector Machines
Support Vector machines (SVMs) are widely used for clas-

sification problems in healthcare (cancer/diabetes), document
classification and handwriting recognition. We implement
a variation of the Parallel SMO algorithm proposed by Cao
et. al [5] on the DPU. Each iteration of the SMO algorithm
involves computing the maximum violating pair across all
training samples, and the algorithm converges when no such
pair could be found. We distribute the computation of the
maximum violating pair across all dbCores, and each core
sends its local violating pair to a designated master core
using the ATE. The master then computes the error on the
global pair, and broadcasts the updated values to all dbCores
using the ATE as well.

Sending large data values across the ATE is expensive,
so we store all data structures in shared DRAM structures,
and use a soft coherence protocol to maintain integrity. The
sending core flushes the data structure from its cache and
notifies the receiving core via an ATE message. The receiv-
ing core then invalidates the data structure address range
from its cache. We use the DMS to read and write the sam-
ples and coefficients arrays at line speeds, further improving
efficiency.

We compare the DPU version with a multicore LIBSVM
[6] implementation on x86. We use 128K samples from the
HIGGS [17] dataset for evaluation. Optimal parameters are
chosen for LIBSVM (100MB kernel cache, 18 OpenMPI
threads) empirically. The DPU version generates kernels on

the fly, since we found generating and maintaining a kernel
cache for the entire dataset to be much slower. A side-effect of
our fixed point implementation is that the DPU converges in
35% fewer iterations, with no loss in classification accuracy,
further making the case for fixed point.

5.2 Similarity Search on Text
Text processing is an ubiquitous workload, we use a sim-

ple example of similarity search on text to demonstrate the
applicability of DPUs to text analytics. The similarity search
problem essentially involves computing similarities between
a group of queries and a group of documents indexed using
the tf-idf scoring technique, and coming up with a set of topk
matches for each query. Computing cosine similarities for a
group of queries against an inverted index of documents can
be formulated as a Sparse Matrix-Matrix Multiplication prob-
lem (SpMM) [1]. We leverage recent research on optimizing
SpMM on the CPU [20] and the GPU [1] and implement
these algorithms on x86 and the DPU. Each query indepen-
dently searches across the index, making the problem easily
parallelizable across multiple threads/dbCores. We search
across 4M pages in the English Wikipedia, using page titles
as queries, similar to [1].

A SpMM operation between 2 sparse matrices A and B
creating C relies on a simple principle, accumulate rows of
B corresponding to non-zero columns of A into C. The algo-
rithm relies on using a dense intermediate format for rows
of C, which makes indexing easier during accumulation. We
range-partition rows of B and C into smaller tiles, allowing
this intermediate dense array to fit in the LLC. These tiles are
stored in the Compressed Sparse Row (CSR) format, which
means we cannot know when a tile ends without actually
reading the tile. These irregular access patterns make SpMM
a challenging problem for DMS access. Getting good band-
width and efficiency from the DMS entails fetching large
fixed length contiguous buffers. Naively using the DMS in-
volves fetching a buffer containing a tile, utilizing the tile,
and discarding the rest of the buffer. This generates an ef-
fective bandwidth of only 0.26 GB/s across 32 dbcores. We
use a novel technique for SpMM, where we fetch a buffer
containing multiple tiles into DMEM, and track state corre-
sponding to the end of each tile. This allows us to consume
all data in DMEM, increasing bandwidth utilization.

Careful DMEM management improves the effective band-
width to 5.24 GB/s on the DPU and a 3.9× improvement in
performance/Watt over a optimized 256 thread Xeon imple-
mentation (effective bandwidth across 36 cores - 34.5 GB/s).

5.3 Grouping and Aggregation (SQL ’Group
By’)

This SQL operation consists of grouping rows based on
the values of certain columns (or, more generally, expres-
sions) and then calculating aggregates (like sum and count)
of a given list of expressions within each group. It can be
efficiently processed using a hash table as long as the num-
ber of distinct groups is small enough [8]. Since the access
pattern is random and the hash table size grows linearly with
the number of distinct groups, ensuring locality of access
is very important for performance, especially on the DPU
architecture. On conventional architectures like x86, query
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processing systems rely on large multi-tier caches to hide the
latency of accessing a large hash table; even on such systems
there is no guarantee that a given section of the hash table
will be cache-resident and performance drops significantly
when the hash table grows beyond a certain size.

Our query processing software is architected around care-
ful partitioning of the data to ensure that each partition’s
data structures (like a hash table, in the case of group-by) fit
into the DMEM. This also guarantees single-cycle latency to
access any part of the hash table, unlike a cache.

The process begins with the query compiler where the
DMEM space is allocated among input/output buffers, meta-
data structures and the hash table in a way that maximizes
performance; the algorithm initially allocates a minimum
amount of space for each structure, and then allocates the rest
of the space incrementally using a greedy approach based
on the performance gains of allocating extra space to each
structure. Typically, input/output buffers don’t benefit much
from more than 0.5 KB (since the DMS can nearly saturate
memory bandwidth at that point) and hence a large part the
DMEM space is allocated to the hash table.

Then the number of partitions needed to achieve that hash
table size per partition is calculated. The partitioning needs
to be performed using a combination of hardware and/or soft-
ware partitioning. Based on the number of columns involved,
we can calculate maximum number of software partitions that
can be achieved in one "round" (round-trip through DRAM
âĂŞ reading data in and writing it out as separate partitions)
at a rate that is close to memory bandwidth; this is because
software partitioning internally uses DMEM buffers for each
partition. The number of rounds of partitioning required is
then calculated and partition operators are added to the query
plan before the grouping operator. At runtime, if the size of
a partition is larger than estimated, the execution engine can
re-partition the data for that partition as needed. In the last
round, if the number of partitions is less than the number of
cores, only hardware partitioning is needed; this is especially
useful for moderately sized hash tables (which are larger than
DMEM but not larger than the combined size of all the cores’
DMEM) since no extra round-trip through DRAM is needed.

Partitioning also provides a natural way to parallelize the
operation among the cores, since each core can usually oper-
ate on a separate partition. But when the number of distinct
groups is low, partitioning is not necessary or useful; in this
case, the input data is equally distributed among the cores and
a merge operator is added to the query plan after the grouping
operator. Since the merge operator only works on aggregated
data, its overhead is very low.

We evaluate groupby for two cases: low number of distinct
values (Low-NDV) and high number of distinct values (High-
NDV). In the Low-NDV case, both platforms are able to
process the operation at a rate close to memory bandwidth; so
the improvement (6.7x) is primarily due to the DPU’s higher
memory bandwidth per Watt. However, in the high-NDV
case, the data needs to be first partitioned on both platforms.
Due to the DMS’s hardware partitioning feature the DPU
only needs to do one round of partitioning, whereas X86
needs two rounds; so the improvement (9.7×) is higher in
this case.

5.4 HyperLogLog
The HyperLogLog algorithm [10] provides an efficient

way to approximately count the number of distinct elements
(the cardinality) in a large data collection with just a single
pass over the data. The distinct count is an important problem
finding applications across a variey of disciplines like count-
ing unique visitors to a website as well as common database
operations (COUNT DISTINCT). HyperLogLog relies on a
well behaving hash function which is used to build a most
likelihood estimator by counting the maximum number of
leading zeros (NLZ) in the hashes of each data value. This es-
timation is coarse-grained, and the variance in this approach
can be controlled by splitting the data into multiple subsets,
computing the maximum NLZ for each subset, and using a
harmonic mean across these subsets to get an estimate for the
cardinality of the whole collection. This also makes the algo-
rithm easily parallelizable, each core computes the maximum
NLZs for its subsets, followed by a merge phase at the end.

We optimize our implementation by using a key observa-
tion, that the properties of the hash function remain the same
if we count number of trailing zeros (NTZ) instead of num-
ber of leading zeros (NLZ). The NTZ operation takes only 4
cycles on a dbcore as compared to 13 cycles for a NLZ due
to hardware support for a popcount instruction. Instead of a
static schedule, we partition the input set into multiple chunks
and implement work stealing on the across cores using the
ATE hardware atomics. The variable latency multiplier on
the dbCores makes this dynamic scheduling essential to avoid
long tail latencies. We also use the DMS to read and write
buffers at peak bandwidth, and evaluate the performance o,
talk about merge, hash functions used We can use a 64-bit
hash function We further optimize the x86 version by using
atomics for synchronization and SIMD intrinsics. The hash
function is at the heart of the HyperLogLog algorithm, and
we compare the performance of the DPU for 2 common hash
functions, Murmur64 and CRC32. The DPU has hardware
acceleration for CRC32, making the CRC implementation
almost 9× better than the x86 implementation. The Mur-
mur64 implementation does poorly on the DPU due to the
high latency multiplier (4-8 cycles), and we plan to address
this in a future revision of our chip.

5.5 JSON Parsing
The JavaScript Object Notation (JSON) is an increasingly

popular format amongst many applications that store and an-
alyze large amounts of data. The JSON grammar is relatively
simple, consisting of key-value pairs and a small number of
syntactic tokens and datatypes (numbers, strings, lists, dic-
tionaries), yet flexible because it supports nesting. Hence
several applications use JSON to log data, as well as ingest
JSON logs as an initial step in data analysis pipelines. We
hence evaluate the efficiency of parsing JSON data using the
DPU.

For representative baselines to compare to the DPU, we
assume the source file is loaded into DDR memory (as with
mmap() on x86). After evaluating open source C/C++ im-
plementations of JSON (JSON11, RAPIDJSON, SAJSON)
we selected SAJSON [3] as our best performing, portable
baseline. Like several other parsers, it employs a switch-
case structure and uses a single memory allocation to avoid
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repeated overheads. For a benchmark, we populate JSON
records with keys corresponding to the TPCH lineitems ta-
ble. The datatypes hence consist of a mixture of integers,
strings, dates and populate approximately 1GB of records.
For this workload, SAJSON is able to achieve an IPC of 3.05,
and parse the input data at 5.2 GB/s on our x86 machine.
However, on the RAPID DPU, it only achieves a throughput
of 645 MB/s âĂŤ even assuming all the workload records
are perfectly prefetched into core-local SRAM(DMEM). The
switch-case anatomy emits a large number of instructions,
including several compare-branch with the default compiler
(gcc, MIPS-O64). On the in-order RAPID dbCores operating
at a relatively low frequency ( 1/3 compared to the x86, out-
of-order machine), and lacking hardware branch prediction,
the resulting processing cycles per byte ( 13.2) brings down
the achievable memory bandwidth.

Instead of a nested branching structure, we coerce a jump-
table by first loading the next byte in the input token stream,
and branching conditionally based on the loaded character.
A table which supports looking up the input character in
combination with the current parse state, and yield a pointer
to a new parse action requires allocation of 256 (number of
characters) × 8B (size of pointer to next parse action) ×
number of states in the grammar. Given JSONâĂŹs relatively
small grammar ( 12 states), the parse table size fits within
23 KB. To allow concurrent processing on all dbcores, the
JSON file (in memory) is split into per-core chunks. To
further avoid synchronization that would be required if a
JSON record straddled the chunk boundary between two
dbcores, each dbcore allocates and reads an extra chunk.
During parsing, the extra bytes are parsed as the last bytes
of the dbcore processing the previous chunk and ignored by
the dbcore which encounters them in its first chunk. Due
to the efficiency of prefetching buffers using the DMS, this
overhead is largely negligible.

Apart from using the DMS for moving data from DRAM
to individual dbcore memories, further optimizations were
required to comply with the requirements of parsing such as
returning of pointers to full, null-terminated records. The
straightforward approach of checking once for the end of
a DMS descriptor, followed by a subsequent scan for the
terminal character causes inputs to be read twice. Instead, we
exploit the JSON grammar by adding an invalid byte at the
end of the DMS buffer (like 0x00), force a parse error and
invoke the appropriate next-state production rule with a single
pass over the input. The DMS also triple-buffers the data in 8
KB chunks, with a padding size of 1 KB to avoid the chunk-
straddling issue mentioned above. These optimizations allow
our DPU implementation to process the above dataset at 1.73
GB/s using 32 dbcores, with an improvement of 8× in terms
of performance/Watt over SAJSON.

5.6 Disparity
In this section, we evaluate a well-known computer vi-

sion workload that computes a disparity map [19]. Disparity
map provides detailed information on the relative distance
and depth between objects in the image from two stereo im-
ages each taken with slightly different camera angles. In
a nutshell, the disparity map workload involves computing
the pixel-wise difference between the two images by shift-

Figure 14: The three types of data access pattern in the dis-
parity computer vision workload.

ing one of the images by X pixels, where X varies from 0
to a given max_shift parameter. The resulting disparity
map is essential component in many machine vision applica-
tions like autonomous cruising, pedestrian tracking, etc. This
well-studied computer vision workload is known to be data
intensive [22] whose memory accesses need to be carefully
orchestrated to efficiently utilize the available memory band-
width. In addition, the disparity computation involves four
distinct image kernels each with different data access patterns
that are not straight-forward to parallelize across multiple
cores. These are the two main challenges that a developer
faced in parallelizing this workload on any archiecture.

In order to efficiently parallelize the disparity computa-
tion across multiple cores, we experimented with both fine-
grained and coarse-grained parallelization approaches each
with different trade-offs. Under the fine-grained approach,
we split the input images into distinct chunks or tiles of pix-
els, one per each DbCore, where they cooperatively compute
the disparity kernel in lockstep. Hence this approach might
require non-trivial amounts of system-wide barriers for syn-
chronization between the computer vision kernels. On the
other hand, the coarse-grained approach splits the work of
computing disparity by making each core independently com-
pute disparity for a distinct shift in pixel of one of the images
and finally aggregate the result across cores. Although this
approach reduces the number of synchronization between
the cores, may not efficiently utilize the available memory
bandwidth. The result of this experiment is highly dependent
on the architecture. For example, the cost of synchronization
and ability to orchesterate memory accesses. Low-latency
synchronization primitives and the DMS played a vital role
in the RAPID architecture.

[ht]
The four disparity vision kernel involves three distinct data-

access patterns as shown in the Figure-14. The most chal-
lenging data-access patterns are the columnar and pixelated-
pattern. The software-managed DMEM via DMS makes
orchestrating these access pattern significantly easier on the
RAPID architecture. For instance, the most-challenging pixe-
lated access pattern can be reduced into gathering pixels with
two different strides into two sections of the DMEM scratch
memory. Similarly, each core could independently fetch its
own column into the core-private scratch memory.

We found that a tightly-coupled design of the RAPID archi-
tecture performed better under the fine-grained parallelism ap-
proach and resulted in a 2.9x slow down to 16 core IvyBridge
Xeon machines (Oracle X4-2) with the OpenMP-based paral-
lel implementation. This translates into 8.6x better perf/watt
on RAPID compared to the X86 counterpart. The perfor-
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Figure 15: Performance of disparity workload on both X86 and RAPID, (a) shows the absolute runtime on each architecture, (b)
shows scalability by plotting speedup over single thread performance with increasing number of threads. Both the graphs show
fine- and coarse-grained parallelization approach on RAPID

mance result of scaling from 1 to 32 threads is shown in
Figure-15. This shows that RAPID is a versatile system
which benefits other non-SQL data-intensive workloads as
well.

6. CONCLUSION
Rapid increases in data sizes requires a fundamental change

in the way we tackle large scale analytics applications. We
present the Database Processing Unit (DPU), a unique ar-
chitecture focusing on memory bandwidth achieved/Watt,
created to address the challenges of big data. We implement
a variety of applications on the DPU, ranging from JSON
Parsing to SQL operations, as well as a number of analyt-
ics workloads, and show an efficiency improvement of 5x
to 15x in terms of performance/Watt. We note that this is a
first step towards a larger rack scale system, where hundreds
of thousands of DPUs are connected via a high bandwidth
interconnect to provide an efficient solution to the exascale
challenge.
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