ORACLE

Synthesis of Java Deserialisation Filters
from Examples

~
>N
,
i
-

Kostyantyn Vorobyov, Francois Gauthier, = Sora Bae,
Padmanabhan Krishnan and Rebecca 2 EN+ Il ¥ 3 2 Lj¢

Oracle Labs, Australia
June, 2022

1 Copyright © 2022, Oracle and/or its affiliates June, 2022

Deserialisation in Java

Serialisation/deserialisation
A Convert an object into a stream of bytes and back
A Natively supported by Java !

Deserialisation of untrusted data
A Carefully crafted payload can trigger arbitrary functionality
A Over 600 CVEs reported in the last 5 years

Beyond native Java serialisation

A Jackson-databind: JSON-based serialisation
- 9" most popular package on Maven as of May 2022

A Over 60 CVESs reported since 2017

[1] Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

2 Copyright © 2022, Oracle and/or its affiliates June, 2022

Deserialisation Filtering

Production -time monitor
A Validates contents of deserialised objects

Relies on user-provided filters
A Blocklists: block deserialisation of unsafe classes (less safe)
A Allowlists: allow deserialisation of benign classes (more safe)

Available tools:

A JEP 290 (JDK?)
- First appeared in Java 9, backported to Java 6, 7 and 8

A contrast-rO0 (Contrast Security)
A ValidatingObjectinputStream (Commons Collection)

[1] JDK s a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

3 Copyright © 2022, Oracle and/or its affiliates June, 2022

Deseralisation Filters

Typically implemented as regular expressions over class names

Manual construction and maintenance of deserialisation filters is tedious and error prone
A Especially for large systems comprising many components

Best delegated to an automated approach
A Synthesise filters (as regular expressions) from examples
A Block deserialisation of potentially dangerous classes
A Allow deserialisation of benign yet previously unseen classes

4 Copyright © 2022, Oracle and/or its affiliates June, 2022

Synthesis of Regular Expressions from Examples

Existing techniques
A Automata -theoretic
A Genetic programming
A Multiple sequence alignment

Not well suited for synthesis of deserialisation filters
A Either too specific or overly generic
A High cost (esp. automata -theoretic)

A Synthesised regular expressions are difficult to maintain
- Reason at the level of individual characters

Can we synthesise accurate and manually auditable deserialisation filters at low cost?

5 Copyright © 2022, Oracle and/or its affiliates June, 2022

ds-prefix: Automatic Synthesis of Deserialisation Filters from Examples

Focus

A Synthesis of allowlists (regular expressions) from benign and malicious examples (class names)
- An example matching the generated allowlist should be allowed and blocked otherwise

Observation

A Existing filters often reason at the level of packages rather than individual classes
- Allow or block deserialisation of classes with given prefixes

Key ideas
A Find shortest prefixes that describe all positive examples and none of the negative
A Generalise concrete class names

6 Copyright © 2022, Oracle and/or its affiliates June, 2022

Positive, Negative and Conflicting Prefixes

Examples
Ay Q0 &0 D Gicrd &16e0 BYME | 0
A {Qoh8a&vi Qo Qi

Prefixes
A "Q& dednflicting
A Q6> 8166 & peitive
A Qo 8@Enegative

Regular expression

A Accept any class starting with a positive prefix
java \.lang\ ..*

7 Copyright © 2022, Oracle and/or its affiliates June, 2022

Resolving Conflicting Prefixes

Examples
- Y QOB EYA T Q¢ Q
- Y QO & 8YQ ¢ 01Qa Q

Additive approach

A Accept only positive examples
java \ . lang \ .String

Subtraction approach

A Accept any example from the same package except negative
java \ . lang \ .(?'Runtime$)[".]+

8 Copyright © 2022, Oracle and/or its affiliates June, 2022

Augmented Prefix Tree Acceptor (APTA) over Java Class Names

'” String O

Qe 0O =
o w qO Ow oG 9 =9 @ untime
Qo &0 8YQ 1 Qe "Q lang. P >‘
QO BOSIR O
5 er ALY 4 \ v\ \ iO. q5 erter ‘>‘
Q8 i 0 we O @
5, o L7/ e~y v % 1 Util.
QBN D ¢ v Q JJEel:
- time. de >©
yte
] D
Do Q Instant O
06 8166 BY@ & 6 Q& Q O (a7 Ychrono.
QO ER< Q0O Qi Clock @
QO D& 8B1ED

9 Copyright © 2022, Oracle and/or its affiliates June, 2022

Synthesis Example

Current state: I

