
Software Architect
Oracle Labs
March 26, 2021

Guy L. Steele Jr.

Generality—or Not—
in a Domain-Specific Language
(A Case Study)

Copyright © 2021, Oracle and/or its affiliates2

Copyright © 2021 Oracle and/or its affiliates (“Oracle”). All rights are reserved by Oracle
except as expressly stated as follows. Permission to make digital or hard copies of all or
part of this work for personal or classroom use is granted, provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on servers,
or to redistribute to lists, requires prior specific written permission of Oracle.

Copyright © 2021, Oracle and/or its affiliates3

How BibTeX Works

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style

Typeset paper
(.pdf file)

LaTeX
LaTeX Source

(.tex file)
—————————————

text of paper
formatting commands
\cite{key} commands
\bibliography{name}

\bibliographystyle{name}

Copyright © 2021, Oracle and/or its affiliates4

How BibTeX Works: First pass through LaTeX

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style

Typeset paper
(.pdf file)

LaTeX
LaTeX Source

(.tex file)
—————————————

text of paper
formatting commands
\cite{key} commands
\bibliography{name}

\bibliographystyle{name}

Copyright © 2021, Oracle and/or its affiliates5

How BibTeX Works: Run BibTeX

Bibliographic
references
(.bbl file)

——————
\bibitem

commands
BibTeX

Bibliographic style
(.bst file)

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style

Bibliographic
database
(.bib file)

Copyright © 2021, Oracle and/or its affiliates6

How BibTeX Works: Second pass through LaTeX

LaTeX Source
(.tex file)

Bibliographic
references
(.bbl file)

——————
\bibitem

commands

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style
\bibitem data

LaTeX

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style

Typeset paper
(.pdf file)

————————
references at end

Copyright © 2021, Oracle and/or its affiliates7

How BibTeX Works: Third pass through LaTeX

LaTeX Source
(.tex file)

Bibliographic
references
(.bbl file)

——————
\bibitem

commands

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style
\bibitem data

LaTeX

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style
\bibitem data

Typeset paper
(.pdf file)

————————
references at end
citations in text

Copyright © 2021, Oracle and/or its affiliates8

The Bibliography Database File (.bib)
@preamble{"\newcommand\na{{\sc non-archival}}"}
@string{CACM = {Communications of the ACM}}
@string{oct = {October}}
@string{ACM = {Association for Computing Machinery}}
@string{NYC = {New York, NY, USA}}
@book{BLISS-Compiler,
title = {The Design of an Optimizing Compiler},
author = {William Wulf and Richard K. Johnson and

Charles B. Weinstock and Steven O. Hobbs
and Charles M. Geschke},

ISBN = {0-444-00164-6},
year = {1975},
publisher = {American Elsevier},
address = {New York}

}
@article{counters, author = {Morris, Robert},
title = {Counting Large Numbers of Events in Small Registers},
year = {1978}, journal = CACM, volume = {21}, number = {10},
doi = {10.1145/359619.359627}, month = oct, pages = {840-842}}

In the .tex file:

\cite{counters}

\cite{BLISS-Compiler}

Bibliographic
database
(.bib file)

Copyright © 2021, Oracle and/or its affiliates9

LaTeX Input and PDF Output with Style angew

\documentclass{article}
\usepackage{natbib}
\usepackage{hyperref}

\bibliographystyle{angew}

\begin{document}
\noindent
We used the Bliss compiler
\citep{BLISS-Compiler} to
compile our implementation
of approximate counters
\citep{counters}.

\bibliography{test}
\end{document}

Copyright © 2021, Oracle and/or its affiliates10

LaTeX Input and PDF Output with Style erae

\documentclass{article}
\usepackage{natbib}
\usepackage{hyperref}

\bibliographystyle{erae}

\begin{document}
\noindent
We used the Bliss compiler
\citep{BLISS-Compiler} to
compile our implementation
of approximate counters
\citep{counters}.

\bibliography{test}
\end{document}

Copyright © 2021, Oracle and/or its affiliates11

LaTeX Input and PDF Output with Style natdin

\documentclass{article}
\usepackage{natbib}
\usepackage{hyperref}

\bibliographystyle{natdin}

\begin{document}
\noindent
We used the Bliss compiler
\citep{BLISS-Compiler} to
compile our implementation
of approximate counters
\citep{counters}.

\bibliography{test}
\end{document}

Copyright © 2021, Oracle and/or its affiliates12

LaTeX Input and PDF Output with Style plainnat

\documentclass{article}
\usepackage[numbers]{natbib}
\usepackage{hyperref}

\bibliographystyle{plainnat}

\begin{document}
\noindent
We used the Bliss compiler
\citep{BLISS-Compiler} to
compile our implementation
of approximate counters
\citep{counters}.

\bibliography{test}
\end{document}

Copyright © 2021, Oracle and/or its affiliates13

How BibTeX Works

Bibliographic
references
(.bbl file)

——————
\bibitem

commands
BibTeX

Bibliographic style
(.bst file)

LaTeX Auxiliary Data
(.aux file)

———————————
every \cite key

name of bib database
name of bib style

Bibliographic
database
(.bib file)

Copyright © 2021, Oracle and/or its affiliates14

How BibTeX “Really” Works

Bibliographic
references
(.bbl file)

——————
\bibitem

commands

BibTeX

Bibliographic
database
(.bib file)

(.aux file)
——————
\cite key

bib database
bib style

relevant
subset of
database

Bibliographic
style

(.bst file)

Copyright © 2021, Oracle and/or its affiliates15

How BibTeX “Really” Works

Bibliographic
references
(.bbl file)

——————
\bibitem

commands

BibTeX

Bibliographic
database
(.bib file)

(.aux file)
——————
\cite key

bib database
bib style

relevant
subset of
database

Bibliographic
style

(.bst file)

The .bst file
is a program!

READ

The BibTeX Style Language

• Created by Oren Patashnik and Leslie Lamport in 1985.

• Version 0.98f released in March 1985.

• Version 0.99c released in February 1988.

• In 2003, publication of "BibTeX yesterday, today, and tomorrow"
• Proposed 19 sets of changes to the language (never done)

• Version 0.99d released in March 2010 to improve the printing of URLs.

A language of the 1980s that has changed hardly at all for 33 years.
A solid workhorse used every day around the world.
More sophisticated replacements exist but have not displaced it.

Copyright © 2021, Oracle and/or its affiliates17

Data Types in a .bst Program

• strings of ASCII (7-bit) characters

• integers (probably 32 bits? originally 16 bits!)

• functions

• empty (value of a database entry field for which no value was supplied)

Copyright © 2021, Oracle and/or its affiliates18

The Data Environment for a .bst Program

1. Named things (one namespace)!

3. The stack

Global variables
• string variables
• integer variables

Macros

Database entry variables
• fields (string or empty)
• per-entry string variables
• per-entry integer variables

Functions

. . .

Each stack slot can contain one of:
• string
• integer
• function
• empty

Primitive functions take arguments
on the stack and return results there.

top

2. The (unnamed) list of
chosen database entries

Copyright © 2021, Oracle and/or its affiliates19

Top-level Program Commands (1 of 6)

Declare database fields and entry variables:

ENTRY
{ field-names }
{ per-entry-integer-variables }
{ per-entry-string-variables }

ENTRY
{ author title journal volume number year month day

pages publisher address note }
{ citation.order }
{ sort.year sort.label }

Copyright © 2021, Oracle and/or its affiliates20

Top-level Program Commands (2 of 6)

Declare global variables and macros:

INTEGERS { integer-variable-names }
STRINGS { string-variable-names }
MACRO { name } { string-literal }

INTEGERS { numnames count len show-isbn-10-and-13 }
STRINGS { s t last.label }
MACRO { jan } { "January" }

@string in the .bib file can override a MACRO definition in the .bst file.

Copyright © 2021, Oracle and/or its affiliates21

Top-level Program Commands (3 of 6)

Declare functions:

FUNCTION { name } { list-of-functions-to-call }

FUNCTION { double } { duplicate$ + }
FUNCTION { not }
{

{ #0 }
{ #1 }

if$
}
FUNCTION { increment.count } { count #1 + 'count := }

It is forbidden for functions to be recursive.

Copyright © 2021, Oracle and/or its affiliates22

Top-level Program Commands (4 of 6)

Execute a function from the top level:

EXECUTE { function-name }

Database entry variables are not available to the called function—
only global variables.

Copyright © 2021, Oracle and/or its affiliates23

Top-level Program Commands (5 of 6)

Work with the list of database entries:

READ read .bib file and construct the list of database entries
(the relevant subset of the full .bib database)

SORT sort the list of database entries
using the special implicit per-entry field sort.key$

Copyright © 2021, Oracle and/or its affiliates24

Top-level Program Commands (6 of 6)

Execute a function once for each database entry:

ITERATE { function-name }

REVERSE { function-name }

Entry variables are available to the called function.

Copyright © 2021, Oracle and/or its affiliates25

Typical Structure of a .bst File

One ENTRY command to define the database structure.
A mix of STRINGS, INTEGERS, FUNCTION, and MACRO declarations.
One READ command to set up the list of referenced entries
(MACRO/@string references in the .bib file are processed at this time).

A mix of EXECUTE, ITERATE, REVERSE, and SORT commands
(and possibly more STRINGS, INTEGERS, and FUNCTION declarations).

The last four lines are almost always something like:

ITERATE { call.type$ }
FUNCTION { end.bib }

{ newline$ "\end{thebibliography}" write$ newline$}
EXECUTE { end.bib }

Copyright © 2021, Oracle and/or its affiliates26

Primitive Functions (1 of 11)

Functions take their arguments on the stack and return results there.

Simple arithmetic functions:
= compare two integers: 1 if true, 0 if false
< compare two integers: 1 if true, 0 if false
> compare two integers: 1 if true, 0 if false
+ add two integers, leaves sum on stack
- subtract two integers, leaves difference on stack

Simple string functions:
= compare two strings: 1 if true, 0 if false
* concatenate two strings, leaves result on stack

FUNCTION { times10 } { double duplicate$ double double + }

Copyright © 2021, Oracle and/or its affiliates27

Primitive Functions (2 of 11)

Stack manipulation:
duplicate$ push a copy of top stack item
swap$ pop top two stack items, push back in other order
pop$ pop(and discard) top stack item

Type testing:
missing$ 1 if top of stack is the value of a missing field, else 0
empty$ 1 if top of stack is the value of a missing field

or a string containing no non-whitespace characters,
else 0

Copyright © 2021, Oracle and/or its affiliates28

Primitive Functions (3 of 11)

Pushing onto stack:
#nnnn integer literal: push integer onto stack
"xxxx" string literal: push string onto stack
{ list-of-functions } function literal: push function onto stack
variable-name push value of the variable
field-name push value of field, or empty if no value given
'function push function onto stack
'variable-name push the “variable-value push function”
'field-name push the “field-value push function”
quote$ push string containing one double-quote character

Could have defined that last one as:
FUNCTION { quote$ } { #34 int.to.chr$ }

Copyright © 2021, Oracle and/or its affiliates29

Examples

FUNCTION { parenthesize } { "(" swap$ * ")" * }

FUNCTION { italicize } { "\emph{" swap$ * "}" * }

FUNCTION { format.title } { title italicize add.period$ }

Copyright © 2021, Oracle and/or its affiliates30

Primitive Functions (4 of 11)

Assignment:

:= stack has a value and a push-function for a variable or field;
pop them and assign the value to to the variable or field
(signal an error if the value has the wrong type)

Control structure:

if$ stack has “integer, function1, function2”;
pop them, then call function1 if integer is positive,
otherwise call function2

while$ stack has “function1, function2”; pop them;
call function1, pop top of stack (must be an integer),
and if value is positive, call function2 and repeat

skip$ do nothing

Copyright © 2021, Oracle and/or its affiliates31

Examples

FUNCTION { format.title } {
title empty.or.unknown

{ "" }
{ title italicize

titleaddon empty.or.unknown
'skip$
{ " " * titleaddon parenthesize * }

if$
add.period$

}
if$

}

Copyright © 2021, Oracle and/or its affiliates32

Primitive Functions (5 of 11)

String operations:

substring$ “str, start, len”: compute ASCII-character substring
(1-based indexing; if start is negative, count from end
and len extends backward; tolerant of overshoot)

text.prefix$ “str, len”: push a string containing
the first len text characters of str
(“{\hat{o}}” counts as one text character)

text.length$ “str”: number of text characters in str

But there is no function that gives the ASCII-character length of a string!

Copyright © 2021, Oracle and/or its affiliates33

Examples

FUNCTION { string.length } {
#0 swap$
{ duplicate$ "" = not }

{ #2 global.max$ substring$ swap$ #1 + swap$ }
while$
pop$

}

It’s slower than if it were a primitive, but that’s okay;
it turns out it’s not needed that much in practice.

Copyright © 2021, Oracle and/or its affiliates34

Primitive Functions (6 of 11)

Type conversions:
int.to.chr$ “int”: convert ASCII value to single-character string
chr.to.int$ “str”: convert single-character string to ASCII value
int.to.str$ “int”: convert to signed-decimal representation

But there is no function str.to.int$.

Copyright © 2021, Oracle and/or its affiliates35

Primitive Functions (7 of 11)

String operations:

change.case$ “str, kind”: change case of letters in str (kind says how)

add.period$ “str”: append a period to str unless the last
non-“}” character is already “.” or “?” or “!”

width$ “str”: physical width of str in hundredths of a point
if typeset in the June 1987 version of font CMR10

purify$ “str”: remove from str all characters other than
letters, numbers, whitespace and hyphens and ties
(which are turned into space characters),
and certain other cases

Copyright © 2021, Oracle and/or its affiliates36

Examples

STRINGS { s t }
FUNCTION { convert.to.lowercase } {
's := "" 't :=
{ s "" = not }
{ s #1 #1 substring$ chr.to.int$
s #2 global.max$ substring$'s :=
duplicate$ duplicate$
"A" chr.to.int$ < not swap$ "Z" chr.to.int$ > not and
{ "A" chr.to.int$ - "a" chr.to.int$ + }
'skip$

if$
int.to.chr$ t swap$ * 't :=

}
while$
t

}

Copyright © 2021, Oracle and/or its affiliates37

Primitive Functions (8 of 11)

Name-formatting operations:

These operate on a string of the form "name and name and … and name".

num.names$ “str”: return number of names in the string

format.name$ “str, k, fmt”:
(1) extract the k'th name from str
(2) decompose it into “first, von, last, jr” parts
(3) reassemble these parts according to format string fmt

This works for many names, but not 100%.

Copyright © 2021, Oracle and/or its affiliates38

Can We Call a Function?

There is no operation that, given a function on the stack, calls it.

But we can define one (and even name it so that it appears to be primitive):

FUNCTION { call$ } { #1 swap$ duplicate$ if$ }

Copyright © 2021, Oracle and/or its affiliates39

Mapping a Function over a String

Example: "abc" 'parenthesize map produces "(a)(b)(c)"

STRINGS { s t }
FUNCTION { map } { % stack in: ... str fn
swap$'s := "" 't :=
{ s "" = not }
{ duplicate$
s #1 #1 substring$ chr.to.int$
s #2 global.max$ substring$'s :=
swap$ call$
t swap$ * 't :=

}
while$
pop$
t

}

Copyright © 2021, Oracle and/or its affiliates40

Can We Define the S, K, I Combinators?

I z ⟹ z
K x z ⟹ x
S x y z ⟹ (x z) (y z)

FUNCTION { I } { skip$ }
FUNCTION { K } { pop$ }
FUNCTION { S } { 'z := z swap$ call$ swap$ z swap$ call$ call$ }

But there is a problem: z might be a function.
• Can't put z in a global variable.
• Can't get at the third thing down on the stack (only have swap$).

Copyright © 2021, Oracle and/or its affiliates41

There Is Actually a Deeper Problem

I z ⟹ z
K x z ⟹ x
S x y z ⟹ (x z) (y z)

When we use the combinatory calculus as a target language for translating
the lambda calculus, we depend on being able to curry K and S.

We need to be able to call K with one argument and get back a function.

But this doesn’t work:

FUNCTION { K } { 'x := { pop$ x } }

In this language, all variables are global, and functions don't have environments.

There is no way to return a function that remembers any calculated values.

So maybe this isn’t really a functional language (in the usual sense) after all.

Copyright © 2021, Oracle and/or its affiliates42

Primitive Functions (9 of 11)

Functions on the database or current database entry:

cite$ push a string for the citation key of the current entry
(used as the argument to \cite)

type$ push a lowercase string for the type of the current entry
("book", "article", "inproceedings", etc.)
or an empty string if the type is unknown
(there is no function with that name)

call.type$ for the current entry, if type$ is not an empty string,
call the function that has that name;
otherwise call the function default.type

preamble$ push a string that is the concatenation of all
arguments to the @preamble command in the .bib file

Copyright © 2021, Oracle and/or its affiliates43

Primitive Functions (10 of 11)

Writing to the .bbl file:

write$ pop top stack item (must be a string)
and write it to the .bbl file

newline$ write a newline to the .bbl file

Copyright © 2021, Oracle and/or its affiliates44

Primitive Functions (11 of 11)

Error reporting and debugging:

warning$ pop top stack item (must be a string), prepend
"Warning--", print it, and increment count of warnings

top$ pop and print top stack item on terminal (for debugging)

Feature: you can drop in "Reached point A" top$ anywhere.

Problem: "34" and #34 print the same (just the two digits),
and you can't write an improved version because
the language has no way to test the type of a stack item.

stack$ pop and print all stack items on terminal (for debugging)

Problem: it pops the stack, so you can't continue execution.

Copyright © 2021, Oracle and/or its affiliates45

My Project: Update ACM-Reference-Format.bst for HOPL IV Conference

Task: implement dates in ISO 8601 format (yyyy-mm-ddThh:mm:ss±zh:zm)
• Provide complete timestamps for email and social media
• Avoid splitting time and date info across multiple fields
• Example: date = {2019-10-02} rather than year, month, day fields

• Want to map numeric month values to text

Problem: macros are inaccessible to the programmer
Workaround: duplicate this information in the program

Problem: @string overrides in the .bst file will not be used for this purpose
Workaround:
• Extend ISO 8601 support so that date = {2019January02} also works
• In .bib file, actually write date = {2020} # jan # {02},

Language extension? Allow jan in a program to push the macro string

Copyright © 2021, Oracle and/or its affiliates46

My Project: Update ACM-Reference-Format.bst for HOPL IV Conference

Task: better support East Asian, Spanish, and Jr.-without-comma names

Problem: format.name$ has a specific, built-in theory of name parts
and is not extensible.

Solution: Completely reimplement format.name$ in the style language!
(I actually haven’t finished this part of the project yet.)

Problem: The code that implements format.name$
is quite complex (about 1/6 of all of BibTeX!).

It would have been easier if the three things that format.name$
does were three separate primitive functions:

n select.name$ name.parts$ fmt-string format.name.parts$

Then I could just replace the name.parts$ function, not the whole thing.

Copyright © 2021, Oracle and/or its affiliates47

A Few Observations (1 of 6)

A primitive that is too specific may be ignored or
completely reimplemented—and then what good is it?

add.period$ could have handled more cases.

add.period$ could have handled adding a comma.

format.names$ doesn't handle certain names properly
and suggested workarounds don't work for all .bst files.

Copyright © 2021, Oracle and/or its affiliates48

A Few Observations (2 of 6)

If a primitive does several independent things
(for example, format.name$, stack$, warning$),
splitting those things apart can provide future flexibility.

On the other hand, there is value in demonstrating
the right way to combine them for a specific task.

One can provide either an extra primitive or a library function.

The whole question of whether a feature should be a primitive
or a library function can be a difficult design decision.

(Observation: the BibTeX style language does not support libraries well.
Having even a simple INCLUDE command would help a lot.)

Copyright © 2021, Oracle and/or its affiliates49

A Few Observations (3 of 6)

In a stack language, deconstructors such as name.parts$ can be valuable.
(In an expression-based language, this may show up as pattern matching.)

FUNCTION { head.tail }
{ duplicate$ #1 #1 substring$ swap$ #2 global.max$ substring$ }

Yet another example: splitting an ISO 8601 date into many pieces.

Stack before: . . . str
Stack after: . . . year month day hour minute second timezone season

Copyright © 2021, Oracle and/or its affiliates50

A Few Observations (4 of 6)

Sometimes it is a good idea to provide a complete (or expected,
or symmetric) set of operations on a well-known data type,
even if you think not all the operations will be used in practice.
This provides future flexibility and can help prevent misuse.

For integers: multiply, divide, and, or, xor, shift?

For strings: find, split? Both kinds of length?

For functions: call, map, mapreduce? Function-valued variables?

If not, then at least think carefully about how such operations
can/will be programmed in terms of existing primitives
(and what mistakes might be made).

Copyright © 2021, Oracle and/or its affiliates51

A Few Observations (5 of 6)

Sometimes it is a good idea to provide primitives to probe
and affect the programming environment.

Find out the type of a stack item.

Access the size of the stack; access any stack slot without popping.

Access the values of macro names.

Find out all names of all fields in an entry, even if not declared.

If nothing else, this may allow the construction of
better error reporting and debugging tools.

Copyright © 2021, Oracle and/or its affiliates52

A Few Observations (6 of 6)

Sometimes the application domain shifts, and you need a major overhaul.

Support UTF-8, not just ASCII.

This would actually fit in well with the existing concept of text characters.

Copyright © 2021, Oracle and/or its affiliates53

Final Observations

A Domain-Specific Language does need to address its specific domain.
But it also needs to “be a language”.

It needs features that support the specific domain.
But it also needs features (or tools) that support “being a language”.

There are design tradeoffs between doing one specific thing well
and leaving room for future programming of variations.

The domain may change; can the language change with it?
• If so, can these changes be made from within the language?

• If so, does the language design make such changes easy or hard?

