
Towards safeguarding software
components from supply chain attacks

Behnaz Hassanshahi
Principal Researcher at Oracle Labs Australia

The industry is waking up to the urgency of supply-chain security

1984

Ken Thompson's Turing Award lecture

Reflections on Trusting Trust

2020

Attacks on SolarWinds

2021

Executive Order on Improving
the Nation’s Cybersecurity

Log4J CVE reported

2022

US Government (CISA) discusses
possible solutions 1

2023

Some efforts by OpenSSF but
vendors mostly considered
supply-chain security solutions
as good add-ons and
deprioritized hardening the
infrastructure

2024

Industry woke up again: remote
code execution on SSH
sessions via a backdoor in xz
Utils package

[1] https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

Copyright © 2024, Oracle and/or its affiliates2

https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

3

On March 29th Andres Freund, an engineer at
Microsoft noticed a few odd symptoms around liblzma
(part of the xz package)

XZ Utils, a library that supports lossless compression

The malicious code replaces SSH RSA key decryption
operation. A machine with a patched sshd binary, that
also has xz packages version 5.6.0 or 5.6.1, is
vulnerable to unauthenticated SSH logins

Attackers love compression tools because they are
used everywhere

The XZ outbreak (CVE-2024-3094)

Copyright © 2024, Oracle and/or its affiliates

4

- The release tarballs don't have the same code that GitHub has
- In particular the version of build-to-host.m4 in the release tarballs had a suspicious code that

unpacks this malicious test data and uses it to modify the build process

- IFUNC, a mechanism in glibc often used for indirect function calls, is used if this payload is loaded in
openssh sshd, to redirect RSA_public_decrypt function into a malicious implementation

- The payload is injected to the resulting build and included in the final release of
liblzma_la-crc64_fast.o

The attack design

+ if test "x$gl_am_configmake" != "x"; then

+ gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null'

+ else

+ gl_[$1]_config=''

+ fi

5 Copyright © 2024, Oracle and/or its affiliates

6

Every program involved or present while creating a software can be compromised and affect the
produced artifact

● The developer machine’s firmware, operating system, IDE, and running programs
● The source-code repository and CI/CD system
● The package registry where the software is published
● The tools that package and manage dependencies
● And of course, the developer might be a bad actor! (insider threat)

The XZ attack is an impressive case targeting several supply-chain links

● Social engineering tricks to become a maintainer
● Adding the back-door code incrementally
● Turning off fuzzing tools and leveraging the less-likely reviewed code in tests
● Uploading malicious artifact into the package registry

Supply-chain security is hard

Copyright © 2024, Oracle and/or its affiliates

7

The Open Source Security Foundation (OpenSSF) has several working groups on different aspects of
supply-chain security

- Repository and registry integrity: build provenances 1, trusted publishers, two-factor authentication
- Scorecard 2: a tool to help open source projects reduce software supply-chain risks
- SBOM: improving vulnerability discovery & remediation in dependencies

Secure by design initiative by CISA: https://www.cisa.gov/securebydesign

FedRAMP: a United States federal government-wide compliance program

- Added supply-chain risk management family of controls to Rev 5 Transition Plan 3

Supply-chain security initiatives

[1] https://repos.openssf.org/build-provenance-for-all-package-registries
[2] https://scorecard.dev/
[3] https://www.fedramp.gov/assets/resources/documents/Rev-5-Transition-Overview-Presentation.pdf

Copyright © 2024, Oracle and/or its affiliates

https://www.cisa.gov/securebydesign
https://repos.openssf.org/build-provenance-for-all-package-registries
https://scorecard.dev/
https://www.fedramp.gov/assets/resources/documents/Rev-5-Transition-Overview-Presentation.pdf

8

An OpenSSF initiative that provides specifications to harden build pipelines

SLSA v1.0 has one track with three increasing levels of trustworthiness and completeness

● Build track: describes the trustworthiness of a package artifact using provenances
● Provenance: describes what entity built the artifact, what process was used, and what the inputs were
● Purpose: to enable verification that the artifact was built as expected

Example mitigated attacks:
● An adversary builds from a version of the source code that does not match the official source control

repository
● An adversary gains owner permissions for the artifact’s build project
● An adversary uploads a package not built from the expected build process

Supply-chain Levels for Software Artifacts, or SLSA

Copyright © 2024, Oracle and/or its affiliates

9

Registry adopters:

- Homebrew is an early adopter of GitHub's build provenance generation (in Beta) and has been
generating attestations for a few months 1

- npm registry: any npm package can generate verifiable provenances if run on GitHub Actions 2

SLSA GitHub generator 3

- A collection of Reusable GitHub Actions workflows that can be called while releasing an artifact to
generate verifiable provenances in in-toto format 4

- Provides a mechanism to know which commit and workflow is used to generate an artifact

Witness 4

- A CLI tool that wraps build commands to generate provenances and integrates with OPA policy engine
to verify provenances

Macaron 6

- The supply-chain security framework from Oracle Labs that both verifies and uses provenances for
various security checks

Some of the SLSA adopters and existing toolings

[4] https://github.com/in-toto/attestation
[5] https://github.com/in-toto/witness
[6] https://github.com/oracle/macaron

Copyright © 2024, Oracle and/or its affiliates

[1] https://github.com/Homebrew/homebrew-core/attestations
[2] https://docs.npmjs.com/generating-provenance-statements
[3] https://github.com/slsa-framework/slsa-github-generator

https://github.com/slsa-framework/slsa-github-generator

10

Could SLSA v1.0 prevent implanting the backdoor in XZ Utils package?

Problem Detection

The bad actor checked in suspicious code in
several stages

SLSA v1.0 cannot prevent adding malicious code
to the repository

The bad actor had maintainer privileges and
received inadequate code reviews

SLSA v1.0 does not mandate code reviews

The release tarball contained a malicious
build-to-host.m4 file that did not exist in the
GitHub repository

SLSA v1.0 could have prevented this deviation if
the release tarball was created automatically by
GitHub Actions and a verifiable provenance was
generated

Copyright © 2024, Oracle and/or its affiliates

11

Software Bill of Material (SBOM) is a document that lists the dependencies of a software component and
the associated metadata. Two main formats: SPDX and CycloneDX

Software Composition Analysis (SCA) tools mainly detect known vulnerabilities and licensing issues by
analyzing SBOMs

Challenges in generating an SBOM:
- Dependencies need to be resolved at build-time and cannot be determined purely based on

metadata files
- Even if generated at build time, they might miss runtime dependencies

Challenges in SCA:
- The SBOMs may be incomplete, so vulnerable dependencies might be missed
- Artifacts that are built from source cannot be supported as they have different hashes
- Cannot detect unknown vulnerabilities

SBOM generation and SCA

Copyright © 2024, Oracle and/or its affiliates

12

Could SCA prevent implanting the backdoor in XZ Utils package?

Problem Detection

The bad actor checked in suspicious code in
several stages

SCA tools cannot detect unknown vulnerabilities

The bad actor had maintainer privileges and
received inadequate code reviews

SBOMs do not contain relevant information

The release tarball contained a malicious
build-to-host.m4 file that did not exist in the
GitHub repository

SCA tools do not check the integrity of artifacts

Copyright © 2024, Oracle and/or its affiliates

13

Scorecard is an OpenSSF project that analyzes projects against a series of heuristics and generates scores
from 0–10 for the project

- 0 means the project employs high-risk practices and 10 means the project follows security best
practices

- Each heuristic is implemented as a check that returns a score, and these scores are combined into the
overall Scorecard score

It has received great adoption by open-source projects and is improving the overall security posture of
open-source repositories

Scorecard analyzes the latest commit of the default branch and repository configurations

- An old version of an artifact will get the same score as the latest version
- Software Composition Analysis tools may report inaccurate and misleading results for the old versions

of an artifact
- Not suitable for attack prevention or accurate assessment

Scorecard

Copyright © 2024, Oracle and/or its affiliates

14

Could Scorecard prevent implanting the backdoor in XZ Utils package?

Problem Detection

The bad actor checked in suspicious code in
several stages

Scorecard does not analyze the source code and
cannot detect malicious code

The bad actor had maintainer privileges and
received inadequate code reviews

Scorecard mandates code reviews but is not
designed with the use case of a malicious
maintainer

The release tarball contained a malicious
build-to-host.m4 file that did not exist in the
GitHub repository

Scorecard does not check the integrity of artifacts

Copyright © 2024, Oracle and/or its affiliates

15

An extensible framework designed for supply chain security that analyzes the source code

Already comes with abstractions for development and infrastructure toolings

- build tools, versions controls, CI configurations, package registries

Supports in-toto provenances: SLSA and Witness

If you have an idea for a security property, Macaron allows you to write a check easily in few lines of code,

i.e., you don't need to worry about things like

- Finding a repository and commit for an artifact and cloning
- Static analysis of GitHub Actions and build scripts
- Discovering artifacts on registries
- Language-specific build commands

Automatically prepares the collected evidence to be verified by a policy engine

Macaron: A Logic-based Framework for Software Supply Chain Security
Assurance

Copyright © 2024, Oracle and/or its affiliates

16

Example check to find unsafe commands called from CI

Copyright © 2024, Oracle and/or its affiliates

17

Collecting evidence using the extensible checker framework

Copyright © 2024, Oracle and/or its affiliates

18

Analyzing the infrastructure code and collecting the evidence is the first step

But how about actually preventing supply chain attacks?

We need to use an enforcement mechanism to identify violations of what we expect to be safe (invariants)

Solution: a policy engine that is aware of the evidence collected by the checks

Policy validation

Copyright © 2024, Oracle and/or its affiliates

19

Observation: the language influences the policy solver we choose

Open Policy Agent1

- Microservice agent, K8S Access controller
- Uses the Rego language, a Datalog-inspired language designed for JSON

- Language can be complex and provides several workarounds for missing features that are not
always easy to use

- Difficult for users to learn: e.g., Netflix2 hides Rego behind a GUI that generates policies

CUE language3

- Good for data validation, e.g., check the content of a JSON file
- Not suitable for more general purposes

Existing policy languages and frameworks

[1] https://www.openpolicyagent.org/

[2] https://www.youtube.com/watch?v=R6tUNpRpdnY

[3] https://cuelang.org/Copyright © 2024, Oracle and/or its affiliates

https://www.openpolicyagent.org/
https://www.youtube.com/watch?v=R6tUNpRpdnY
https://cuelang.org/

20

Existing policy languages and frameworks (cont.)

Kyverno1

- Uses a simple YAML configuration
file

- Simple to author
- Not expressive enough for our

needs
- Need to connect to a logic engine

to evaluate: e.g., SMT solver, a
Datalog engine

Copyright © 2024, Oracle and/or its affiliates

[1] https://kyverno.io/policies/

21

Why not use Datalog directly?

We use Soufflé Datalog: A logic-based declarative
language

Reproducible and verifiable: with the same facts and
the same policy you always get the same answer

Soufflé provides a fast and simple constraint solver
for policies

Pure Datalog semantics are simpler and more
consistent than languages like Rego.

If necessary, user-defined functors can be
implemented in C/C++ and are stored in a shared
library

Macaron provides a policy library with
various predefined rules

Copyright © 2024, Oracle and/or its affiliates

22

Putting checks and policy engine together

Copyright © 2024, Oracle and/or its affiliates

23

Example: designing checks and policies
for Supply-chain Levels for Software Artifacts (SLSA)

24

Detecting hosted build platform

SLSA Requirement:

Build platform runs on dedicated infrastructure, not an
individual’s workstation, and the provenance is tied to
that infrastructure through a digital signature

1. Find the source code
repository for an artifact
(Macaron does it for you)

2. Build the call graph where
nodes are GitHub Actions
workflows, shell scripts,
and shell commands
(Macaron does it for you)

3. Find reachable bash
commands that build and
publish artifacts on
registries (A new check
was added)

[1] https://github.com/slsa-framework/slsa-verifier

1. Find the provenance for an
artifact (Macaron does it for you)

2. Check the content of
provenance (Macaron does it for
you)

3. Run SLSA verifier1 to check the
authenticity (A new check was
added)

Copyright © 2024, Oracle and/or its affiliates

25

Example transitive policy for SLSA expressed in Datalog

Copyright © 2024, Oracle and/or its affiliates

26

Evaluation of hosted build platform (HSP) check

Experimental setup:

• 90 projects: 30 popular Java, Python, and npm libraries

• Experiments conducted in August 2023

Ecosystem Provenances

Java 0

Python 2

npm 1

Ecosystem HSP PASSED HSP FAILED

TP FP TN FN

Java 9 0 17 4

Python 8 0 15 7

Total 17 0 32 11

Copyright © 2024, Oracle and/or its affiliates

27

Macaron needs to detect the source code of an artifact
- Extract the repository and commit from the verifiable provenance
- Trace back the artifact to its origin using existing metadata and git tags
-

Results for 30 popular Java projects and their dependencies:
- 992 repositories were linked from the various dependencies of the artifacts using existing metadata
- Utilizing the enhanced inference, Macaron is able to map and analyze an additional 469 repositories

-- an increase of 47%
On 1900 Java artifacts, Macaron detects the associated commits with 99.8% recall .

Finding source-code repositories and commits for Java artifacts

Copyright © 2024, Oracle and/or its affiliates

28

Could Mocaron prevent implanting the backdoor in XZ Utils package?

Problem Detection

The bad actor checked in suspicious code in
several stages

Future checks that analyze the source code. First
language to be supported is Python.

The bad actor had maintainer privileges and
received inadequate code reviews

Future checks that analyze the contributor
history, but designing an efficient check is
challenging.

The release tarball contained a malicious
build-to-host.m4 file that did not exist in the
GitHub repository

Macaron could identify that the provenance does
not exist or meet expectations.

Macaron checks if artifact is not uploaded from
GitHub Actions to the registry. Currently, it
supports maven artifacts only.

Copyright © 2024, Oracle and/or its affiliates

29

The ultimate goal of attackers is to distribute contaminated packages through supply chain

Studies report a large number of malware on PyPI, the popular Python package registry 1

Macaron’s ongoing collaboration with National University of Singapore and University of Melbourne

- We have detected malware on PyPI, which are confirmed by the PyPI security team and immediately
removed

- The developed analysis will be added as checks in Macaron in the upcoming releases

Detecting malware on PyPI

[1] https://www.cyborgsecurity.com/cyborg-labs/python-malware-on-the-rise/

Copyright © 2024, Oracle and/or its affiliates

https://www.cyborgsecurity.com/cyborg-labs/python-malware-on-the-rise/

30

The PyPI security team has recently developed a new feature for trusted publishers 1

- Uses the OpenID Connect (OIDC) standard to exchange short-lived identity tokens between a trusted
third-party service and PyPI

Projects on PyPI can be configured to trust a particular configuration on a particular CI service, making that
configuration an OIDC publisher for that project

Forces package maintainers to use automated and transparent CI services to publish artifacts

- Attackers risk to be tracked publicly if they add malicious code

Helpful for post-mortem analysis and troubleshooting

Idea: develop a Macaron check to report if trusted publisher is used

- Useful when trusted publishers are widely adopted or to enforce strict organization policies

Python trusted publishers

[1] https://docs.pypi.org/trusted-publishers/Copyright © 2024, Oracle and/or its affiliates

31

If an artifact has a reproducible build, by rebuilding the artifact we can detect if it has been modified after
the build

Example: openSUSE Factory announced this month that it has enabled bit-by-bit reproducible builds 1

Ongoing collaboration with Victoria University of Wellington and plans to add the analysis as checks in
Macaron

Reproducible builds

[1] https://news.opensuse.org/2024/04/18/factory-bit-reproducible-builds/

Copyright © 2024, Oracle and/or its affiliates

32

Please try out Macaron and support us on GitHub

Copyright © 2024, Oracle and/or its affiliates

33

Email: behnaz.hassanshahi@oracle.com
Questions?

Thank you

Macaron: A Logic-based Framework for Software
Supply Chain Security Assurance

Paper:

Copyright © 2024, Oracle and/or its affiliates

https://github.com/oracle/macaron
GitHub repository:

mailto:behnaz.hassanshahi@oracle.com
https://dl.acm.org/doi/abs/10.1145/3605770.3625213
https://dl.acm.org/doi/abs/10.1145/3605770.3625213
https://github.com/oracle/macaron

34 Copyright © 2024, Oracle and/or its affiliates

35 Copyright © 2024, Oracle and/or its affiliates

