
Analytical Cache Replacement for Large Caches and Multiple Block
Containers

David Vengerov
david.vengerov@oracle.com

Garret Swart
garret.swart@oracle.com

Draft of 2011/02/14 14:48

Abstract

An important function of a storage system, such as a disk
system, file system or database, is to cache its most fre-
quently accessed data blocks in memory. The goal of
caching is both to reduce the number of physical IOs
and to reduce the expected latency of each logical IO and
thus the aggregate wait time of the system. This paper
presents the ANalytical Cache Replacement (ANCR) al-
gorithm that analytically estimates the benefit of caching
a particular block based either on the history of previous
accesses or on the “container” to which the block be-
longs (a container could be either a virtualized storage
unit, a directory, a file or a table containing the block).
The algorithm then removes blocks from the cache prob-
abilistically, with higher probabilities for less beneficial
blocks (those which have a smaller probability of be-
ing accessed again and that belong to containers that are
located on devices with a small access latency). As a
result, the ANCR algorithm is biased to cache items re-
trieved from slower devices and items from containers
with higher marginal hit rates as well as to give more
space to new blocks when the cache is cold while giv-
ing more space to blocks with multiple prior accesses
as the cache warms up. Extensive comparisons on simu-
lated workloads with existing state-of-the-art caching al-
gorithms show that ANCR performs competitively with
the best algorithms for the case when all blocks belong
to a single container and strongly outperforms all con-
sidered algorithms when blocks belong to multiple con-
tainers stored on devices with different access latencies.

1 Introduction
The primary purpose of a storage system is to store log-
ical data items, organize them into containers, and pro-
vide access methods for these data items. In a relational
database system the logical data items are records, the
containers are tables or partitions of a table, and the ac-
cess methods are table scan and row ID access. In a
file system the logical data items are the bytes of a file,
the containers are files or directories of files and the ac-
cess methods are read and seek. In a disk system the
data items are blocks, the containers are LUNs (virtual-

ized storage units), and the access methods are read and
write.

Data items are logical and often vary in size, so most
systems find it easier to manage a cache of blocks. A
block is a physical portion of a storage device and the
typical unit for performing random IOs and for manag-
ing the cache. In a row organized relational database, a
block is formatted as a slotted page, each slot holding a
record from the table or table partition. In a file system,
a typical block will hold a sequence of bytes from a file.

Each container has its own probability distribution for
accesses to individual blocks, which is determined by a
combination of the end user behavior and program be-
havior. Moreover, each container can have its own ac-
cess latency, since designers often want to cache more
frequently accessed data items in lower latency, higher
cost, and possibly volatile memory. The goal often pur-
sued by the designers is that of maximizing the logical
IOs per second that can be executed, which implies that
we want to fill up the cache with data blocks that have
the highest product of access rate and cache miss latency.

In this paper we introduce ANalytical Cache Replace-
ment (ANCR), a cache management algorithm that aims
to achieve the goal described above. This algorithm is
built upon the most popular framework of representing
cache as a single block queue, where the decision about
keeping or removing each cached block is made only at
the tail of the queue. Among the popular algorithms that
fit this framework, SLRU is the best one according to
the recent surveys [6, 14], and ANCR strongly outper-
forms SLRU in all scenarios. Moreover, if one considers
all practical algorithms (those that do not require man-
ual parameter tuning) mentioned in [6, 14] regardless of
their implementation framework (a single cache queue
or multiple cache queues), then ANCR is shown to per-
form competitively with the best algorithms when all
blocks belong to a single container and strongly outper-
forms all of them when blocks belong to multiple con-
tainers with different access latencies. Thus, the practi-
cal value of the work we present is that it shows organi-
zations using the single cache queue framework that they
do not need to invest significant efforts in changing their
framework to the one using multiple cache queues and

Draft: 2011/02/14 14:48 Page: 1



can instead achieve the same or better performance as
the best existing caching frameworks by simply modify-
ing the rules according to which new blocks are inserted
into the single cache queue and according to which stale
blocks are removed from the end of the cache queue.

2 Related Work
A recent 2008-2009 two-part survey of Web proxy cache
replacement strategies by ElAarag and Romano [14, 6]
describes the most popular strategies cited in the litera-
ture and also compares the performance of these strate-
gies on several real Web proxy traces. They classify the
strategies as recency-based (simple strategies that rely
exclusively on the time elapsed since the recent accesses
to each data block), frequency-based (simple strategies
that rely exclusively on the frequency of accesses to each
data block), and recency-frequency strategies (strate-
gies that combine both recency and frequency informa-
tion) when choosing the block to be removed from the
cache. The simplest and the most well-known recency-
based strategy replaces the Least Recently Used (LRU)
block from the cache, while the simplest and the most
well-known frequency-based strategy replaces the Least
Frequently Used (LFU) block from the cache. Some
widely-cited examples of the recency-frequency strate-
gies are Segmented LRU (SLRU) [9] and ARC [11]. In
fact, the ARC algorithm is widely considered to be a
state-of-the-art algorithm for caches with equally-sized
blocks (as opposed to Web caches that can store docu-
ments of different size). The strategies mentioned above
were simulated in Section 4. As expected, while show-
ing a reasonable performance when all blocks belong to
a single container, the above strategies performed very
poorly when blocks were assigned to multiple contain-
ers with different access latencies because these strate-
gies do not take into account the cost of fetching a block
from disk after a cache miss.

ElAarag and Romano also add a fourth “function-
based” class of strategies that use an analytical func-
tion combining the recency and frequency information
for each data block in order to calculate the value of that
block and then replace the block with the smallest value.
Any function-based strategy can be modified to work
well in a heterogeneous storage environment with dif-
ferent device access latencies by multiplying the value
of each block by the latency of reading that block from
its storage device and using that product as the final util-
ity of that block. The ANCR algorithm belongs to this
class of strategies (but it is constrained to remove stale
blocks only from the end of the cache queue), and hence
it is reasonable to compare ANCR with the best ex-
isting function-based cache replacement strategies and
see if any of them can outperform ANCR due to their
increased flexibility when selecting the block to be re-

moved.
Some of the function-based strategies mentioned in

[6] have many tunable parameters (e.g., MIX and M-
Metric) that need to be set by hand for each particu-
lar workload, which makes those strategies impractical
for real environments. Among the remaining strategies
(LUV [2], TSP [18], GD-Size [4], GDSF [1], GD∗ [8],
and LNC-R-W3 [16]), LNC-R-W3 was shown to have
the highest hit rate. This strategy is very similar in spirit
to the ANCR algorithm, as it makes its decision about
removing a block based on the product of the estimated
probability of future accesses to that block and the cost
of a cache miss for the block (which is the latency in-
curred when fetching that block from the particular stor-
age device it is residing on). Unlike ANCR, LNC-R-W3
incurs a much larger overhead when choosing the cached
block to be removed, since it requires potentially search-
ing through all cached blocks, computing the value of
each block, and then selecting the block with the small-
est value. We simulated performance of LNC-R-W3 in
Section 4 and compared it with that of ANCR so as to de-
termine how much potential performance is sacrificed by
ANCR in order to achieve an increased computational
efficiency when selecting a block to be removed. Sur-
prisingly, we found that ANCR performs very similarly
to LNC-R-W3 for the case when all blocks belong to a
single container and strongly outperforms LNC-R-W3
for the multi-container case with different latencies.

Another widely cited function-based cache replace-
ment strategy is LRV [15], which also estimates the
value of each block as the product of the estimated ac-
cess rate and the access latency. However, unlike LNC-
R-W3 and ANCR, LRV uses the third popular strategy
for selecting a cache block to be removed: it separates
cached blocks into multiple FIFO queues (according to
the number of hits they received) and then removes the
lowest-valued block among the tail blocks of all the
cache queues. Performance of the LRV strategy will be
evaluated in Section 4 and compared with that of ANCR
and LNC-R-W3.

Recently, a cache replacement algorithm called LEC
was developed [3], whose authors show that it out-
performs on real Web traces all other cache replace-
ment strategies they considered: LRU, LFU, LNC-R-
W3, GD-Size, LUV and an early non-adaptive version of
LRV. Thus, LEC is a very worthy contender for being in-
cluded in the list of benchmark strategies against which
to compare the ANCR algorithm. Our experiments in
Section 4 show that LEC indeed outperforms all other
benchmark algorithms we simulated for the case when
data blocks are allocated across multiple devices with
different access latencies (but the ANCR algorithm still
consistently outperforms LEC in this scenario for all
cache sizes).

Draft: 2011/02/14 14:48 Page: 2



Some researchers have also experimented with a dif-
ferent approach to device-aware cache management:
caching blocks from different storage devices in differ-
ent partitions of the cache and then dynamically tuning
the size of each partition so as to have larger partitions
containing blocks from slower devices (for which the
cache miss cost is higher). A recent example of this ap-
proach is [5], which cites an earlier work in [7] as being
the “first cost-aware algorithm that utilizes the notion of
aggregate partitioning. Both of these works try to equal-
ize the number of accesses to each storage device so as
to maximize the throughput of the heterogeneous storage
system. This is a different goal from the one considered
in this paper, which is that of minimizing the sum of la-
tencies of all cache misses. We did find one thread of
work where the authors are trying to partition the cache
so as to achieve the latter objective, with [10] being a
late example of their work. Unfortunately, the algorithm
presented in that work was designed for the case of only
two different storage devices and cannot be applied di-
rectly to more than two devices being present.

3 ANCR Algorithm

3.1 Basic ANCR algorithm
The ANCR algorithm is built upon the Segmented Least
Recently Used (SLRU) algorithm [9]. In SLRU, the
cache is represented by a single queue broken up into
two segments: “protected” and “probationary,” with the
protected segment being “on top” of the probationary
one. After a cache miss, the new block of data is placed
at the top of the probationary segment, and if the cache
queue has reached its maximal size, the block at the bot-
tom of the queue is removed. Whenever a cached block
gets hit, it is placed at the top of the protected segment.

ANCR starts with a simple modification of SLRU,
which doesn’t change its logic but just speeds up its exe-
cution: a cached block b that gets hit simply increments
its hit counter nb instead of being moved to the top of
the protected segment. The counter nb is initialized to 0
for a new block. When a block b reaches the bottom of
the queue, it is removed if nb = 0. On the other hand,
if the block at the bottom of the queue has nb > 0, then
it is “recycled” to the top of the protected segment. This
reduces the cost of processing a cache hit as the queue of
blocks itself need not be locked or manipulated. In order
to avoid filling the cache with every block that has ever
been hit, we must reduce the hit count on blocks that are
unlikely to be hit in the future. We can do this by reset-
ting the hit counter, nb, to 0 when the block is recycled to
the top of the queue. This allows low probability blocks
that got lucky hits to eventually be removed and makes
the algorithm adaptive to changes in the workload.

The key idea of ANCR is to perform block caching

so as to actually minimize the expected total cost of all
cache misses over time. The cost of not keeping a block
b in the cache is the product of the access rate to block b
and the latency of retrieving that block from disk.

Let’s define a block as being “old” if it was recycled
at least once to the top of the protected segment (which
would happen if the block was hit at least once after be-
ing placed into the cache). The expected access rate can
be easily estimated for an old block b as rb = nb/tb,
where nb is the number of times the block bwas accessed
and tb is the time elapsed since b was first placed into
the cache (which counts as the first access to the block
b). Estimating the access rate for new blocks that did not
get hit yet is more difficult. In order to resolve this diffi-
culty, the ANCR algorithm makes another extension of
the SLRU algorithm: it “recycles” some fraction of new
blocks with nb = 0 from the bottom of the queue to the
top of the probationary segment and observes, for each
container, the fraction of blocks that get hit during the
second passage toward the bottom of the queue. These
observations allow the ANCR algorithm to estimate the
probability that a new block b with nb = 0 at the bot-
tom of the queue will be accessed if it is given a second
chance and is recycled to the top of the probationary seg-
ment.

ANCR algorithm uses conditional probabilities to
make such estimates. Let A be the event of a new
block not getting hit during its first passage through
the probationary segment, then being recycled to the
top of that segment and then getting hit before reach-
ing the bottom of the queue. Let Bj be the event of a
new block belonging to container j not getting hit dur-
ing its first passage through the probationary segment.
Then, the conditional probability formula implies that
P (A|Bj) = P (A∩Bj)/P (Bj), which can be estimated
for each container j as the fraction of blocks that sat-
isfy the event Bj and that get hit after being recycled
to the top of the probationary segment. Finally, the ac-
cess rate for a new block from container j that did not
get hit during its first passage through the probationary
segment is estimated as Rj = P (A|Bj)/Tj , where Tj is
the average time spent in the cache by a new block from
container j before getting hit during the second passage
through the probationary segment. The exact steps for
computing Rj are described in Section 3.3.

When deciding which block should be removed from
the cache, the ANCR algorithm defines the potential
“victim set” V as the last K blocks in the queue. The
new blocks in V differ from each other only probabilis-
tically, and so instead of always removing the last block
in V unless it belongs to the container that has the high-
est estimated cache miss cost for new blocks, ANCR re-
moves the new blocks probabilistically, assigning higher
removal probabilities to new blocks from containers

Draft: 2011/02/14 14:48 Page: 3



with smaller expected new block costs. This makes
ANCR more robust to “random flukes” in observed hits
to new blocks from different containers, which could
change the container that has the highest cache miss cost
for new blocks. Also, this approach prevents ANCR
from exhibiting extreme behaviors such as removing all
new blocks from the low-cost containers, which would
significantly hamper the adaptive potential of ANCR in
the case of workload changes. In order to minimize the
number of blocks that get recycled after each cache miss,
the ANCR algorithm considers new blocks starting from
the bottom of the queue and removes each block with
appropriate probability using the following procedure.

Let Cj be the expected cache miss cost for a new
block from container j that did not get hit during its first
passage through the probationary segment, which can be
expressed as Cj = LjRj , where Lj is the latency cost
for a block from container j. Then, ANCR computes the
probability Pj of removing such a block so that for any
two containers j and k with new blocks in V , the rel-
ative removal probabilities are equal to the inverse rel-
ative cache miss costs: Pj/Pk = Ck/Cj . Any other
way of assigning increasing removal probabilities to new
blocks belonging to containers with smaller expected
new block costs would also work, but the heuristic de-
scribed above is simple enough to be used for demon-
stration purposes. Let the smallest cost among all con-
tainers with new in the victim set be Cmin = min

j∈V
Cj

and let jmin be the index of the lowest-cost container.
Then, Pj = Pjmin

(Cjmin
/Cj), where the scaling factor

Pjmin
is computed by solving

∑
j∈V

Pj = 1, resulting in

Pjmin
= 1/(Cjmin

∑
j∈V

1/Cj).

Let Cb,j be the expected cache miss cost for an old
block b from container j, which can be expressed as
Cb,j = Ljrb. The ANCR algorithm sequentially consid-
ers all new blocks in V starting from the bottom of the
queue, and if the considered block b has already made
two passages through the probationary segment and has
nb = 0, then it is chosen as the victim to be removed. If
a new block b from container j is making its first passage
through the probationary segment, has nb = 0, and has
the expected cache miss cost Cj smaller than that of the
lowest-cost old block in V , then it is chosen as the vic-
tim with probability Pj . If no new blocks are chosen as
victims after considering sequentially all new blocks in
V , then ANCR chooses as the victim the first new block
b from the bottom of the queue that has nb = 0 and
whose expected cache miss cost is smaller than the cost
of the lowest-cost old block. If the victim set V does not
contain any new blocks, then the old block in V with the
smallest cache miss cost is chosen as the victim.

Since no block movement occurs in ANCR after

cache hits, the potential victim to be removed after a fu-
ture cache miss can be found asynchronously by a spe-
cial thread. All blocks below the victim are then recy-
cled back into the queue, either to the top of the pro-
tected segment if they have nb > 0 or to the top of the
probationary segment if they have nb = 0. Note that a
particular value of K for the size of the victim set V im-
plies that a new block will stay in the cache for at least
ProbationarySegmentSize/K cache misses, since it
gets “pulled” toward the bottom of the queue with the
rate of at most K block positions per each cache miss.

The above procedure of choosing the victim block is
not sufficient by itself make the ratios of new blocks
among different containers equal to the ratios of ex-
pected cache miss costs for new blocks from those con-
tainers because some containers can have very high
cache miss rates and can overwhelm the cache with
new blocks: even if every one of their new blocks with
nb = 0 is removed at the bottom of the cache, there will
still be too many of their new blocks present in the cache
at every moment of time, not allowing the more valuable
old blocks from other containers to stay in the cache. In
order to avoid this problem, ANCR also controls the pro-
cess of inserting new blocks into the cache.

The expected a priori cache miss cost for a new block
from container j arriving into the cache can be computed
as C0

j = LjE[Nj ], where E[Nj ] is the expected number
of hits to a new block from container j before it reaches
the bottom of the queue (which is estimated by observ-
ing the number of times a new block from each container
gets hit during its first passage through the probationary
segment as described in Section 3.3). If the actual cache
miss cost for a new block from container j were equal
to C0

j , then the correct decision would be to insert into
the cache only new blocks from the container that has
the highest cost. However, in reality, the estimated costs
C0
j only relate probabilistically to the actual costs of new

blocks, and hence the new blocks should be inserted into
the cache probabilistically, with the insertion probabil-
ity being an increasing function of C0

j . This probability
should also be a decreasing function of the new block
arrival rate, so that no container overwhelms the cache
with its new blocks.

The ANCR algorithm inserts new blocks into the
cache using the following procedure. Let the largest
a priori cost for new blocks among all containers be
C0
max = max

j∈V
C0
j and let jmax be the index of the

highest-cost container. When a cache miss occurs for
a block from container j, this block is inserted at the
top of the probationary segment with probability equal
to C0

j /C
0
max if the arrival rate for new blocks from con-

tainer j (denoted by λj) is less than or equal to the
one from container jmax, and is otherwise inserted with

Draft: 2011/02/14 14:48 Page: 4



probability equal to (C0
j /C

0
max)(λjmax/λj).

Both the probabilistic inserting and the probabilistic
removing schemes described above help the ANCR al-
gorithm reduce the number of new blocks in the cache
as the cache warms up, since only the most useful new
blocks get inserted into the cache and then some of them
would still get removed if they have a smaller cache miss
cost than the old blocks. When the workload changes
and new blocks start getting hit more often, the inser-
tion probability for new blocks automatically increases,
and once the expected hit rate for new blocks becomes
larger than that of the least-accessed old blocks, the stale
old blocks start getting removed from the cache.

3.2 Using a shadow list
When a block that was recently evicted from the cache
is accessed again, it is reasonable to place that block at
the top of the protected segment, assuming that the ex-
pected cost of not caching that block is high enough. In
order to enable this behavior, the basic ANCR algorithm
described above was extended by allowing it to use a
“shadow list” that stores some information about the re-
cently evicted blocks (implemented as a FIFO queue).
The ARC, LNC-R-W3 and LRV algorithms also use a
shadow list.

In order to prevent the recently evicted old blocks
from being “washed out” quickly in the shadow list by
the recently evicted new blocks (which get evicted from
the cache at a much higher rate than the old blocks), the
extended ANCR algorithm uses separate lists for new
and old blocks evicted from the cache. The information
about new blocks that get evicted from the cache after
they have already made two passages through the pro-
bationary segment is not stored in the shadow list (such
blocks are least likely to be hit again and so are not worth
remembering). Each list entry contains the following 4
pieces of data: block index, container index, number of
total accesses ever to this block and the time of the first
access to this block. The last two pieces of data are be-
ing tracked for each cached block, and when a block
is evicted from the cache and is placed into a shadow
list, this data is copied into the shadow list entry for this
block.

When the cache warms up sufficiently so that old
blocks start getting removed from the cache, ANCR
starts monitoring the expected cache miss cost of each
old block that is removed from the cache (this cost is
computed as a part of the probabilistic removal scheme
in ANCR described in Section 3.1). When the number
of old blocks removed reaches 100, ANCR records the
standard deviation of the expected cache costs among
these blocks and the maximum expected cache miss cost
among them. It then computes the expected cost thresh-
old for inserting a block from a shadow list into the cache

as the maximum observed cost plus one standard devi-
ation. The rationale for doing this is to make sure that
blocks inserted from the shadow list at the top of the
protected segment are valuable enough and do not get
removed from the cache as soon as they reach the bot-
tom of the cache queue. After 100 old blocks are ob-
served, the counters are reset to 0 and ANCR once again
starts observing the maximum expected cache miss cost
and its standard deviation over the next 100 old blocks
removed from the cache, then it computes the new ex-
pected cost threshold, and then the cycle repeats once
again, etc.

When an access is made to a block b that is not in
the cache but whose data is in a shadow list, the num-
ber of total accesses ever to the block is incremented by
1, and the expected miss cost for block b is computed
just like for an old block (since b will necessarily have
at least 2 accesses). Then, if the miss cost is higher than
the expected cost threshold, the block b is inserted at the
top of the protected segment of the cache and its data is
deleted from the shadow list; otherwise, the block b is
not inserted into the cache. In order to use more accu-
rate estimates of the expected cache miss costs, ANCR
requires for blocks in the new shadow list to be accessed
at least twice (so that they would have at least 3 total
accesses) before their expected cache miss cost is com-
puted and compared with the cost threshold for inserting
a block from a shadow list.

3.3 Collecting per-container statistics
The ANCR algorithm keeps a list of ContainerStat
objects, each of which contains some statistics about
its corresponding container. Initially, this list is
empty. When a cache access is made, ANCR checks
whether the access is for a container with an existing
ContainerStat object, and if this is not the case, then
a new ContainerStat object is created. Initially, the
active variable in each such object is set to FALSE,
and the only statistics being collected are the current
number of new and old blocks in the cache from the con-
tainer tracked by the object and also the current number
of new and old blocks in the shadow list, if such a list is
used. If, at some point, the total number of new and old
blocks in the cache and in the shadow list becomes zero
for any ContainerStat object, the object gets removed
from the list of such objects.

Initially, when the cache has not warmed up suffi-
ciently (old blocks have not completely filled up the
protected segment of the cache), the ANCR algorithm
works just like SLRU. The probabilistic insertion and
the probabilistic removal features are activated only
when the cache warms up sufficiently. At that point,
statistics required by these features is collected for
T cache accesses while the algorithm still acts like

Draft: 2011/02/14 14:48 Page: 5



SLRU. The following specific variables are updated for
each ContainerStat object: num first pass blocks
(number of blocks that were inserted at the top of
the probationary segment and then reached the bot-
tom of that segment), num first pass hits (the to-
tal number of cache hits to num first pass blocks),
num second chance blocks (number of blocks that
were inserted at the top of the probationary segment,
then reached the bottom of that segment without being
hit, and were then recycled to the top of the probation-
ary segment), num good blocks (number of blocks that
were hit during their second passage through the pro-
bationary segment), and cache accesses till first hit
(average number of cache accesses between the moment
a new block was placed into the cache and the moment
that block was hit during its second passage through the
probationary segment).

After T cache accesses are processed, the ANCR
algorithm iterates through all ContainerStat objects
and for those that have num first pass hits >
1, expected new block cost (that was denoted by
E[Nj ] in Section 3.1) is computed as latency ·
num first pass hits/num first pass blocks. For
such containers the active variable is set to TRUE
and num first pass blocks, num first pass hits
are reset to 0. Those containers that don’t have
num first pass hits > 1 keep using the old value
of expected new block cost and keep incrementing
num first pass blocks and num first pass hits for
another T cache accesses.

Similarly, after T cache accesses are
processed, for those ContainerStat ob-
jects that have num good blocks > 1,
expected 0hit block cost (that was denoted by
Cj in Section 3.1) is computed as latency ·
(num good blocks/num second chance blocks)
/ cache accesses till first hit and the variables
num second chance blocks, num good blocks, and
cache accesses till first hit are reset to 0. Those
containers that don’t have num good blocks > 1
keep using the old value of expected 0hit block cost
and keep incrementing num second chance blocks,
num good blocks, and cache accesses till first hit.

If the cache has warmed up sufficiently to activate
probabilistic insertion and removal of blocks but the
active variable is FALSE for some ContainerStat
object, then the new blocks from the corresponding con-
tainer are inserted with probability 1 at the top of the
probationary segment and removed with probability 0.5
if they were not hit by the time they reached the bot-
tom of the probationary segment, so as to make sure that
enough of such blocks get recycled to the top of the pro-
bationary segment and num good blocks can be accu-
rately estimated.

EachContainerStat object also has a variable called
cache accesses since last block access, which keeps
track of the number of accesses made to the cache
since the last time a block from this container was
accessed. If cache accesses since last block access
becomes greater than T for some container, then its
blocks start getting removed with probability of 1 when
they reach the bottom of the cache, so as to speed up the
adaptation of the cache to workload changes.

3.4 Filtering old blocks when containers
have different disk access latencies

When containers have different disk access latencies, the
ANCR algorithm may not be able to ensure a proper al-
location of cache space among the old blocks simply by
using a higher removal probability and a lower insertion
probability for new blocks from low-latency containers.
This will be especially apparent in large caches, where
competition for cache space among the old blocks arises
only when all high, medium and low-frequency blocks
are cached in steady state and only the lowest-frequency
blocks remain uncached. In that case, it may just take
too long for ANCR to gradually “weed out” old blocks
from low-latency containers, since such a process can
happen only when there are no new blocks present in
the victim set. In order to speed up this “weeding out”
process, before searching for a victim among the new
blocks, the ANCR algorithm with probability 0.5 con-
siders all old blocks in the victim set and checks to see
whether one of them should be removed. The specific
steps that are performed are described in Figure 1, which
gives the pseudo-code of the steps performed by ANCR
after a cache miss occurs.

4 Experimental Results
A cache simulator was used to compare ANCR with
LRU, LFU, SLRU, ARC, LNC-R-W3, LRV and LEC
algorithms. For a cache size of N blocks, the probation-
ary segment size for SLRU and ANCR was N /2. The
statistics collection window T for ANCR was set equal
to N and the victim set size K was set equal to N /100.
The size of the old shadow list for ANCR was set to 25%
of the cache size and the size of the new shadow list was
set to 75% of the cache size. The ARC, LNC-R-W3,
LRV, and LEC algorithms also used an LRU shadow list
of size N to store information about the recently evicted
blocks. The above parameter settings for ANCR were
based on what seemed like good logical choices, but they
can be optimized to improve the performance of ANCR
beyond what is reported in this paper. However, dis-
cussion of the various optimization strategies for these
parameters is outside the scope of this paper.

The authors of the LRV algorithm suggest that the
cached blocks can be broken up into 10 groups (each

Draft: 2011/02/14 14:48 Page: 6



Figure 1: Pseudo-code of the steps performed by ANCR
after a cache miss. Ck is the expected cache miss cost for
a new block from container k that did not get hit during
its first passage through the probationary segment and
Pk is the probability of removing such a block.

implemented as an LRU list) according to the number of
hits they received, and we followed this suggestion when
implementing LRV. When selecting the block to be re-
moved, the LRV algorithm removes the lowest-valued
LRU block from the 10 queues. The final value of the
LRU block b from queue j was computed as V jb =

LbA
j
b, where Lb is the latency of retrieving block b from

disk and Ajb is the estimated future access probability
for the block b computed as Ab = (1−D(t− t1))P (j),
where t is the current time, t1 is the time of the latest
access to block b, D(t) is the estimated probability dis-
tribution function of times between consecutive accesses
to the same block and P (j) is the estimated probabil-
ity of a block that was accessed j times being accessed
again in the future. Consistent with the suggestion given
by the authors, we estimated P (j) as Bj+1/Bj , where
Bj is the number of cached blocks that were accessed j
times. The function D(t) was estimated using the pro-
cedure given in the Appendix B of [15] with the two pa-
rameters ta and tb being set to N/10 and N (consistent
with the suggestion given by the authors about tb being
much larger than ta). We also tried using ta = N/2 and
tb = 5N and obtained exactly the same results for LRV.

The final value of a block b in LNC-R-W3 was com-
puted as Vb = LbMb/(t− tMb

), where Lb is the latency
of retrieving block b from disk, Mb = min(nb,K) with
nb being the total number of accesses to block b (it gets
reset to 0 when the block data gets removed from the
shadow list), K is a tunable parameter, t is the current
time and tj is the time of the jth previous access to block
b. We tried various values of K for the LNC-R-W3 al-
gorithm and found that the cache miss ratio monoton-
ically decreased as a function of K and leveled off at
around K = 10. Thus, we decided to use K = 10 in
the experiments below, so as to be consistent with the
10 block groups used for LRV. When searching for the
block to be removed, the algorithm first tries to remove
the lowest-valued block from among those that received
only 1 hit, then from among those that received only 2
hits, etc., and if all cached blocks have received 10 or
more hits, then the algorithm searches linearly through
all of them for the lowest-valued block.

The authors of the LEC algorithm suggest that the
cached blocks can be broken up into groups (each im-
plemented as an LRU list) according to the product of
the number of hits they received and the disk access la-
tency, and we used 10 groups for LEC to make it similar
to LRV and LNC-R-W3 in this respect. When selecting
the block to be removed, the LEC algorithm removes the
lowest-valued LRU block from the 10 queues. The final
value of the LRU block b from queue j was computed as
V jb = LbA

j
b, where Lb is the latency of retrieving block

b from disk and Ajb is the estimated future access prob-
ability for the block b computed as Ab = nb/(t − t1),

Draft: 2011/02/14 14:48 Page: 7



where nb is the number of hits the block b received so
far, t is the current time and t1 is the time of the latest
access to block b.

4.1 Single-container experiment
The first experiment focused on the simple scenario
of using only one container. Two different probabil-
ity distributions for accessing data blocks were sim-
ulated. The first distribution was defined by the
NURand(8191,1,100000) function (described below),
which is used by the TPC-C benchmark (an industry-
standard online transaction processing benchmark) for
generating the item numbers for the “New-Order” trans-
actions [17]. There are 100000 items that can be ac-
cessed by such transactions, and the particular item num-
ber for each access is chosen using the following proce-
dure. First, a random integer A is drawn from a uniform
distribution on [1, 8191] and another integer B is drawn
from a uniform distribution on [1,100000]. Then, these
integers are converted into a binary format and a third in-
teger C is obtained by performing a bitwise logical OR
operation on the corresponding bits of A and B. The
final item number is equal to C modulo 100000 plus 1.
The number of items accessed by each New-Order trans-
action is a randomly chosen integer from the range [5,
15].

The total number of transactions processed during a
simulation run in this experiment was 20N . The cache
was warming up for 18N transactions and then the last
2N transactions were treated as an evaluation time pe-
riod, over which the cache miss ratio (the fraction of
TPC-C item accesses that resulted in a cache miss) was
computed. Longer warmup times did not improve per-
formance of the considered algorithms, suggesting that
18N transactions was enough for the cache to reach a
steady state. Enough repetitions of each simulation run
were performed so that the standard deviation of the av-
erage cache miss ratio for each algorithm would be less
than 1% of the average.

The results of this experiment are presented in Table
1 for different values of the cache size N . As expected,
the simple LRU and LFU algorithms obtained the largest
cache miss ratio. The SLRU algorithm does not allow
the new blocks to enter the protected area of the cache
that holds old blocks. As a result, old blocks spend more
time passing through the cache queue than new blocks
(which get inserted in the middle of the cache queue)
and hence they have a greater chance of being hit while
traveling to the bottom of the queue. The SLRU algo-
rithm recycles blocks that were hit to the top of the pro-
tected segment, which implies that old blocks (that have
a higher chance of being hit) have a higher chance of
being recycled to the top of the queue rather then being
removed. In contrast, old blocks in LRU spend the same

Policy N=5000 10000 20000 40000
LRU 0.581 0.407 0.227 0.079

LFU 0.531 0.353 0.192 0.063

SLRU 0.501 0.343 0.187 0.065

ARC 0.482 0.339 0.199 0.074

LRV 0.428 0.303 0.174 0.075

LNC-R-W3 0.423 0.290 0.156 0.057

LEC 0.441 0.307 0.161 0.057

ANCR 0.421 0.294 0.157 0.053

Table 1: Cache miss ratios for simulated TPC-C New-
Order transactions

time passing through the cache queue as the new blocks
(which get inserted at the top of the cache queue) and
hence have a relatively smaller chance of being recycled
to the top of the queue than in the SLRU algorithm. As a
result, SLRU is able to keep more old blocks in the cache
queue and obtained a smaller cache miss ratio than LRU
in this experiment.

Surprisingly, for large cache sizes (say N = 40000),
SLRU even obtained a smaller cache miss ratio than the
more sophisticated ARC algorithm, which is supposed
to represent the state-of-the-art for caches with equally-
sized blocks. In order to find out why this was the case,
we first looked at the number of old blocks in the cache
and found that ARC cached 0 or 1 new block from the
new queue and the rest from the old queue (the total size
of the old queue and the new queue in ARC can be at
most 2N , with at mostN blocks from both queues being
cached), while SLRU only had around 3/4 of old blocks
in the queue (those that have been recycled to the top of
the protected segment and are traveling down to the bot-
tom of the queue). However, the total number of cache
hits received by the old blocks in SLRU was only 1%
smaller than in ARC, and when the hits received by the
new blocks were added in, the total number of cache hits
for SLRU became greater than for ARC. We measured
the average access rate to old blocks in SLRU and found
that it was indeed about 30% larger than for ARC. This
observation suggested to us that ARC somehow selects
lower quality “newly baked” old blocks to be added to
the old queue in steady state.

The reason for this, as we discovered, is that when
the cache size is large and the cache miss ratio is small,
the outflow rate of new blocks from the new queue (due
to them being hit and transferred to the top of the old
queue) becomes equal to the inflow rate of new blocks
due to cache misses before the new queue grows to N
blocks. In particular, for N = 40000, the steady state
length of the new queue in ARC was around 12000 and

Draft: 2011/02/14 14:48 Page: 8



that of the old queue was around 68000. Algorithmi-
cally, when a cache miss occurs in ARC and a new block
is added to the top of the new queue, a block gets re-
moved from the bottom of the new queue only if its
length is equal toN . Otherwise, a block is removed from
the bottom of the old queue if the total length of both
queues is equal to 2N , which is the case in the steady
state.

Thus, for large cache sizes (such as N = 40000 or
more) every new block in ARC eventually gets added to
the top of the old queue as a “newly baked” old block. In
contrast, under SLRU, new blocks get added to the top
of the protected segment only if they get hit twice in a
reasonably short period of time (while traveling from the
middle of the cache queue to its bottom), which implies
that SLRU has a much higher threshold (in terms of the
required access rate) that needs to be surpassed by a new
block in order to get promoted to the old list. This is the
reason why the average access rate to old blocks under
ARC was smaller than under SLRU and why the cache
miss ratio for ARC for large cache sizes was higher than
the cache miss ratio for SLRU.

The ANCR algorithm consistently obtained an even
smaller cache miss ratio than either SLRU or ARC.
The reason for its performance advantage over SLRU is
clear: it removes an old block from the victim set only
if there are no new blocks there with 0 hits, and it uses
a more accurate criterion for determining the worst old
block to remove (lowest expected cache miss cost) as
opposed to a much more crude criterion used by SLRU
(which removes a block at the bottom of the queue that
was not hit during its latest passage through the queue).

In order to figure out why ANCR outperformed ARC
for small cache sizes (we have already demonstrated
that ARC manifests a clearly suboptimal handling of
the old queue for large cache sizes), we first observed
for N = 10000 that 99% of cached blocks for ARC
were old blocks vs. 94% for ANCR, but the average ac-
cess rate to old blocks for ANCR was about 15% larger
than for ARC. This implies that ANCR somehow col-
lected higher quality old blocks than ARC. The reason
for this, as we discovered, is that ARC has a much larger
turnover of old blocks than ANCR, constantly diluting
the “proven” high-quality old blocks with low-quality
newly arrived blocks. In particular, under ARC about
2N old blocks were removed from the bottom of the old
queue during the evaluation period (approximately 20N
cache accesses), while under ANCR only about 0.14N
old blocks were removed. Thus, even for small cache
sizes, ARC manifests a clearly suboptimal handling of
the old queue.

Algorithmically, if the length of the new queue and
of the old queue oscillates around N for ARC (which
happens for small cache sizes such as N = 20000 or

smaller in our experiments), then whenever a block in
the new queue gets hit, it is moved to the top of the old
queue, and the length of the new queue becomes less
than N . Then, during the next cache miss, a new block
is added to the top of the new queue and a block from
the bottom of the old queue gets removed. We verified
with our cache simulator that the number of old blocks
removed for ARC is exactly equal to the number of hits
to blocks in the new queue.

When a cache miss occurs in ANCR, a new block is
inserted at the top of the probationary segment and then
a block is removed from the victim set. If the victim
set size is K and the Kth block from the bottom of the
queue is removed, then K − 1 blocks are recycled from
the bottom of the queue and the newly inserted block
travels toward the bottom of the queue by K − 1 posi-
tions. Thus, the spacing between any two new blocks in
the probationary segment is at mostK−1. An old block
is removed by ANCR only when there are no new blocks
with 0 hits in the victim set (any new block with 0 hits
had a smaller expected cost than any old block, and thus
it would get removed if it were present in the victim set),
which can happen only if a new block gets hit while it is
in the probationary segment of the queue.

When N = 10000 and K = N/100, there are ap-
proximately N/(2K) = 50 new blocks in ANCR in a
steady state, and hence the probability of accessing one
of those 50 blocks is much smaller than the probability
of accessing one of the 10000 blocks that are in the new
queue for ARC in a steady state. This is the reason why
ANCR has a much smaller turnover of old blocks, which
allows it preserve in the cache the blocks that have the
highest probability of being accessed without constantly
diluting them with the “newly baked” old blocks.

The cache miss ratio of LRV, LNC-R-W3 and LEC
is pretty much the same as that of ANCR, confirm-
ing the fact that these algorithms represent the current
state-of-the-art in the field of cache replacement. In or-
der to demonstrate that the relative performance of dif-
ferent algorithms in Table 1 does not depend on the
particular probability distribution used by the TPC-C
New-Order transactions, we repeated the experiments
described above for a power law distribution (a heavy-
tailed distribution), which is arguably more realistic than
the one used in TPC-C. Power law distributions were
shown to fit very well a wide variety of phenomena in
the real world: city populations, computer files, the fre-
quency of use of words in any human language, the fre-
quency of occurrence of personal names in most cul-
tures, the numbers of papers scientists write, the num-
ber of citations received by papers, the number of hits
on web pages, the sales of books, music recordings and
almost every other branded commodity, etc. [12]. Con-
tinuous probability distributions that follow a power law

Draft: 2011/02/14 14:48 Page: 9



Policy N=5000 10000 20000 40000
LRU 0.497 0.405 0.301 0.180

LFU 0.469 0.376 0.274 0.161

SLRU 0.434 0.353 0.262 0.159

ARC 0.416 0.343 0.264 0.169

LRV 0.386 0.309 0.224 0.142

LNC-R-W3 0.391 0.313 0.227 0.134

LEC 0.418 0.329 0.237 0.139

ANCR 0.402 0.321 0.228 0.136

Table 2: Cache miss ratios for Zipf(0.9) distribution of
block accesses (the 80-20 Pareto rule).

are called Pareto distributions, and the discrete ones are
called Zipf distributions, after two early researchers who
championed their study. Since we are dealing with dis-
crete items in this work, we will refer to the power law
distribution used to specify the access probability to in-
dividual blocks as the Zipf distribution.

Under Zipf distribution, P (access to block k) =
(1/kα)P (access to block 1), where α is the Zipf param-
eter. In order to get a sense of how the parameter α
affects the shape of the Zipf distribution, consider the
famous 80-20 rule (also known as Pareto principle) that
states that roughly 80% of effect comes from 20% of the
causes in many real world situations. In these terms, the
Zipf parameter α = 1.5 implies that approximately 97%
of accesses are made to the top 3% of blocks (a very
skewed access distribution), the Zipf parameter α = 0.9
implies that approximately 80% of accesses are made to
the top 20% of blocks (a realistic distribution observed
in nature by Vilfredo Pareto), and the Zipf parameter
α = 0.5 implies that approximately 62% of accesses are
made to the top 38% of blocks (a pretty flat access dis-
tribution). In our simulations we found that very skewed
access distributions resulted in small performance dif-
ferences between the various cache replacement algo-
rithms, since in order to catch the majority of the cache
accesses the algorithm needs to cache only a small frac-
tion of the highest frequency blocks, which are very easy
to detect using even the crude LRU methods. On the
other hand, very flat access distributions also resulted
in small performance differences between the various
cache replacement algorithms, since it doesn’t matter
too much which blocks are cached under those distri-
butions. Therefore, in order to make the problem most
challenging, we chose Zipf(0.9) access distribution as
the middle ground between skewed and flat access dis-
tributions, which also corresponds to the famous 80-20
rule deduced by Pareto.

Each transaction in this experiment accessed only one

item in the table (as opposed to the average of 10 items
for TPC-C), and hence in order to be consistent with
the previous experiment, the number of transactions both
during the warmup and during the evaluation phase was
increased by a factor of 10. Table 2 shows the cache
miss ratios of the considered algorithms under such a
distribution. As expected, the observed relative values
of the cache miss ratios were almost the same as in Table
1, but with LRV and LNC-R-W3 clearly outperforming
LNCR for small caches. Apparently, the fact that ANCR
allows new blocks to spend some time in the cache be-
fore removing them (unless they get hit again) gives it
a slight disadvantage in small caches under some work-
loads, where frequently-accessed blocks quickly get into
the cache and from that point on it is optimal to bias the
algorithm strongly in favor of removing quickly any new
blocks (such a bias is present in both LRV and LNC-R-
W3 as we checked on our simulator).

4.2 Multi-container experiments
The Standard Specification for TPC-C [17] states: “Hor-
izontal partitioning of tables is allowed. Groups of rows
from a table may be assigned to different files, disks, or
areas.” With this in mind, we decided to repeat the ex-
periments of the previous section for the case when the
100000 items were split into 5 equal containers holding
the following ranges of item numbers: 1 - 20000, 20001
- 40000, 40001 - 60000, 60001 - 80000, 80001 - 100000.
We also assigned different latencies to different contain-
ers so as to see how it would impact the relative perfor-
mance of the previously considered cache replacement
algorithms. The access latency in the currently popular
storage devices ranges from 0.1 ms for a flash disk to
62.5 ms for an 84% loaded SATA disk (which has a ser-
vice rate µ = 100 IOPS, arrival rate λ = 84 IOPS, and
latency 1/(µ− λ) = 0.0625 seconds). In order to cover
this range of latencies, the latency of container j in this
set of experiments was 25−j .

The total cache miss cost was used as the more appro-
priate metric for evaluating the cache replacement algo-
rithms in the presence of different container latencies. It
was computed as the total sum, over all cache misses,
of latencies incurred when accessing missed blocks on
storage devices. The results in Table 3 show that the
ranking of the considered cache replacement algorithms
is almost the same as in Table 1, with the notable ex-
ception that LEC now consistently outperforms LNC-
R-W3 and LRV, and is the second best algorithm after
ANCR. The reason why LEC outperforms LNC-R-W3
and LRV in this scenario is that these two algorithms
try to remove blocks with fewer hits first, thereby of-
ten removing high-latency blocks. On the other hand,
LEC separates blocks into queues according to the prod-
uct of the number of hits they received and the disk

Draft: 2011/02/14 14:48 Page: 10



Policy N=5000 10000 20000 40000
LRU 9.0 12.9 14.6 10.2

LFU 8.4 11.4 12.5 8.0

SLRU 8.0 11.0 12.2 8.3

ARC 7.6 10.9 12.9 9.5

LRV 6.7 9.7 11.3 9.8

LNC-R-W3 6.5 8.5 7.7 2.91

LEC 4.7 5.2 4.2 1.96

ANCR 3.8 4.0 3.1 1.29

Table 3: Cache miss costs in millions for simulated TPC-
C New-Order transactions when the item database was
partitioned into 5 containers with different latencies.

access latency, which helps it to avoid removing high-
latency blocks simply because they received fewer hits
than some lower-latency blocks.

The ANCR algorithm performs filtering of blocks
from low-latency containers both at the level of new
blocks (by learning to use a higher removal probabil-
ity and a lower insertion probability for new blocks
from low-latency containers) and also at the level of old
blocks (by using the algorithm described in Section 3.4),
which allows it to have proportionally larger fractions
of old blocks from high-latency containers than in all
other benchmark algorithms (as we verified in our sim-
ulator) and correspondingly to have the smallest total
cache miss cost.

Note that column 2 in Table 3 has larger cache miss
costs than column 1 because the evaluation period was
equal to 2N and hence more misses took place during
the evaluation period for N = 10000 than for N =
5000. Eventually, forN = 40000, the cache becomes so
large that it covers almost all of the frequently accessed
blocks, and even though more transactions get processed
during the evaluation period, the actual number of cache
misses decreases greatly, which explains why column 4
has smaller cache miss costs than column 3.

In order to make sure that ANCR not only outper-
forms the other algorithms but also make decisions that
seem reasonable to human administrators, we printed
some statistics at the end of the evaluation period from
one simulation run for N = 10000. The final insertion
probabilities for new blocks from each container were
(1.0, 0.32, 0.07, 0.05, 0.05) and removal probabilities
for new blocks with 0 hits were (0.003, 0.014, 0.024,
0.059, 0.90), which fits well with the fact that blocks
from containers 1 and 2 are more valuable (since they
have a higher cache miss latency). In order to ensure
continued adaptability of ANCR (at the expense of some
optimality) we decided to set 0.05 as the minimum in-

Policy N=5000 10000 20000 40000
LRU 7.8 12.7 18.7 22.5

LFU 7.3 11.8 17.1 20.2

SLRU 6.8 11.0 16.4 20.0

ARC 6.5 10.7 16.5 21.3

LRV 6.0 9.6 13.9 17.7

LNC-R-W3 5.8 9.2 13.3 12.7

LEC 4.9 4.9 8.6 8.4

ANCR 4.5 6.1 5.9 2.5

Table 4: Cache miss costs in millions for the Zipf(0.9)
distribution (Pareto 80-20 rule) when the items were par-
titioned into 5 containers with different latencies.

sertion probability for any container so as to make sure
that new blocks will keep passing through the cache and
ANCR will be able to keep updating statistics about the
new blocks. Just as expected, the above insertion and re-
moval probabilities led to the following final cache com-
position for ANCR: (86, 61, 22, 31, 21) new blocks and
(6629, 2675, 429, 37, 9) old blocks by container. As
expected, ANCR allocated most of the cache space to
old blocks while simultaneously giving a preference to
caching old blocks from containers with higher access
latencies.

Finally, in order to demonstrate that the relative per-
formance of different algorithms in Table 3 does not de-
pend on the particular probability distribution used for
generating the TPC-C New-Order transactions, we re-
peated the above experiment for the Zipf(0.9) distribu-
tion of block accesses (Pareto 80-20 rule). The results
are shown in Table 4 and they follow exactly the same
relative pattern as the one in Table 3, which suggests that
this pattern will hold for most other realistic block access
distributions as well.

5 Conclusion
This paper presented a novel analytical cache replace-
ment algorithm ANCR that explicitly estimates the ex-
pected cost of not caching a particular data block and
then uses this information to bias cache occupancy in
favor of containers with higher access probabilities and
higher latencies. ANCR algorithm was compared us-
ing a cache simulator with the well-known caching al-
gorithms such LRU, LFU and SLRU, as well as with
the state-of-the-art caching algorithms ARC, LRV, LNC-
R-W3 and LEC. Two different probability distributions
for accessing individual blocks were simulated: the one
used for generating the New-Order transactions in the
TPC-C benchmark and the Zipf (power law) distribu-
tion (Pareto 80-20 rule). In all considered scenarios, the

Draft: 2011/02/14 14:48 Page: 11



ANCR algorithm consistently outperformed LRU, LFU,
SLRU and ARC algorithms while performing competi-
tively with LRV, LNC-R-W3 and LEC algorithms for the
case when all blocks belonged to a single container. In
the scenario where blocks belonged to multiple contain-
ers with different disk access latencies, ANCR strongly
outperformed all other algorithms.

It is worth mentioning that such a good performance
was obtained by ANCR despite the fact that it was con-
strained to use a single cache queue (consistent with
the most popular queuing approach, LRU) and remove
blocks only from the tail of the queue, while the other
state-of-the-art caching algorithms either had to poten-
tially search through the whole queue to find the worst
block to remove (LNC-R-W3) or separated blocks into
multiple cache queues (LRV and LEC), which creates
additional operating overhead.

References
[1] M. Arlitt, L. Cherkasova, J. Dilley, R. J. Friedrich

and T. Y. Jin, Evaluating Content Management
Techniques for Web Proxy Caches, ACM SIG-
METRICS Performance Evaluation Review 27/4
(2000), p. 3-11.

[2] H. Bahn, S.H. Noh, S.L. Min, K. Koh, Efficient
replacement of nonuniform objects in web caches,
IEEE Computer 35/6 (2002), p. 65-73.

[3] H. Bahn, Web cache management based on the ex-
pected cost of web objects, Information and Soft-
ware Technology 47/9 (2005), p. 609-621.

[4] P. Cao, S. Irani, “Cost-aware WWW proxy caching
algorithms,” Proceedings of the First USENIX
Symposium on Internet Technology and Systems
(1997), p. 193-206.

[5] A. Chakraborty and A. Singh, “A Utility-based Ap-
proach to Cost-Aware Caching in Heterogeneous
Storage Systems,” In Proceedings of the Parallel
and Distributed Processing Symposium (2007), p.
1-10.

[6] H. ElAarag and S. Romano, “Comparison of Func-
tion Based Web Proxy Cache Replacement Strate-
gies,” In Proceeding of the 12th International Sym-
posium on Performance Evaluation of Computer &
Telecommunication Systems (2009), p. 252-259.

[7] B. C. Forney, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. “Storage-Aware Caching: Re-
visiting Caching for Heterogeneous Storage Sys-
tems.” In Proceedings of The First USENIX Con-
ference on File and Storage Technologies (2002),
p. 61-74.

[8] S. Jin, and A. Bestavros, “GreedyDual*: Web
Caching Algorithms Exploiting the Two Sources of

Temporal Locality in Web Request Streams,” Pro-
ceedings of the 5th International Web Caching and
Content Delivery Workshop (2000).

[9] R. Karedla, J. S. Love, B. G. Wherry, Caching
strategies to improve disk system performance,
Computer 27/3 (1994), p. 38-46.

[10] Y.-J. Kim and J. Kim, DAC: a device-aware cache
management algorithm for heterogeneous mobile
storage systems,” IEICE Transactions on Informa-
tion and Systems, 91-D/12 (2008), p. 2818-2833.

[11] N. Megiddo, D. S. Modha, “ARC: A Self-Tuning,
Low Overhead Replacement Cache,” Proceedings
of the 2nd USENIX Conference on File and Stor-
age Technologies (2003), p 115-130.

[12] M. E. J. Newman, Power laws, Pareto distribu-
tions and Zipf’s law, Contemporary Physics, 46/2
(2005), p. 323-351.

[13] S. Podlipnig and L. Boszormenyi, A Survey of Web
Cache Replacement Strategies, ACM Computing
Surveys, 35/4 (2003), p. 374-398.

[14] S. Romano and H. ElAarag, “A Quantitative
Study of Recency and Frequency based Web
Cache Replacement Strategies”, Proceedings of
the 11th Communication and Networking Sym-
posium (CNS.08), Spring Simulation Multiconfer-
ence (2008), p. 70-78.

[15] L. Rizzo and L. Vicisano, Replacement Policies for
a Proxy Cache, IEEE/ACM Transactions on Net-
working, 8/2 (2000), p. 158-170.

[16] P. Scheuermann, J. Shim and R. Vingralek, “A
Case for Delay-conscious Caching of Web Doc-
uments,” Proceedings of the 6th International
WWW Conference (1997), p. 997-1005.

[17] TPC BENCHMARKTM C. Standard Spec-
ification. Revision 5.11. February 2010.
http://www.tpc.org//tpcc//default.asp

[18] Q. Yang, H. H. Zhang, and H. Zhang, “Taylor
Series Prediction: A Cache Replacement Policy
Based on Second-order Trend Analysis, Proceed-
ings of the 34th Hawaii International Conference
on Systems Sciences (2001).

Draft: 2011/02/14 14:48 Page: 12


