

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

An Efficient Tunable Selective Points-to
Analysis for Large Codebases

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan,
Bernhard Scholz and Yi Lu

Oracle Labs, Australia

SOAP 2017

2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 3

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs.
It is intended for information purposes only, and may not be incorporated into any contract.
 It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its development
 plans and practices at any time, and the development, release, and timing of any features or
 functionality described in connection with any Oracle product or service remains at the sole
 discretion of Oracle. Any views expressed in this presentation are my own and do not
necessarily reflect the views of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Objective

• Scaling object-sensitive points-to analysis with high precision

• A tuneable analysis framework

– Utilizing the knowledge of the codebase

• Client Independent

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Background

• Variables → Objects

• Prerequisite to many analyses

• Andersen points-to implemented in Datalog

– Flow-insensitive, inclusion-based

–Heap-allocated objects
• Creation-site as an abstraction for dynamically created objects

• Heap-allocated object have fields

5

Points-to Analysis

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Background

• Context insensitive (CI) points-to is imprecise

• Different flavors: type, callsite, objects

• 2O1H

6

Context-sensitivity

public class A{

 void foo(){ //CalleeCtx =[o1,o2]

 o3: B b = new B(); // HeapCtx = [o2]

 b.bar();

 }

}

public class B{

 void bar(){ //CalleeCtx = [o2,o3]

 o4: C c = new C(); // HeapCtx = [o3]

 }

}

2O1H

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Motivation

• 2O1H improves precision vs CI points-to

– removes 97% of FP in PointsTo

– removes 49% of FP call-graph edges

• High resource consumption
– 6.8 hours execution time

• Only particular parts of the codebase are problematic
– OpenJDK7 minus javax.swing

• 8.8x faster

• 45% memory reduction

7

OpenJDK-b147

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Problem Statement

• Is it possible to selectively generate contexts?

• Which heap allocation sites need different context sensitivity?

• How deep should the contexts be?

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

State-of-Art in client-independent Points-to for Java

• Introspective context-sensitive points-to (Yannis et el., PLDI 2014)

– Proposes two heuristics: HA, HB

– Imprecise w.r.t. 2O1H

– Case study: OpenJDK

9

Approach Runtime # VarPointsTo #CallGraphEdge

2Obj+1H 6.8h 10M 261K

Context-
insensitive

6.8m 318M 513K

HA 14m 206M 496K

HB timeout - -

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Our Contributions

• Identifying the kernel: the core problematic subset of input program

– Based on CI points-to results

• Designing metrics on kernel for:

– Evaluating effectiveness of generated contexts

– Identifying candidate heap allocation sites

– Identifying depth of the context needed

• A selective object-sensitive points-to

– Going beyond 2O1H

• A general client independent framework

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Tunable Selective Object-Sensitive Points-to Workflow

11

Pre-analysis

Extract
Kernel

Fixed Object-
sensitive
Points-to

Analysis on
Kernel

Input
Program

Selective Object-sensitive
Points-to

Identify
Candidate

Objects

Points-
to

Results

Determine
their Context

depth

Main Analysis

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Automatically Extracting Kernel

1. A cheap context insensitive points-to

2. Kernel = Input program - RHA

3. RHA has heap allocation site o

– where # PointedByVar(o) < P1 AND

– which is NOT allocated in a method of class C where
• o’ has type C with #PointedByVar(o’) >= P1 OR

• C has method m with #MethodPointsTo(m) > P2

12

Parameterized by P1, P2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Analyzing Kernel

• 2O1H points-to on kernel

• Applying metrics to evaluate the effectiveness of contexts

• Finding candidate heap allocation sites

• Choosing context depth

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Context Evaluation

• False positives in 2O1H can be more expensive than in CI points-to

• Sources of imprecision

– Certain program elements are handled by smashing techniques [1]
• E.g., arrays, static fields, open world, exceptions, etc.

• Due to array smashing, elements of the array are not distinguished

• Inappropriate contexts for these elements compounds smashing effect

– Arrays cause 88% of VarPointsTo tuples in CS Points-to

– Static fields cause 50% of VarPointsTo tuples in CS Points-to

14

Key insights

1. B. Blanchet et al., Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. In The Essence of Computation: Complexity, Analysis, Transformation., pages 85–108. Springer-Verlag, 2002.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Given a program element o with smashing effect (e.g., array) in context oc

• InFlow: objects of all contexts that are stored in o qualified by any context

• OutFlow: objects that v points to where v is loaded from o, with context oc

• CtxInOutFlow: contexts in which v is loaded from o, with context oc

Context Evaluation

15

Metrics

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Given a program element o with smashing effect (e.g., array) in context oc

o: a = new … //oc = [o’]

a[i] = x

v = a[i]

Context Evaluation

16

Metrics

v,ctx1 v, ctx2

InFlow(o) = 4
CtxInOutFlow(v,o,o’) = 2
OutFlow(v,o,o’) = 8
=>
ContextValue(o,o’) = 1

o’ o’’

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Combining a subset of the metrics to:

– Identifying candidates

– Choosing context depth based on context correlation

• Context correlation

Selective Context generation

17

General Algorithm

Ctx = [o1,o2] [o2,o3] : arr[i] = x,

o3.put(x)

Ctx = [h1,o2] [o2,o3] : arr[i] = x,

o3.put(x’)

hctx = [o3]

hctx = [o3]

o4 = new arr[]

Ctx = [o1,o2] [o2,o3] : y = arr[i]

o3.get()

Ctx = [h1,o2] [o2,o3] : y = arr[i]

o3.get()

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Combining a subset of the metrics to:

– Identifying candidates

– Choosing context depth based on context correlation

• Context correlation

Selective Context generation

18

General Algorithm

Ctx = [o1,o2] [o2,o3] : arr[i] = x,

o3.put(x)

Ctx = [h1,o2] [o2,o3] : arr[i] = x,

o3.put(x’)

hctx = [o3]

hctx = [o3]

o4 = new arr[]

Ctx = [o1,o2] [o2,o3] : y = arr[i]

o3.get()

Ctx = [h1,o2] [o2,o3] : y = arr[i]

o3.get()

[o1,o2,o3]

[h1,o2,o3]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Selective Context Generation

• Given o with context oc = [o’]

• If ContextValue(o,oc) < P3 AND InFlow > P4

– If extending oc results in context correlation

– Else remove the context for o’.

19

 Metrics Parametrized by P3 and P4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Implementation

• Implementing

– Datalog specification for DOOP points-to analysis

• Use Souffle as the Datalog engine

• SQLite relational database to compute the pre-processing metrics

20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Experimental setup:

– Xeon E5-2699 2.30GHz, 8 threads running at a time, 396G RAM

– P3 and P4 parameters are both 200

–OpenJDK7-b147 and DaCapo 2006-10-MR2
• No context refinement needed for objects of programs in DaCapo benchmarks, except for Jython

21

Benchmarks #Variables #Call-sites #Heap-allocations

OpenJDK7 1440875 591262 185352

Jython 142641 59379 25608

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Identifying the Kernel

22

Computing P1 and P2

Program P1 P2

OpenJDK-b147 20K 50K

Jython 2149 1452

0 Max(|PointedByVar|) mean

0 Max(|MethodPointsTo|) mean

P1:

P2:

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Evaluation

Benchmarks Runtime (seconds)

Memory (GB)

2O1H Ours Imp. 2O1H Ours Imp.

OpenJDK 16200 11880 27% 186 153 18%

Jython 1280 109 91% 2.8 2.8 0%

23

Performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Evaluation

24

Precision

Benchmarks #VarPointsTo

#Alias #ReachableMethods

2O1H Ours Loss 2O1H Ours Loss. 2O1H Ours Loss

OpenJDK 10100000 10400000 3% 845518 854600 1% 39909 39880 -0.1%

Jython 68519 68519 0% 28294 28294 0% 2876 2876 0%

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusion

• Designed a novel framework for scaling object-sensitive points-to analysis
for large object-oriented programs

– Involves identifying and experimenting on the kernel of program

– Selective object-sensitive points-to analysis on the input program

• Client-independent

• Reduced the runtime of CS points-to with negligible precision loss

25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Questions/Suggestions

E-mail: behnaz.hassanshahi@oracle.com

26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 27

