

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Unifying Access Control & Information Flow
A Security Model for Programs Consisting of Trusted and Untrusted Code

Yi Lu
K. R. Raghavendra
Chenyi Zhang
Paddy Krishnan

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Background

• Languages designed for internet applications and extensible systems

• Untrusted code may run in the same process as trusted code

• Fine-grained language-based security needed to manage the complex
security requirements of program code

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Agenda

• Examine stack-inspection based security model

– Limitations and security requirements

• Propose a new security model to apply access control to enforce secure
information flow
– Dynamic semantics and security property

• Static enforcement of the new security model for OO programs

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Stack-based Access Control

• Used in Java and C#, known as sandboxing

– An implementation of the principle of least privilege

• Code attempting sensitive operations may be privileged with permissions
– Permissions granted to classes by policy files

• All code on the call stack must have sufficient privilege to perform specific
sensitive operation

– Permissions tested at runtime

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {

 public static void main(String[] args){

 L l = ...;

 ...

 l.createResource(name);

 ...

 }

}

public class L {

 private Resource resource;

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name,"create"));

 resource = create(name);

 }

}

7

Stack Inspection Example

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {

 public static void main(String[] args){

 L l = ...;

 …

 l.createResource(name);

 ...

 }

}

public class L {

 private Resource resource;

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name, create"));

 resource = create(name);

 }

}

8

Stack Inspection Example

AC.checkPermission AllPermission

L.createResource AllPermission

A.main ResourcePermission("*", "create")

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {

 public static void main(String[] args){

 L l = ...;

 …

 l.createResource(name);

 ...

 }

}

public class L {

 private Resource resource;

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name,"create"));

 resource = create(name);

 }

}

10

Stack Inspection Unsuccessful: Exception Thrown

AC.checkPermission AllPermission

L.createResource AllPermission

A.main φ

Security Exception

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {

 public static void main(String[] args) {

 L l = ...; B b = ...;

 String name = b.getName();

 l.createResource(name);

 ...

 }

}

public class B {

 public String getName() {

 return "password";

 }

 …

}

public class L {

 private Resource resource;

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name, “create"));

 resource = create(name);

 }

}

11

Unauthorised Data Used in Sensitive Operation

AC.checkPermission AllPermission

L.createResource AllPermission

A.main ResourcePermission("*", "create")

B.getName φ

A.main ResourcePermission("*", "create")

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {

 public static void main(String[] args){

 L l = ...; B b = ...;

 ...

 Resource r = l.getResource();

 b.useResource(r);

 }

}

public class B {

 …

 public void useResource(Resource res) {

... }

}

public class L {

 private Resource resource;

 …

 public Resource getResource() {

 checkPermission(new

 ResourcePermission("*", "get"));

 return resource;

 }

}

12

Leaked Sensitive Information to Unauthorised Code

B.useResource φ

A.main ResourcePermission("*", "create")
ResourcePermission("*", "get")

AC.checkPermission AllPermission

L.getResource AllPermission

A.main ResourcePermission("*", "create")
ResourcePermission("*", "get")

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

public class A {
 public static void main(String[] args) {
 L l = ...;
 …
 l.initResource();
 ...
 }
}

public class L {
 private Resource resource;

 private Resource create(String name);

 public void createResource(String name) {

 checkPermission(new
 ResourcePermission(name, "create"));

 resource = create(name);
 }
 public void initResource() {
 final String name = "initial";
 createResource(name);
 }
}

13

Forbid Desired Operation

AC.checkPermission AllPermission

L.createResource AllPermission

L.initResource AllPermission

A.main φ

Security Exception

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Limitations of Stack Inspection

• Cannot prevent all information flow attacks

– E.g. the confused deputy problem
• Untrusted code may inject data used by trusted code to perform sensitive operations

• Data generated from sensitive operations by trusted code received by untrusted code

• Too strong to allow desired information flows

– Often have to elevate code privilege at runtime

• Rely on programmer discipline

–No enforceable security model or policy

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Related Work

• Stack-based access control

–Wallach and Felten, S&P’98

– Fournet and Gordon, POPL’02

• History-based access control
– Abadi and Fournet, NDSS’03

• Information-based access control

– Pistoia, Banerjee and Naumann, S&P’07

• Hard to state a useful security goal that captures the intent for a general
class of trusted and untrusted code

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Informal Security Requirements

• Propagation of information needs to be controlled

– Data from unauthorised code should not reach sensitive operations

– Sensitive data should not leak to unauthorised code

• Authorisation determined by the privilege assigned to code

– Code needs sufficient privilege to send/receive data to/from other code

–Mutual information flows desirable

• Can classic information security models meet the requirements?

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Information Flow Security

• Transfer information between variables according to security levels
– Each variable assigned a security level (e.g. privilege)

– Security levels form a lattice: L ≤ H

• Provide guarantees about information propagation
– Confidentiality: Do not allow information flows from H to L

– Integrity: Do not allow information flows from L to H

• Transitive information flow policy precludes cyclic flows between levels
– A richer information flow structure desired

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of the New Security Model

• Each code/variable associated with a dual access control specification

– A pair of partially ordered security levels

• Capability or cap(x) determines privilege/trust of variable x
– e.g. the privilege granted to untrusted code

• Accessibility or acc(x) determines secrecy/sensitivity of variable x

– e.g. the privilege required by sensitive code

• Information is transferred according to access control specification

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Security Model and Java

Oracle Confidential – Highly Restricted 20

• Java provides access control but also requires information flow security

– Stack inspection misses certain information flow based issues

• No clear separation of confidentiality and integrity
– Programmatically expressed using checkPermission()

• Our Model identifies security requirements for Java programs
– JDK : Trusted: All capabilities

– JDK: checkPermission(): Accessibility requirements

– Application: capability assigned via policy

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{}

@holds{ResourcePermission("*", "create")}

public class A {

 public static void main(String[] args){

 L l = ...; B b = ...;

 String name = b.getName();

 l.createResource(name);

 ...

 }

}

@requires{}

@holds{}

public class B {

 public String getName() {

 return "password";

 }

 …

}

@requires{}

@holds{AllPermission}

public class L {

 private Resource resource;

 @requires{ResourcePermission(name,

"create")}

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name,"create"));

 resource = create(name);

 }

}

21

Example Revisited

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Informal Security Policy

𝑥 → 𝑦 ⟹ 𝑎𝑐𝑐 𝑥 ≤ 𝑐𝑎𝑝 𝑦 ∧ 𝑎𝑐𝑐 𝑦 ≤ 𝑐𝑎𝑝(𝑥)

• 𝑥 → 𝑦 : information may flow from 𝑥 to 𝑦

• Both confidentiality and integrity can be guaranteed

• General information flow policy allows richer flow structure

• Transitive policy in classic model a special case

– Examples: 𝑎𝑐𝑐 𝑥 = 𝑐𝑎𝑝 𝑦 , 𝑎𝑐𝑐 𝑥 ≤ 𝑎𝑐𝑐 𝑦 ≤ 𝑐𝑎𝑝 𝑥 ≤ 𝑐𝑎𝑝(𝑦)

– Such relations too strong

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Informal Security Policy

𝑥 → 𝑦 ⟹ 𝑎𝑐𝑐 𝑥 ≤ 𝑐𝑎𝑝 𝑦 ∧ 𝑎𝑐𝑐 𝑦 ≤ 𝑐𝑎𝑝(𝑥)

• Confidentiality

– The receiver must have sufficient privilege to receive the information

• Integrity

– The sender must have sufficient privilege to send the information

• Mutual information flows supported

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Novelty

• Unified treatment of confidentiality and integrity

• Intransitive policy

– Permits flows across different levels

• Existing lattice-based information flow models use transitive policy

– Flows only within single level: Anti-symmetry

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example

• Transitive: label(x) ≤ label(y) ∧ label(y) ≤ label(z) ⟹ label(x) ≤ label(z)

• Intransitive Policy

– 𝑥 → 𝑦 ⟹ 𝑎𝑐𝑐 𝑥 ≤ 𝑐𝑎𝑝 𝑦 , 𝑦 → 𝑧 ⟹ 𝑎𝑐𝑐 𝑦 ≤ 𝑐𝑎𝑝 𝑧

– 𝑎𝑐𝑐 𝑥 ≰ 𝑐𝑎𝑝 𝑧 ⟹ 𝑥 ↛ 𝑧

26

Application Library-API Secure Core



y = x z = y

z = x

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{}

@holds{ResourcePermission("*", "create")}

public class A {

 public static void main(String[] args)

{

 L l = ...; B b = ...;

 String name = b.getName();

 l.createResource(name);

 ...

 }

}

@requires{}

@holds{}

public class B {

 public String getName() {

 return "password";

 }

 …

}

@requires{}

@holds{AllPermission}

public class L {

 private Resource resource;

 @requires{ResourcePermission(name,

"create")}

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name, "create"));

 resource = create(name);

 }

}

27

Unauthorised Data Used in Sensitive Operation Revisited

"password" → name ⟹ {} ≤ AllPermission ∧ {ResourcePermission(name,"create")} ≤ {}



Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{}

@holds{}

public class A {

 public static void main(String[] args) {

 L l = ...;

 …

 l.initResource();

 ...

 }

}

@requires{}

@holds{AllPermission}

public class L {

 private Resource resource;

 @requires{ResourcePermission(name,

"create")}

 private Resource create(String name);

 public void createResource(String name)

{

 checkPermission(new

 ResourcePermission(name, create"));

 resource = create(name);

 }

 public void initResource() {

 final String name = "initial";

 createResource(name);

 }

}

28

Forbid Desired Operation Revisited


"initial" → name ⟹ {} ≤ AllPermission ∧ {ResourcePermission(name,"create")} ≤ {AllPermission}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{}

@holds{ResourcePermission("*", "get")}

public class A {

 public static void main(String[] args) {

 L l = ...; B b = ...;

 ...

 Resource r = l.getResource();

 b.useResource(r);

 }

}

@requires{} @holds{}

public class B {

 …

 public void useResource(Resource res) {

... }

}

@requires{}

@holds{AllPermission}

public class L {

 @requires{ResourcePermission("*",

"get")}

 private Resource resource;

 …

 public Resource getResource() {

 checkPermission(new

 ResourcePermission("*", "get"));

 return resource;

 }

}

29

Leaked Sensitive Information Revisited

"resource" → res ⟹ {ResourcePermission("∗","get")} ≤ {} ∧ {} ≤ {AllPermission} 

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Aims of Formal Security Model

• Extend access control with information flow

• Handle both confidentiality and integrity in intransitive policies

• Proof of security property guaranteed by model

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Formal Security Model

• Access control specification

• Union

• Security policy

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Formal Security Model

• Access control subsumption

• Derived access control property

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Dynamic Semantics of the Security Model

• Big step operational semantics

– Statements

– Expressions: No side-effects

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Explicit Information Flow

• Reading from variable

• Writing to variable

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Information Flow via Heap

• Load

• Store

 35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implicit Information Flow

• Implicit flow via conditional

– E ⊎ F : Value from E, union of flows from E and F

• Implicit flow via dynamic dispatch supported

– All potential targets considered

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

class C1 {

 public m(C3 z) {return;}

}

class C2 extends C1 {

 public m(C3 z) {z.f = new T();}

}

class C3 {T f;}

C1 y = new C2();

if(x)

 y = new C1();

z = new C3();

y.m(z);

// the called m depends on x

// the update on z.f depends on x

Confidential – Oracle Internal/Restricted/Highly Restricted 37

Example: Virtual Dispatch

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Noninterference Theorem

• Attacker/system should not be able to distinguish two executions from
their outputs with a given access control spec, if they only vary in their
inputs with access control specs that are not allowed to access it

38

Program

Tainted Value v1 Tainted Value v2

Secure Value s1

Program

Secure Value s1 Secure Value s2

Non-Secure Value v1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Underlying Concepts

• Indistinguishability

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Noninterference Theorem

• Start states indistinguishable

• States are well-formed

• Executing the same statement

 in and results in

 indistinguishable states

40

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Overview of Static Semantics

• To prove noninterference by static analysis

– Approximate dynamic semantics with abstract domains

– Enforce access control policy on the abstract domains

• Defined in type inference rules by

• Assignment

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Static Semantics: Field-sensitive

• Load

• Store

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Static Guarantee

• Correspondence between concrete and abstract state

43

Abstract State

Concrete
State

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Observations

• Dynamic checking impractical

– Need to track all branches including virtual calls

• Static program analysis provides guarantee

– Conservative: Can reject safe programs

44

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Summary

• DAC security model: Combines access control and secure information flow

– General class of trusted and untrusted code

– Intransitive security policy allows a richer information flow structure

• Prove a general intransitive noninterference property

– Handles implicit information flow including dynamic dispatch

– Provide both confidentiality and integrity guarantees

• Security model enforced by static program analysis

45

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 46

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{} @holds{AllPermission}
public class A {
 public static void main(String[] args) throws Exception {
 L l = ...; B b = ...; C c = …;
 l.setResource(b.get());
 Resource r = l.getResource();
 c.use(r);
 }
}

@requires{} @holds{ResourcePermission("*", "set")}
public class B {
 public Resource get() { return new Resource("password"); }

}
@requires{} @holds{ResourcePermission("*", "get")}
public class C {
 public void use(Resource res) { ... }
}

@requires{} @holds{AllPermission}
public class L {
 @requires_conf{ResourcePermission("*", "get")}
 @requires_inte{ResourcePermission("*", "set")}
 private Resource resource;

 …
 public Resource getResource() {
 AccessController.checkPermission(
 new ResourcePermission("*", "get"));
 return resource;
 }
 public Resource setResource(Resource r) {
 AccessController.checkPermission(
 new ResourcePermission("*", "set"));
 resource = r;
 }
}

48

Distinct Integral/Confidential Requirements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Security Policy for Distinct Integrity/Confidentiality

𝑥 → 𝑦 ⟹ 𝑐𝑜𝑛𝑓 𝑥 ≤ 𝑐𝑎𝑝 𝑦 ∧ 𝑖𝑛𝑡𝑒 𝑦 ≤ 𝑐𝑎𝑝(𝑥)

• The receiver must satisfy the confidential requirement of the sender

• The sender must satisfy the integral requirement of the receiver

49

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{} @holds{AllPermission}
public class A {
 public static void main(String[] args) throws Exception {
 L l = ...; B b = ...; C c = …;
 l.setResource(b.get());
 Resource r = l.getResource();
 c.use(r);
 }
}

@requires{} @holds{ResourcePermission("*", "set")}
public class B {
 public Resource get() { return new Resource("password"); }

}
@requires{} @holds{ResourcePermission("*", "get")}
public class C {
 public void use(Resource res) { ... }
}

@requires{} @holds{AllPermission}
public class L {
 @requires_conf{ResourcePermission("*", "get")}
 @requires_inte{ResourcePermission("*", "set")}
 private Resource resource;

 …
 public Resource getResource() {
 AccessController.checkPermission(
 new ResourcePermission("*", "get"));
 return resource;
 }
 public Resource setResource(Resource r) {
 AccessController.checkPermission(
 new ResourcePermission("*", "set"));
 resource = r;
 }
}

50

Distinct Integral/Confidential Requirements

 new Resource("password") → resource ⟹ {} ≤ AllPermission
∧ {ResourcePermission("∗","set")} ≤ {ResourcePermission("∗","set")}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

@requires{} @holds{AllPermission}
public class A {
 public static void main(String[] args) throws Exception {
 L l = ...; B b = ...; C c = …;
 l.setResource(b.get());
 Resource r = l.getResource();
 c.use(r);
 }
}

@requires{} @holds{ResourcePermission("*", "set")}
public class B {
 public Resource get() { return new Resource("password"); }

}
@requires{} @holds{ResourcePermission("*", "get")}
public class C {
 public void use(Resource res) { ... }
}

@requires{} @holds{AllPermission}
public class L {
 @requires_conf{ResourcePermission("*", "get")}
 @requires_inte{ResourcePermission("*", "set")}
 private Resource resource;

 …
 public Resource getResource() {
 AccessController.checkPermission(
 new ResourcePermission("*", "get"));
 return resource;
 }
 public Resource setResource(Resource r) {
 AccessController.checkPermission(
 new ResourcePermission("*", "set"));
 resource = r;
 }
}

51

Distinct Integral/Confidential Requirements

 resource → res ⟹ {ResourcePermission("∗","get")} ≤ ResourcePermission("∗","get")
∧ {} ≤ {AllPermission}

