
Non-Volatile Memory and Java
A series of short articles about the impact of non-volatile memory (NVM) on the Java
platform.

In the first article I described the main hardware characteristics of Intel’s new Optane
persistent memory. In this article I will discuss several software issues.

Part 2: The view from software
In use, NVRAM will look just like DRAM, and be accessed through the usual memory-
related instructions (load, store, etc.) as virtually-addressed memory.

Data structures in a filesystem
To enable the long-term organization and access of data in NVRAM, data will be
encapsulated in a filesystem. The file system will allow independent structures to be
contained within separate files, with the attendant metadata (file name, etc.). Readers
of a certain age will recall the emblematic feature of the 1980s PC, the RAM disk—but
in this case the contents are not lost when the machine is rebooted. And like a RAM
disk, data can also be accessed using filesystem operations, but that would lose the
benefits (immediacy and granularity) of the load-store interface.

To get the best performance and true memory semantics the filesystem driver in the
OS must provide direct load-store access and not copy data. The typical access
pattern will be to open a file in this filesystem, map it into the application’s address
space, operate upon the data directly and then close the file, thereby unmapping the
data. This is known as the Direct Access (DAX) model and is already supported by
some of the major OSes (e.g., Linux and Windows).
1
Placing long-lived data in a filesystem has obvious benefits. There are established
solutions for backup and archiving, hierarchical organization, access control, space
accounting, and so on.

Position independence
It is desirable that the data in a DAX file are arranged to be position independent. If the
contents had to be loaded at a specific address there would be the possibility of
conflict between independent files, and this would increase if a file was to be portable
to a variety of systems and applications. Furthermore, the data in a DAX file could be
simultaneously mapped to different addresses, in different processes or even within the
same process. Additionally, modern OSes provide Address Space Layout
Randomization to make it harder for malware to modify data: at each run, the address
of a data segment is randomized so that learning the address of a datum in one run is
of no benefit when wishing to tamper with the datum in subsequent runs.

 https://www.intel.com/content/www/us/en/support/articles/000032860/memory-and-storage/1

data-center-persistent-memory.html

One way to achieve position independence is to have all internal references be self-
relative. Another is to embed relocation metadata allowing the contents to be
relocated, either all at once when the file is mapped, or incrementally (e.g., triggered by
an initial page fault). Some files may be very large (terabytes or more) and so non-
incremental relocation might negate the faster start-up advantages of non-volatility.
Also, relocation does not accommodate simultaneous mapping.

Current software does not typically operate on self-relative data, and programming
languages do not typically provide support for it. Changing an application written in an
unmanaged language, e.g., C, to use self-relative addressing could be a major
undertaking. This is a place where a managed runtime, e.g., the JVM, can help, by 2

using self-relative addressing transparently to the application.

The volatile memory hierarchy above NVRAM
Accesses to NVRAM are usually mediated by the memory hierarchy, which contains
several levels of caching and buffering. This hierarchy is built from conventional,
volatile memory and will lose its contents on power loss. Hence a store to NVRAM will 3

not become durable until the cache line containing the modified data is written to
NVRAM.
4
Intel has added two instructions to x64 to assist:

• CLFLUSHOPT (Flush Cache Line Optimized) evicts every cache line containing a

specified address. Unlike the older CLFLUSH, it is not ordered with respect to
writes to other cache lines.

• CLWB (Cache Line Write Back) writes back a modified cache line but does not force
its eviction.

 NVM-Direct (https://github.com/oracle/nvm-direct) handles this by extending C to distinguish 2

references within persistent memory and makes those self-relative; the programmer must
express the distinction, and the compiler takes care of the details.

 it seems unlikely that state held on the CPU (registers, caches) will become non-volatile 3

within, say, a decade. Although some technologies under development have promise as a non-
volatile replacement for SRAM (e.g., Spin-Transfer Torque RAM) these are unlikely to be
competitive in much less than a decade (see Emerging Memory Technologies, DOI 10.1109/
MSSC.2016.2546199, 2016). An exception is the emerging field of so-called Non-Volatile
Processors (NVPs). The idea here is to use non-volatile state within processors intended for
energy-harvesting IoT applications (i.e., which run ephemerally, only when enough energy can
be obtained from their environment). However, we will not consider this further, as it is not
relevant to processors in data centers and on desktops.

 The astute reader will ask: at what point does a write become durable? Between the caches 4

and the NVRAM chips is control logic holding volatile state, such as additional buffering. How
does one know that the data have left these buffers and made it to the NVM chips? The answer
is: it doesn’t matter. Intel guarantees that in the event of power loss the volatile state of the
memory controllers will be committed to NVM. Presumably there is a source of energy (such as
a supercapacitor) which is sufficient to accomplish this goal. See https://software.intel.com/en-
us/blogs/2016/09/12/deprecate-pcommit-instruction for details.

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

These instructions will have to be inserted into applications after non-volatile updates;
by the programmer (or library writer) in an unmanaged language (or perhaps by the
compiler, if it knows when non-volatile data are being modified), or by the runtime of a
managed language. These instructions update NVRAM asynchronously; a fence is
used to determine when the update is complete. (An alternative is to use msync() or 5

an equivalent, but this is just a wrapper for the write backs and fence and incurs
system call overhead.) Unfortunately, this approach still suffers from an observability
problem which would require additional coordination between threads relying on a
datum becoming durable.
6

An alternative is to have the system store sufficient energy that in the event of power
loss it can write back from the caches all unsaved non-volatile data. In a system
implementing this scheme writes would, in effect, become durable immediately, and
render the special instructions unnecessary.
7 8

In the next article I’ll start looking at the implications of the hardware and software
characteristics.

 Actually, the fence determines when the update becomes visible according to the coherence 5

protocol; the update can still be pending in the memory controller’s write queue. However,
memory controllers for Optane will be signaled upon power loss and guarantee that all pending
writes will be completed, a property confusingly called Asynchronous DRAM Refresh (ADR) —
it has nothing to do with DRAM refresh, so far as I can tell. See Persistent Memory
Programming, Andy Rudoff, login 42(2), https://www.usenix.org/system/files/login/articles/
login_summer17_07_rudoff.pdf

Bill Bridge, The Observability Problem with Persistent Memory, Oracle memo.  6

Summary: because only the thread issuing the fence can directly know when a datum
becomes durable, other threads could read the datum and erroneously propagate the
information before it is guaranteed to persist. Avoiding this requires extra coordination between
the threads.

 This has become known as extended ADR; no announced system has this property.7

 The WBINVD instruction is somewhat related, but not a complete solution: it writes back the 8

contents of all caches, but then invalidates them (undesirable). Also, there not does appear to
be a way to know when it has completed the writebacks, as execution continues immediately.
Finally, it is a privileged instruction and thus incurs system call overhead.

	Part 2: The view from software

