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Abstract—Java natively supports serialisation and deserialisa-
tion, features that are necessary to enable distributed systems to
exchange Java objects. Deserialisation of data from malicious
sources can lead to security exploits including remote code
execution because by default Java does not validate deserialised
data. In the absence of validation, a carefully crafted payload
can trigger arbitrary functionality. The state-of-the-art general
mitigation strategy for deserialisation exploits in Java is deseri-
alisation filtering that validates the contents of an object input
stream before the object is deserialised using user-provided filters.

In this paper we describe a novel technique called ds-prefix
for automatic synthesis of deserialisation filters (as regular
expressions) from examples. We focus on synthesis of allowlists
(permitted behaviours) as they provide a better level of security.
ds-prefix is based on deserialisation heuristics and specifically
targets synthesis of deserialisation allowlists. We evaluate our
approach by executing ds-prefix on popular open-source systems
and show that ds-prefix can produce filters preventing real CVEs
using a small number of training examples. We also compare
our approach with other synthesis tools which demonstrates that
ds-prefix outperforms existing tools and achieves better F1-score.

Index Terms—Security, Synthesis, Regular expressions, Dese-
rialisation filtering

I. INTRODUCTION

Serialisation is a mechanism that converts an in-memory
object into a stream that can be saved into a file or trans-
mitted over a network. Deserialisation is a reverse process
that reconstructs an object from a saved state. These features
are necessary to enable cooperative distributed systems. Java1

natively supports serialisation and deserialisation. One of the
drawbacks of Java deserialisation is that by default it does
not validate deserialised data. Deserialisation of data coming
from malicious sources can thus lead to security exploits
including remote code execution. This is because in the
absence of validation, a carefully crafted payload can trigger
arbitrary functionality. This type of vulnerability, known as
deserialisation of untrusted data2 is widespread with over 600
CVEs reported in the last 5 years.

1Java is a registered trademark of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

2https://cwe.mitre.org/data/definitions/502.html

Notably, deserialisation of untrusted data in Java goes be-
yond native Java deserialisation. One such example is Jackson-
databind [1], a library for serialisation to and deserialisation
from JSON. Jackson-databind is a core component of many
popular Java frameworks (including Spring [2]) and is the 10th

most popular package on Maven central at the time of writing3.
Since 2017, 60 CVEs related to deserialisation of untrusted
data in Jackson-databind were reported4.

The state-of-the-art mitigation strategy for deserialisation
exploits in Java is deserialisation filtering that validates the
contents of an object input stream before the object is de-
serialised [3]–[5], classifies deserialisation targets at runtime
as either safe or unsafe, and blocks deserialisation of unsafe
classes. Such filters are usually based on the names of the
deserialised classes and use either a blocklist or an allowlist
approach. A blocklist specifies unsafe classes that should
be prevented from being deserialised. An allowlist describes
classes that are permitted to load with the rest of the classes
treated as unsafe.

Manual construction and maintenance of deserialisation
filters is tedious and error-prone. This is especially the case
for large and complex applications, where deserialisation op-
erations might be scattered across multiple components and
require extensive knowledge of the system. Construction of
these filters is thus best delegated to an automated approach
that can synthesise a blocklist or an allowlist from positive
and negative examples (i.e., class names that can be safely
deserialised or potentially lead to security exploits respec-
tively). The resulting filter should accept all positive examples,
reject all negative examples and most importantly generalise
to unknown examples. This is because most typically the
input set of examples does not comprise the complete list
of deserialisation targets. A synthesised filter, thus needs to
allow deserialisation of previously unseen benign classes (as
otherwise it may break the application), and block malicious
targets that may represent new attack vectors.

3https://mvnrepository.com/popular
4https://www.cvedetails.com/vulnerability-list/vendorid-15866/productid-

42991/Fasterxml-Jackson-databind.html



Deserialisation filters are typically implemented as regular
expressions that identify benign and potentially malicious
classes. Synthesis of regular expressions from examples is a
well studied topic. Classic automata-theoretic approaches [6]–
[11] use finite automata to represent input examples and
produce a regular expression using a series of transformations
that generalise the initial FA to unseen examples. Newer
synthesis techniques use genetic programming [12]–[14] and
sequence alignment [15].

Existing tools are not well-suited for synthesis of deseriali-
sation filters for a number of reasons. Firstly, synthesisers are
typically concerned with finding a regular expression that fits
all examples and do not utilise the specific nature of the task
at hand. The generalisations constructed by the state-of-the-
art tools are often either too specific and prone to blocking
safe classes, or too general allowing malicious classes to be
deserialised. Secondly, many of the synthesis algorithms often
take too long to execute. This is especially the case with
automata-theoretic techniques that require costly conversion
from automata to regular expressions. This makes it difficult
to adopt such synthesis in the context of runtime security
analysis, where a filter might be re-generated on the fly if
new examples are encountered. Finally, automatic synthesis
typically produces regular expressions that are difficult to
understand, check or extend manually.

In this paper we describe a novel technique for automatic
synthesis of deserialisation filters. We focus on synthesis of
allowlists as they provide a better level of security. We use
regular expressions and address the limitations of the state-of-
the-art synthesisers. The key research questions answered by
our synthesis approach called ds-prefix are as follows:

1) Does ds-prefix generate accurate allowlists?
2) Is the F1-score better than existing techniques?
3) Are the results of ds-prefix manually auditable?
Ds-prefix is based on the observation that deserialisation

filters often reason at the level of packages, rather than
individual classes, by allowing or blocking deserialisation of
classes with given prefixes. This observation is supported by
the design of Java Enhancement Proposal (JEP) 290 [3], the
built-in Java deserialisation filtering mechanism, that allows
to specify deserialisation filters using patterns that describe
packages or sub-packages the targets belong to. The main
idea behind ds-prefix is to find shortest positive prefixes that
describe benign examples only and combine them in a regular
expression. The resulting allowlist is generated by traversal of
a tree-shaped finite automata with labelled states constructed
from the input set of examples. Notably, ds-prefix generates a
regular expression during traversal, surpassing costly conver-
sion from a finite automaton to a regular expression. By using
a heuristic approach, ds-prefix enables one to tailor synthesis to
deserialisation and effectively prevent deserialisation exploits
for complex systems that need a large number of input
examples.

The rest of this paper is organised as follows. Section II
introduces formal details required to describe our approach and
Section III presents details of ds-prefix. Section IV describes
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Fig. 1. An APTA with S+ = {abe, abce} and S− = {ab, abcd}

a proof-of-concept implementation and presents the results
of the empirical evaluation. Section V gives an overview of
related work in the area of synthesis of regular expressions
from examples and deserialisation filtering. Finally, Section VI
offers concluding remarks.

II. PRELIMINARIES

An augmented prefix tree acceptor (APTA) is a tree-shaped
deterministic finite automaton that uses two kinds of state
labels: accept and reject to distinguish between positive and
negative examples respectively.

Definition 1 presents the formal description of APTA [6].
Definition 1 (APTA): An APTA is a tuple
{Q,Σ, δ, q0, F+, F−}, where Q is a finite set of states,
Σ is a finite input alphabet, δ : Q × Σ → Q is a transition
function (may be partial), q0 ∈ Q is the start state, F+ ⊆ Q
is a set of final accepting states, F− ⊆ Q is a set of final
rejecting states such that the state transition system induced
by δ is a tree.

An APTA is consistent with a set of positive examples (say
S+ ⊆ P(Σ∗)) and negative examples (say S− ⊆ P(Σ∗)) iff
runs of the automaton starting at q0 lead to an element of
F+ for every string in S+ and to an element of F− for every
string in S−. For the sake of simplicity we assume that all the
APTAs are consistent unless stated otherwise.

An example APTA is shown in Figure 1, where red and
green states denote accept and reject labels respectively.

We now define a few auxiliary functions to simplify the
presentation of the synthesis algorithm. The function children :
Q→ P(Q) returns the set of outgoing states of the input state.
The function parent : Q → Q returns the parent state of the
input state. The function value : Q→ Σ∗ identifies the string
that will lead the automaton from the initial state to the input
state. The function symbol : Q → Σ∗ identifies the string
that will lead the automaton from the parent state of the input
state to the input state. For instance, for the APTA in Figure 1,
children(q4) is {q5, q6}, parent(q4) is q2, symbol(q4) is c and
value(q4) is abc.

Rather than use automata, we use regular expressions to rep-
resent the permitted behaviour. Recall that a regular expression
R is a string over the same alphabet as an automaton extended
with metacharacters [16]. The semantics of a regular expres-
sion is a set of strings over the underlying alphabet. Given
regular expressions R1 and R2, R1R2 denotes concatenation,
R1 +R2 represents union, () is used to show grouping and ∗

denotes Kleene closure.



We assume that function join accepts a set of regular
expressions and returns a regular expression that is the union of
all regular expressions in the input set. For instance, join({ab∗,
cd}) is ab∗ + cd.

Given an APTA A, we define APTA(q,A) to be the sub-
tree of A rooted at state q. That is the resulting APTA has q
as its initial state. For notational convenience, we let F+(q)
and F−(q) indicate the sets of labelled accepting and rejecting
states. When the context is clear we drop A and refer to only
APTA(q).

Definition 2 (Positive, Negative and Conflicting Strings): Let
S = S+ ∪ S− a labelled set of strings, A be an APTA =
{Q,Σ, δ, q0, F+, F−}. Let q ∈ Q such that children(q) 6= ∅
and value(q) be s. We say s is
• always positive if F−(q) = ∅,
• always negative if F+(q) = ∅,
• conflicting if F+(q) 6= ∅ ∧ F−(q) 6= ∅
That is, if an internal state q is reachable via string s, then

s is said to be positive if the subtree rooted at q contains
no negative labels, negative if the subtree has no positive
labels and conflicting if the subtree contains both negative and
positive labels.

Tracking the longest positive or negative example prefix
during the synthesis process is achieved by keeping a map be-
tween different states. More precisely, the set M : Q ↪→ P(Q)
denotes a partial mapping from a state to a set of states. M
is a set of ordered pairs over elements Q × P(Q), where
each pair (q, P ) associates state q ∈ Q with a set of states
P ∈ P(Q). M [q] denotes the set of states mapped to q in M
or an empty set if no association to q exists in M . The function
updateMap(M, q, P ) either adds pair (q, P ) to M when there
there is no mapping from q in M or augments the existing
pair (q,M [q]) with (q,M [q] ∪ P ).

This concludes the general summarisation of APTAs. Be-
cause we are using APTAs to synthesise allowlists of Java
package and class names, we specialise the input alphabet
to cater to this use-case. A well-formed deserialization ex-
ample is a string representing a fully-qualified Java class
name that can be used by the Java reflection API. Exam-
ples include java.lang.String, int, and [[B. The rightmost
identifier of a deserialization example is referred to as a
class name, the rest of the identifiers are called sub-packages
and the character . is a package separator. For instance,
in java.lang.String, String is a class name, while java and
lang are sub-packages. By convention sub-packages start with
lowercase letters and class names are capitalised. Thus Σ in
our case consists of valid sub-package names ending with
the literal ‘.’ and valid class names. In addition, we use
Rα and Rκ to denote regular expressions that match any
class or sub-package name and any class name respectively.
For instance, java.lang.Rα matches both java.lang.String
and java.lang.ref.Cleaner, whereas java.lang.Rκ matches
java.lang.String only. Regular expression Rκ \R matches any
class name except names matched by R.

Figure 2 shows an APTA example for deserialization. Here
java.lang.String is a positive example as it is accepted while

java.io.Writer is a negative example as it is rejected. In this
example value(q6) is always positive, value(q5) is always
negative and value(q4) is conflicting.

We use APTADS to represent APTAs that are specific to
deserialization.
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Fig. 2. An APTA representing deserialization examples.

III. SYNTHESIS OF DESERIALISATION FILTERS

The main goal of our approach is to use a set of labelled
deserialisation examples to automatically synthesise a regular
expression to act as a deserialisation allowlist. Such a regular
expression should accept all positive examples (i.e., allow
deserialisation of benign classes), reject all negative examples
(i.e., prevent potentially malicious classes from loading) and
generalise to unknown examples in a systematic fashion. In
this section we present our synthesis algorithm called ds-prefix.

Ds-prefix has two main steps. The first is to find the
shortest positive prefixes that describe benign examples only
and combine them to generate a regular expression. For
instance, if S+ = {java.lang.Byte, java.lang.Short} and S− =
{java.io.Writer}, then the shortest positive prefix is java.lang.
as it covers all the positive examples and excludes S−. This
can be represented as the regular expression java.lang.Rα that
matches any class belonging to package java.lang or any of
its sub-packages.

Finding a positive prefix is not always possible. Consider
for instance, S+ = {java.lang.String, java.lang.Short} and
S− = {java.lang.Runtime}. Generalising to java.lang.Rκ is
no longer safe because it will also match the negative example,
and dropping this prefix altogether results in rejecting the
positive example. In ds-prefix, such conflicts are resolved via
one of the following strategies:
• Additive Approach: accept positive examples only via a

union of all positive examples: java.lang.(String + Short)
• Subtraction Approach: reject negative examples and

accept any other example belonging to the same package:
java.lang.(Rκ\{Runtime})

The ds-prefix Synthesis Algorithm: At a high-level ds-prefix
traverses an APTADS obtained from a set of deserialisation
examples and generates a mapping that comprises discovered



prefixes and conflicting class names (if any). The generated
mappings are then combined into the resulting regular expres-
sion using either additive or subtraction resolution strategies.

A more formal description of ds-prefix is given via proce-
dure DS-PREFIX (Algorithm 1).

Algorithm 1 Inference from Deserialisation Examples
Require: S = S− ∪ S+

Require: H ∈ {Additive, Subtraction}
1: procedure DS-PREFIX(S)
2: A←APTADS(S), M ← ∅, Re ← ∅
3: DS-STATE(q0,M )
4: for all (q, P ) ∈M do
5: if P = ∅ then
6: Re ← Re ∪ {value(q) +Rκ}
7: else if F+ ∩ P 6= ∅ then
8: Re ← Re ∪ {value(q) + DS-RESOLVE(P,H)}
9: end if

10: end for
11: return join(Re)
12: end procedure

The input DS-PREFIX is the set of labelled deserialisation
examples S and a conflict resolution strategy H . The first step
constructs an APTADS from the input examples and initialises
an empty mapping M and a resulting per-prefix set of regular
expressions Re (Line 2).

Traversal of the APTADS A is described in the procedure
DS-STATE (Algorithm 2) that considers a single state at a time.
The action performed depends on whether the input state q is
an internal state (captures a prefix) or a leaf (describes a class
name). An internal state q (Line 2) is mapped to an empty state
in M if it is positive (has no negative descendants, Line 4).
Otherwise, DS-STATE recursively traverses the immediate de-
scendants of q (Lines 6-8) attempting to find positive prefixes
that lie beyond q. If the traversal reaches a leaf (positive prefix
cannot be found, Line 10), it is mapped to its parent in M that
tracks a longest conflicting or negative prefix. In summary, a
mapping (q, P ) in M captures a positive prefix given by q if P
is empty, a conflicting prefix if P contains positively labelled
states and a negative prefix otherwise.

Algorithm 2 State Processing
Require: q ∈ Q
Require: M : Q ↪→ P(Q)

1: procedure DS-STATE(q, M )
2: if children(q) 6= ∅ then
3: if F−(q) = ∅ then
4: M ←M ∪ (q, ∅)
5: else
6: for all qd ∈ children(q) do
7: DS-STATE(qd,M )
8: end for
9: end if

10: else
11: updateMap(M, parent(q), {q})
12: end if
13: end procedure

The final step of DS-PREFIX generates a regular expres-

sion for each positive and conflicting prefix tracked via M
and consolidates the results in the set of per-prefix regular
expressions Re. Positive prefixes in M (mappings to empty
states) are generalised toRκ. (Line 6). The regular expressions
for conflicting prefixes are generated by the function DS-
RESOLVE (Algorithm 3) that applies a specified conflict-
resolution strategy (Line 8) to generate a regular expression
from a mixture of positive and negative class names.

Specifics of conflict resolution is given by the DS-RESOLVE
in Algorithm 3. The inputs to DS-RESOLVE is the conflict
resolution heuristic (additive or subtraction) and a set of
leaves belonging to the same parent state. The latter represents
conflicts: positive and negative class names of the same prefix.
DS-RESOLVE first populates sets S+ and S− with positive and
negative class names respectively (Lines 2-3). A class name
(given by some leaf state q) is positive if q belongs to the set
of positively labelled states F+ of APTADS and negative if q
belongs to F−. With the additive heuristic the resulting regular
expression is a union of all positive class names (Line 4). Note
that S+ cannot be empty, as otherwise it is a negative prefix.
With the subtraction heuristic the resulting regular expression
matches any class name except negative (Line 7).

It is worth noting that conflict resolution (via DS-RESOLVE)
generalises class names within individual packages (i.e., using
Rκ). This prevents from matching negative examples that
share similar prefixes. This is different to generalising positive
prefixes, where any sub-package (i.e., via Rα) is permitted
beyond the prefix itself. This is because a positive prefix
describes only positive examples. We show an example of this
distinction in the following section.

Algorithm 3 Conflict Resolution
Require: P ∈ P(Q)
Require: H ∈ {Additive, Subtraction}

1: procedure DS-RESOLVE(P , H)
2: S+ ← { symbol(q) | q ∈ F+ }
3: S− ← { symbol(q) | q ∈ F− }
4: if H = Additive then
5: return join(S+)
6: else
7: return Rκ \ join(S−)
8: end if
9: end procedure

Synthesis Example: We now give an example of using
ds-prefix to synthesise a regular expression. Consider the
following set of input examples S.

S+ S−

int byte
java.lang.String java.lang.Runtime
java.util.Set java.io.Writer
java.time.Instant java.time.chrono.Era
java.time.Clock

The APTADS generated from S is shown via Figure 2.
The algorithm first considers the root state q0. Since the

tree of q0 contains both positive and negative examples DS-



STATE is recursively called on all immediate descendants of
q0. States q2 and q3 are leaves, and thus they are mapped
to the state q0 in M . q1, on the other hand, is a conflicting
internal state therefore its descendants (q4-q7) are processed
recursively. Since q6 is a positive prefix it is tracked via M
that associates q6 with an empty set. The remaining states
q4, q5 and q7 are processed further. The final steps associate
remaining states with their leaves in M . The post-traversal
mapping M is shown in Table I.

q0 7→ {q2, q3} q4 7→ {q8, q9}
q5 7→ {q10} q6 7→ ∅
q7 7→ {q12, q14} q13 7→ {q15}

TABLE I
MAPPING OF STATES TO LEAVES

Prefix of q6 is positive and generalised to java.util.Rα
that matches any class with sub-package java.util.. This
is because there are no negative examples sharing this prefix.
Prefixes of q5 and q13 are negative and therefore dropped.
Prefix of q7 is conflicting and contains both positive and neg-
ative examples. q7 generates java.time.(Instant+Clock)
using the additive heuristic and java.time.Rκ for the
subtraction heuristic. Note that for the subtraction heuristic
generalising with Rκ allows any class from java.time

package (no negative examples in that package) but also
rejects negative example java.time.chrono.Era. Note that
using java.time.Rα will not work as that will then allow
the package java.time.chrono and all sub-packages and
classes under it. Prefixes q4 and q0 are also conflicting, with
additive heuristic generating java.lang.String and int

and subtraction generating java.lang.(Rκ\Runtime) and
Rκ\byte respectively. The overall resulting filters generated
by using the additive and subtraction heuristics are shown via
Listings 1 and 2 respectively.

int+java.lang.String+java.time.(Instant+Clock)
+java.util.Rα
Listing 1. Example Regular Expression using Additive Heuristic

Rκ\byte+java.lang.(Rκ\Runtime)+java.time.Rκ+
java.util.Rα

Listing 2. Example Regular Expression using Subtraction Heuristic

IV. RESULTS

We now discuss the implementation of ds-prefix and present
the results of its evaluation using several open-source systems.

A. Implementation

We have implemented ds-prefix using the dk.brics.

automaton library [17] extended to support APTAs. At a
high level our synthesiser receives a specification with positive
and negative examples, constructs an APTA and synthesises a
Java-compatible regular expression.

Translation of the abstract regular expressions described
in Section III to Java is straightforward. . and [ charac-
ters are escaped because they coincide with metacharacters.

For instance, java.lang.String generates java\., lang\. and
String for alphabet symbols. Regular expressions Rα and
Rκ are expressed as .* and [ˆ.]+, and the \ operator is
modelled using zero-width negative lookahead. Finally, the
resulting regular expression is enclosed in ˆ and $ anchors
to avoid partial matches.

To demonstrate the applicability of our technique to real is-
sues we have integrated ds-prefix with a Java monitoring agent
built using the ByteBuddy5 code generation and manipulation
library. Our agent has two modes of operation: monitoring
and analysis. In the monitoring mode the agent logs names
of the deserialised classes allowing to collect examples for
synthesis. In the analysis mode the agent instruments Java code
at runtime and flags deserialisation that violates the supplied
allowlist. The current implementation allows filtering native
Java serialisation and serialisation in the Jackson-databind
library [1].

B. Vulnerability Detection

In this section we investigate whether ds-prefix generates
accurate allowlists (RQ 1, Section I). To answer this question
we show that ds-prefix combined with the monitoring agent de-
tects real vulnerabilities related to deserialisation of untrusted
data (CWE-502 [18]) in several popular open-source systems.

Our experimental approach is as follows. We first reproduce
a known vulnerability. We then gather benign and malicious
examples. The benign examples are typically collected from
the runs of systems under test, while the negative examples are
collected from previously discovered issues. In the final step
we use ds-prefix to synthesise an allowlist and use the Java
agent to confirm that the vulnerability is detected at runtime.
For the purpose of this experiment we configure ds-prefix to
synthesise filters using the subtraction heuristic as it produces
more permissive allowlists comparing to the additive approach.

1) Apache Batik: Batik [19] is a Java library for manipula-
tion of SVG graphics. Internally, Batik encodes SVG images
as XML documents and allows for Java-based serialisation/de-
serialisation of the DOM object that represents an image.

In Batik versions before 1.10, during the deserialisation of
AbstractDocument objects, an arbitrary class name string is
read from the input stream, and used to reflectively invoke the
default constructor of the corresponding class. This effectively
allows deserialisation of any Java object and can be used
to construct a remote code execution exploit (CVE-2018-
8013 [20]). The patch for this issue checks that the deserialised
class implements the org.w3c.dom.DOMImplementation

interface before invoking its constructor.
To reproduce CVE-2018-8013, we reverted the commit that

fixed the issue and wrote a driver that sends a malicious se-
rialised payload that triggers the execution of a user-specified
command. Furthermore, because the fixed version will still
invoke the constructor of any class that implements org.

w3c.dom.DOMImplementation interface, we also created a
malicious class that implements this interface.

5https://bytebuddy.net



To show that our approach can prevent CVE-2018-8013,
we first synthesised the allowlist using a dataset consisting
of all the publicly available implementations of org.w3c.

dom.DOMImplementation we could identify. We then ran
the custom driver under the supervision of our Java agent
configured to use the allowlist (shown below) and confirmed
that the exploit was successfully prevented.

ˆ(\[Lorg|com\.sun\.org\.apache\.xerces|com\.
sun\.org\.apache\.xml|org\.apache\.batik|
org\.apache\.html|org\.apache\.wml|org\.
apache\.xerces|org\.python|org\.w3c)\..*$

The allowlist permits specific classes such as org.

apache.wml.WMLDOMImplementation or org.w3c.dom.

html.HTMLDOMImplementation. This is because these are
are publicly available classes that do not contain malicious
code that lead to the CVE-2018-8013 exploit. Hence they can
be used as part of the training set.

2) Jackson-databind: Jackson [21] is a suite of data-
processing tools for Java that includes Jackson-databind [1], a
component implementing general-purpose data-binding func-
tionality. The Jackson-databind library is an extremely popular
tool for serialisation and deserialisation to and from JSON.

Jackson-databind supports polymorphic type handling that
allows adding additional type information to the serialised
JSON object and use that type information at deserialisation
time to create an object of a given class. In cases where
the deserialised object has a field of a generic type (such as
Object), an attacker can manipulate the type information and
have Jackson-databind create an instance of any class since
any class in Java is a subclass of Object.

Polymorphic type handling has resulted in over 60 CVEs
since 2017 [22]. One the main reasons for such high number of
CVEs is that up until Jackson-databind 2.9.x, the deseriali-
sation targets were checked against a blocklist that was evaded
as new deserialisation gadgets were discovered. Starting with
Jackson-databind 2.10.x, deserialisation targets are validated
against an allowlist by default. So far this approach has been
successful as there have been no reported CVEs related to
deserialisation of untrusted data.

To evaluate our approach we reproduced one of the earliest
Jackson-databind exploits: CVE-2017-17485 [23]. To confirm
that our approach prevents this issue, we generated the follow-
ing deserialisation filter from a dataset consisting of benign
examples from the Jackson databind test suite and malicious
examples from its default blocklist.

ˆ((\[Lcom|\[Ljava|com\.fasterxml|java\.io|java
\.lang|java\.text|java\.util\.concurrent)
\..+|[ˆ.]+|java\.util\.[ˆ.]+)$

This above allowlist represents a generalisation of what
should be blocked. This filter blocks instances of
FileSystemXmlApplicationContext from the org

.springframework.context.support package that
trigger CVE-2017-17485 but does not appear in Jackson
blocklist. This filter also rejects malicious classes from
Jackson databind blocklist such as org.apache.xalan.

xsltc.trax.TemplatesImpl or org.codehaus.groovy

.runtime.ConvertedClosure.
To further investigate detection capabilities of ds-prefix

allowlists we constructed two additional input datasets. Both
datasets contain the same positive examples obtained from
test runs. The list of negative examples in the first dataset
(say D) contains 9 negative examples and has been drawn
from Jackson-databind blocklist after discovery and resolution
of its first deserialisation exploit. The second dataset (say
D′) contains 134 negative examples and has been drawn
from the latest Jackson-databind blocklist (at the time of
experimentation). The list of negative examples in D′ captures
the blocklist preventing 46 known CVEs (all reported CVEs
available at the time of experimentation).

A simple experiment show that the blocklist synthesised
from D (ˆ((\[Lcom|\[Ljava|com\.fasterxml|java)
\..+|[ˆ.]+)$) rejects all but two negative examples from
D′. This result indicates a ds-prefix allowlist generated from
just 9 negative examples would be sufficient to effectively
prevent 44 CVEs. Our further experiment with the historic
data indicates that the negative examples from the 4th earliest
CVE of Jackson-databind (comprising 48 negative examples),
is sufficient to prevent all exploits.

3) Olingo: Apache Olingo [24] is a Java library that
implements the Open Data Protocol (OData). The odata-client-
proxy Olingo component (a Java client for OData services)
versions 4.0.0 to 4.7.0 is vulnerable to deserialisation
of untrusted data (CVE-2019-17556 [25]) because prior to
version 4.7.0 the AbstractService, which is a public API,
deserialised arbitrary objects without checking the supplied
data. Olingo developers have eventually fixed this vulnerability
by allowlisting the deserialisation targets and restricting them
to packages and sub-packages of org.apache.olingo.*.

We reproduced this vulnerability by using an affected ver-
sion of Olingo and supplied a malicious payload that triggered
execution of an arbitrary command. To confirm that our
approach detects CVE-2019-17556 we used ˆorg\.apache

\.olingo\..+$ allowlist synthesised from positive examples
collected from tests and negative examples consisting of
class names from known deserialisation gadget chains from
ysoserial [26] and a default blocklist of the Jackson-databind
library. Notably the filter generated is essentially identical to
the custom filter supplied by Olingo developers.

C. Accuracy of Synthesised Allowlists

In our next experiment we investigate whether F1-score of
ds-prefix is superior to the existing tools (RQ 2, Section I).
For this we conduct a K-fold cross-validation study and com-
pare results with several state-of-the-art synthesis techniques.
The main reason for selecting cross-validation is to evaluate
synthesis in a setting that uses a small number of examples.

For this experiment we use the same datasets that were
used to synthesise allowlists in Sections IV-B1 and IV-B2. We
exclude the Olingo dataset used in Section IV-B3 because it
contains a large number of examples (over 2000), whereas our
goal is to investigate F1-score using only a small number of



examples. We further investigate the tools’ performance using
large datasets in Section IV-D.

Synthesisers: Firstly, we compare ds-prefix to classic
automata-theoretic techniques for regular inference, namely
BlueFringe [8], RPNI [9] and Traxbar [10], [11]. All these
algorithms generate prefix tree acceptors from the set of input
examples and then apply series of transformations that gener-
ate DFAs that represent resulting regular expressions. For the
purpose of this experiment we implemented these techniques
in Java alongside ds-prefix with DFA to regular expression
conversion using the algorithm based on Andern’s lemma [27].
Another tool used in this experimentation is Search-and-
Replace generator (S&R) based on genetic programming [28],
[29]. To explore application of S&R to synthesis of allowlists
we also experiment with a variation of S&R called S&R-DS
that uses an alphabet tailored to deserialisation comprising
sub-packages, separators and class names. Finally, we compare
ds-prefix with our Python implementation of MSA, a synthesis
approach based on multiple sequence alignment [30].

Experiment Set-up: For this experiment we randomly shuf-
fle datasets and split them into 5 folds of equal size. Each fold
is then treated as a testing dataset with the rest taken for train-
ing. For each training dataset we generate a regular expression
and check deserialisation examples in the test dataset. In this
set-up, a true positive result constitutes matching a positive
example or rejecting a negative example, a false negative result
is not matching a positive example, and a false positive result
is matching a negative example.

Results: The results of this experiment are given in Ta-
ble II, that shows the average F1-score and standard deviation
(in parenthesis) per synthesiser. The table further shows the
number of positive and negative examples per-dataset. The
results show that ds-prefix has the best F1-score of 0.93 for
the Batik dataset and 0.99 for Jackson-databind. The results
of automata-theoretic techniques (Blue-fringe, RPNI, Traxbar)
were slightly worse ranging from 0.83 to 0.90. The results
of the MSA and S&R synthesisers were also worse than ds-
prefix. For these tools, the drop in F1-score was due to low
recall, where positive examples failed to be matched. Also, for
the Batik datasets, these tools had higher standard deviation,
which indicates more diverse results compared to ds-prefix.

D. Performance Evaluation
We now investigate performance of ds-prefix relative to the

state-of-the-art tools on large datasets. For this experiment
we use Batik, Olingo and Jackson-databind (Section IV-B)
datasets and additionally a large dataset collected from the
test runs and the allowlist of XStream6, yet another popular
library for serialisation and deserialisation to and from XML.
We note we have not used XStream it in our prior experiments
with CVE detection because the current implementation the
Java agent lacks transformations that can intercept XStream-
style deserialisation. All reported performance results were
generated on an 8-core 1.7GHz I5 Intel processor with 16GB
RAM, running 64-bit Ubuntu Linux.

6https://x-stream.github.io

The results of this experiment is given via Table III that
shows the runtime in seconds taken for synthesis and the size
of the resulting regular expression in bytes (with one byte
representing a single character) per-tool. The results show that
ds-prefix has best performance of all synthesisers used, taking
under a second to synthesise regular expressions even for large
datasets. RPNI and Traxbar had the worst performance and
could not complete analysis (due to out-of-memory errors) for
larger XStream and Olingo datasets. Blue-fringe performed
better than RPNI and Traxbar and was able to complete
synthesis for all four datasets. With this approach, however,
much effort is spent on conversion from a DFA obtained by
merging states of an APTA into a regular expression. Regular
inference of MSA has a better performance when compared
to the automata-theoretic techniques. Even for the largest
XStream dataset MSA was able to compile a regular expres-
sion in 68 seconds and just a few seconds for the remaining
3 datasets. S&R and S&R-DS were also able to synthesise
regular expressions in a reasonable time. The performance
of S&R using the alphabet of characters on for the XStream
dataset (over 10 minutes) was, however, considerably worse
comparing to the other techniques.

E. Auditability of Results

Finally, we inspect features of regular expressions generated
by different synthesisers to understand whether the results of
ds-prefix are manually auditable (RQ 3, Section I).

The structure of regular expression generated by ds-prefix
are straightforward, as one can identify (or update) prefixes
used in their construction. Consider, for instance the regu-
lar expression generated for the Batik dataset (Listing 3),
where prefixes such as org\.apache\.batik or com\.sun
\.org\.apache\.xml stand out and can be manipulated in
a straightforward manner without complex changes to the
structure of a regular expression.

The regular expressions produced by automata-theoretic
techniques (RPNI, Blue-fringe, Traxbar) on the other hand
typically consist of individual characters from the examples
and as such can be difficult to understand or amend. Consider,
for instance regular expressions generated by Blue-fringe
and RPNI for the Batik dataset (Listing 3). Furthermore, as
shown by the results of experiments, due to the complexity
of the obtained DFAs automatic DFA-to-regular expression
conversion can yield extremely long regular expressions. For
instance, a 4.7 MB regular expression was generated by Blue-
fringe for the XStream dataset.

The regular expressions generated by MSA are similar
to the results of ds-prefix in that one can clearly identify
parts of Java classes. MSA regular expressions, however, can
be too specific and restrict matches to specific lengths or
concrete classes. For example, the MSA generated expression
for Batik (Listing 3) includes AbstractElement\$Entry
class. Another example is regular expression ˆorg.apache

.olingo.{0,126}$ generated for the Olingo dataset, where
class names are restricted by 126 characters. As such, MSA
can reject examples from safe packages.



Dataset ds-prefix Blue-fringe RPNI Traxbar MSA S&R S&R-DS

Batik (34/97) 0.93 (0.07) 0.85 (0.12) 0.89 (0.17) 0.87 (0.07) 0.82 (0.16) 0.90 (0.12) 0.76 (0.20)

Jackson (157/135) 0.99 (0.01) 0.83 (0.12) 0.90 (0.03) - 0.92 (0.03) 0.87 (0.06) 0.99 (0.01)

TABLE II
5-FOLD CROSS-VALIDATION RESULTS SHOWING F1-SCORE AND STANDARD DEVIATION (IN PARENTHESIS) PER SYNTHESISER.

Dataset (pos/neg) ds-prefix Blue-fringe RPNI Traxbar MSA S&R S&R-DS

Batik (34/97) 0.3s (184B) 1.7s (230B) 6.6s (147B) 7.9s (384B) 1.8s (252B) 35.4s (33B) 4.1s (B)

Jackson (157/135) 0.3s (118B) 5.3s (44K) 12.6s (3Kb) 88.2s (7.9Mb) 2.3s (47B) 49.9s (20B) 8.0s (B)

Olingo (1915/97) 0.5s (26B) 27.3s (893K) - - 1.1s (10.6Kb) 29.1s (49B) 3.7s (B)

XStream (3099/97) 0.6s (3.2Kb) 125.7s (4.7Mb) - - 68.1s (482B) 600.2s (52B) 242.0s (B)

TABLE III
PERFORMANCE RESULTS OF DIFFERENT SYNTHESISERS SHOWING RUNTIMES (SECONDS) AND SIZES OF RESULTING REGULAR EXPRESSIONS (BYTES).

ds-prefix:ˆ(\[Lorg|com\.sun\.org\.apache\.xerces|com\.sun\.org\.apache\.xml|org\.apache\.batik|org\.apache
\.html|org\.apache\.wml|org\.apache\.xerces|org\.apache\.xml|org\.python|org\.w3c)\..+$

Blue-fringe:ˆ([a-zA-CE-HJLMOPR-X02-46\$\.\[]|[DIN;]([cmopS]|([dtu]|l[enp])([iI]|[mo][enp])*[aelnC])*([
aenrB-DMOPRT]|([dtu]|l[enp])([iI]|[mo][enp])*E))*[DIN;]([cmopS]|([dtu]|l[enp])([iI]|[mo][enp])*[aelnC])
*(([dtu]|l[enp])([iI]|[mo][enp])*)?$

RPNI:ˆ([a-ce-ik-mopr-uw-yAC-EG-IL-PTV-X3\$\.\[]|[dnS][del-nptIS]*[a-cf-ikorsuw-yAC-EGHL-PTV-X3\$\.\[])*([
dnS][del-nptIS]*|([dnS][deptIS]*)?;[elmptI]*)$

MSA:ˆ\[Lorg.apache.batik.dom.AbstractElement\$Entry;$|ˆcom.sun.org.apache.x.{2,5}.internal.{0,8}..{6,25}
Implementation.{0,4}$|ˆorg.apache.{10,44}ent.{0,9}$|ˆorg.python.apache.{0,27}DOMImplementation.{0,4}$|ˆ
org.w3c.dom.{0,5}..{4,4}DOMImplementation.{0,3}$

S&R:ˆ[ˆI]++[ˆp]++(?:[ˆm]++[ˆr]++)++$
S&R-DS:ˆ(\[L?\.?|org\.?|xerces\.?)([ˆ.]+\.?)(xml\.?|html\.?|wml\.?|org\.?|apache\.?|batik\.?|dom\.?|xerces

\.?)([ˆ.]+\.?)++;?$

Listing 3. Regular expressions generated by all synthesisers for Batik dataset

S&R and S&R-DS generated the shortest regular expres-
sions. A closer examination, however, shows that such regular
expressions appear to be overly general. Consider for instance
a regular expression generated for the Batik dataset (Listing 3).
Furthermore, as SNR-generated regular expressions do not
include specific patterns for packages (such as ds-prefix or
MSA) they can be easier to evade.

In summary, our experiments with ds-prefix suggest that it
is well suited for synthesis of deserialisation filters capable
of detecting real security issues. This has been demonstrated
in Section IV-B, where ds-prefix-generated allowlists were
used to detect recent CVEs in popular Java applications using
deserialisation. In addition, experiments with Jackson-databind
suggest that ds-prefix generated allowlists have the potential
to prevent new vulnerabilities using a limited set of input
examples. Furthermore, as suggested by the comparison with
other synthesis techniques in Section IV-D, ds-prefix is capable
of generating concise and straightforward regular expressions
taking under a second even for large datasets. Fast synthesis
time makes it easy to re-synthesise filters on-the-fly (e.g.,
using incoming data), whereas the structure allows for manual
customisation. Finally, a cross-validation study discussed in
Section IV-C suggests that for the problem of deserialisation
filtering ds-prefix is more accurate than state-of-the-art tools.

V. RELATED WORK

This section reviews prior work focusing on tools for
protection against insecure deserialisation attacks in Java ap-
plications and synthesis of regular expressions from examples.

A. Protection Against Insecure Deserialisation Attacks in Java

Deserialisation filtering is a state-of-the-art mitigation strat-
egy for Java deserialisation exploits that validates the contents
of an object input stream before the object is deserialised [31],
[32]. One of the most popular deserialisation filtering solu-
tions is Java Enhancement Proposal (JEP) 290 that enables
filtering of incoming streams of object-serialization data either
through a pattern-based specifications or programmatically, via
a custom function. JEP290 also provides built-in filters for
Java Remote Method Invocation (RMI) Registry, the RMI Dis-
tributed Garbage Collector, and Java Management Extensions
(JMX). Apache Commons ValidatingInputStream [4] and
Contrast Security contrast-rO0 [5] also use approaches that
are based on deserialisation filtering. Our approach is related
to the deserialisation filtering tools in that they could be used
to enforce the synthesised deserialisation filters at runtime.

Another way of protecting an application against deseri-
alisation attacks at runtime has been proposed by Cristalli
et al. [33]. Their approach first monitors trusted executions
and collects paths comprising invoked methods. The system in
question is then run in a sandbox allowing only deserialisation



that matches collected benign paths to proceed. Our approach
bears similarity with the technique by Cristalli et al., in
that they both construct monitors for deserialisation. One
difference however, is that our approach enables generalisation
that allows deserialisation of previously unseen classes. Fur-
thermore, adopting our allowlist in practice does not require
sandboxing and can be done using deserialisation filtering
techniques.

An orthogonal approach for protection against deserialisa-
tion attacks is by using machine learning techniques [34]. This
approach uses traces generated by test suites to learn a model
of correct executions with a symmetric deep neural network.
During a validation phase, traces extracted from a running
application are classified according to the learned model.

Overall, finding unsafe classes that could lead to insecure
deserialisation exploits is one of the main issues when dealing
with this problem. In a typical scenario an insecure deserial-
isation vulnerability is exploited through a chain of objects
deserialised one after another. Such a sequence is typically
referred to as a gadget chain. Some well-known gadget chains
are tracked by the ysoserial [26] project that also provides
tooling to specify custom gadget chains and trigger user-
specified commands by exploiting them. ysoserial has been
used by other tools focusing on preventing deserialisation such
as the Serianalyzer [35] static bytecode analyser.

Gadget Inspector [36] focuses on discovery of existing and
new gadget chains in a Java application by examining gadgets
and deserialisation libraries that exist on the classpath. Gadget
Inspector uses static analysis, whereas filters generated by ds-
prefix are aimed to be deployed at runtime.

B. Synthesis of Regular Expressions from Examples

Synthesising regular expressions from examples is a long-
standing problem. Classic automata-theoretic synthesis tech-
niques represent the input set of examples using an augmented
prefix tree acceptor (APTA) – a tree-shaped deterministic finite
automata (DFA) whose states additionally capture positive or
negative labels of the input strings. The input APTA is then
converted into a DFA by applying a series of transformations
(or merges) that generalise the APTA to unknown examples.
The final (often skipped) step converts the DFA into a regular
expression by applying one of the well-known algorithms [27].
A notable feature of these techniques is that the resulting
regular expression has a soundness guarantee in that it matches
all positive inputs and does not match negative.

One of the earliest APTA techniques is the state merging an
algorithm by Trakhtenbrot and Barzdin [11]. This algorithm
traverses the states of the input APTA (assuming that each
state is labelled) in a breadth-first order and merges compatible
subtrees with matching positive and negative labels. This
algorithm has been further extended by Lang [10] to work
on the sparsely labelled string sets. Regular Positive Negative
Inference (RPNI) [9] is another well-known automata-theoretic
approach that builds a tree-shaped finite automata from the
set of positive examples and iteratively merges the states of
the tree as long as the resulting automaton does not accept

negative examples. EDSM (Evidence-Driven State Merging)
is an APTA-based algorithm developed during the Abbadingo-
1 competition [8]. EDSM generalises the input APTA by
merging most similar subtrees, where the notion of similarity
is given by the scoring function that counts the number
of matching labels. EDSM supports arbitrary merges and
backtracks if a merge results in accepting negative or rejecting
positive examples. Related techniques using backtracking [37]
and extensions to EDSM that explore different properties have
also been proposed [38]. BlueFringe is another state-merging
approach developed during Abbadingo-1. This algorithm per-
forms state merging using the red-blue framework [7] that
preserves tree properties in the merged states.

An alternative way of computing a DFA as a generalisation
of input examples captured by an APTA is by constraint
solving. Such techniques [6], [39]–[41] build a system of
constraints (via as relationships between APTA states) and
use algorithms that differ in complexity to resolve these
constraints. Typically, however, the overhead of constraint
solving is too high for these techniques to be feasible for
synthesis of deserialisation filters. Application of a constraint
solver to address the issue as also been explored [42].

Ds-prefix is related to automata-theoretic techniques in that
it also represents the input set of examples using an APTA.
The key difference, however, is that the ds-prefix synthesises
regular expressions directly, by traversing the APTA and
examining the states rather than via a series of merges followed
by DFA to regular expression conversion.

An orthogonal way of synthesising regular expressions
from examples is through an application of genetic program-
ming [12], [13]. This approach models regular expression
synthesis using an evolutionary search where individuals are
regular expressions, and the fitness function combines Lev-
enshtein distances between detected and the desired strings,
and the length of the regular expression. Another orthogonal
approach is using multiple string alignment (MSA) [30].
Various synthesis approaches drew inspiration from MSA in
bioinformatics, where, given n sequences of characters, the
goal is to find an alignment that produces as few insertions
and deletions as possible. Given an MSA alignment, a regular
expression can be easily derived by converting aligned charac-
ters into anchors, and insertions and deletions into wildcards.

VI. CONCLUSION

In this paper we presented ds-prefix – a novel approach
to synthesise precise and manually auditable deserialisation
allowlists from examples.

The key idea behind ds-prefix is to combine state-of-the-
art synthesis techniques with deserialisation specificities to
produce filters that are well suited to the task at hand. Ds-prefix
is based on the observation that hand-written deserialisation
filters often reason at the level of packages. With that, rather
than considering specific classes, ds-prefix attempts to find a
set of shortest prefixes that describe all positive examples but
none of the negative. This is accomplished by leveraging an
APTA that represents input examples. However, rather then



merging states and converting the resulting DFA into a regular
expression (as is typical with automata theoretic synthesis),
ds-prefix generates the regular expression via APTA traversal.

Ds-prefix leads to fast synthesis of manually auditable
regular expression using a small number of examples. This is
because generated regular expressions combine prefixes, rather
than characters. Experimentation with several popular open-
source components shows that ds-prefix filters can prevent
known exploits and have the potential to prevent future vul-
nerabilities. Consider our experiment with Jackson-databind
(Section IV-B2), where an allowlist synthesised using only 9
negative examples was sufficient to prevent 44 known CVEs.
Finally, the results of experiments with different state-of-the-
art synthesisers show that the presented approach is more
precise and considerably faster then other synthesisers.
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