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Bias Transfer Hypothesis

•Homogenous large language models (LLMs)
undergird many machine learning systems.
•LLMs exhibit social biases (e.g., stereotypes) before

and after fine-tuning.

Do biases internalized by LLMs during pre-training
transfer into harmful behavior after fine-tuning?

Our Findings

• In these tasks, reducing downstream bias via
upstream interventions is mostly futile.
•The fine-tuning dataset plays a larger role than

upstream bias in determining downstream harms.
•But, a pre-trained model learns biases more easily.
•Practitioners should focus on task-specific harms.
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Figure 1: (Upstream Intervention) Even when upstream
bias is mitigated [5] in BIOS, the distribution of down-
stream bias remains mostly the same.
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Figure 2: (Downstream Intervention) Scrubbing toxic
mentions from the fine-tuning dataset reduces downstream
bias only when the model is not pre-trained (yellow).
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Figure 3: (Upstream Intervention) Despite drastic random changes to upstream bias (left), downstream bias (right)
per identity remains roughly stable. RoBERTa [6] learns bias even without pre-training. (Averaged over 10 trials.)
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Figure 4: We regress upstream bias and fine-tuning dataset bias (proxied by co-occurrence rates) on downstream bias,
controlling for template effects. Bars depict standard errors. In BIOS, upstream bias has an even smaller impact.

•••Large 0.1 SD increase in negative sentiment (upstream bias)→ modest 3.7% increase in FPR (downstream bias).
•Modest 10% increase in toxic mentions of an identity term→ even larger 6.3% increase in FPR.

Experiments
For two tasks, we measured upstream and down-
stream bias after several interventions.
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Figure 5: Fine-tuning pipeline, with experimen-
tal interventions (hexagons) to test bias transfer.

Toxicity Classification (WIKI) [2]
Predict 28 occupations from 400k online
bios.

Harm: Stereotyping she/her bios
→ hiring discrimination.
Downstream Bias: True positive ratio
Upstream Bias: Pronoun ranking [4]

Biography Classification (BIOS) [1]
Predict toxicity in 130k posts about 50
identities.

Harm: Blocking innocuous mentions
→ systematic censorship.
Downstream Bias: False positive ratio
Upstream Bias: Negative sentiment [3]
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