
Persistent Memory Transactions

Virendra J. Marathe1 Achin Mishra2 Amee Trivedi3 Yihe Huang4 Faisal Zaghloul5

Sanidhya Kashyap6 Margo Seltzer1,4 Tim Harris1 Steve Byan1 Bill Bridge7 Dave Dice1

1Oracle Labs 2Dell Inc. 3University of Massachusetts, Amherst 4Harvard University
5Yale University 6Georgia Institute of Technology 7Oracle Corporation

Abstract

This paper presents a comprehensive analysis of im-
plementation choices for transaction runtime systems op-
timized for persistent memory. Our work focuses on
performance implications of persist barriers, primitives
required to persist writes on persistent memory. In the pro-
cess we introduce a new taxonomy of persistence domains
(portion of the memory hierarchy where the data is effec-
tively persistent) that has a significant impact on persist
barrier latencies. We present algorithms for undo log-
ging, redo logging, and copy-on-write based transactions,
as well as a memory allocator, all optimized to reduce
persist barriers per transaction. Our microbenchmarking
does a comprehensive sweep of read-write mix ratios in
transactions, showing performance trends of the transac-
tion runtimes under different assumptions about persist
barrier latencies. No single runtime dominates the rest
across the board. However, we pinpoint approximate read-
write ratio ranges where specific runtimes outperform the
rest. Our analysis hightlights the significant influence of
multiple factors on performance – transaction runtime
specific bookkeeping overheads, persist barrier latencies,
and cache locality. We find similar performance trade offs
on three “real world” workloads – a key-value store of
our own, SQLite, and memcached.

1 Introduction
Byte-addressable persistent memory technologies (e.g.
spin-transfer torque MRAM (STT-MRAM) [14, 15], mem-
ristors [32]), that approach the performance of DRAM
(100-1000x faster than state-of-the-art NAND flash) are
coming, as evidenced by Intel and Micron Technologies’
recent announcement of their 3D XPoint persistent mem-
ory technology [1]. While the simple load/store based
interface of these technologies is appealing, it introduces
new challenges; a simple store does not immediately
persist data, because processor state and various layers or
the memory hierarchy (e.g., store buffers, caches) are ex-
pected to remain nonpersistent for the foreseeable future.
Prior research [9, 19, 27] and processor vendors, such
as Intel, have proposed new hardware instructions [16]

void *p; // pointer to persistent memory
...
// obj and clone(obj) are persistent
p = clone(obj);
Figure 1: Example illustrating complexities of programming
with just the hardware instructions for persisting data. p is a
pointer hosted in persistent memory. clone clones its argument
object (obj). The programmer must persist the clone before p’s
assignment, otherwise an untimely failure could result in a state
where the clone is not persisted but p’s new value is persisted.

to flush or write cache lines back to lower layers in the
memory hierarchy and new forms of persist barrier in-
structions that can be used to order persistence of stores.
However, even with these new instructions, correctly writ-
ing programs to use them remains a daunting task. Fig-
ure 1 illustrates this challenge – the programmer must
carefully reason about the order in which updates to vari-
ous pieces of the application’s persistent data structures
are persisted. Omission of even a single flush, write back,
or persist barrier instruction can result in persistent data
inconsistencies in the face of failures.

These programming challenges have resulted in investi-
gations of transactional mechanisms to access and manip-
ulate data on persistent memory [5, 6, 8, 10, 20, 28, 36].
However, we observe that research on transaction run-
time implementations in this new context is in its early
stages. In particular, the combination of a load/store
interface to storage and high overheads of persist barri-
ers is a significant change from the traditional transac-
tion settings of both databases [12] and memory trans-
actions [13]. As such, it has significant implications on
performance trade offs between various implementation
approaches. Most early work has largely ignored this
consideration [5, 6, 8, 28], while some recent efforts are
attempting to explicitly reduce the number of persist bar-
riers in transactions [10, 20, 21, 36]. Our objective is
similar, but we take a more holistic approach:

• We consider the implications of persistence do-
mains [33] on persist barrier overheads (see § 2).
Briefly, a persistence domain is the portion of the
memory hierarchy that is considered to be “effec-
tively persistent” – the underlying hardware/software

1

system ensures that data that reaches its persistence
domain is written to the persistent media before the
system is shut down, either planned or due to failures.
We introduce a new taxonomy of persistence domain
choices enabled by different hardware systems.

• We present a comprehensive investigation of imple-
mentation choices for persistent memory transac-
tions with the focus on how transaction writes are
implemented (see § 4). We present undo logging,
redo logging, and copy-on-write (COW) based trans-
action runtimes. Our runtimes are carefully designed
to reduce the number of persist barriers executed
within a transaction. While we reduce the number
of persist barriers needed for our undo logging im-
plementation by almost 50% relative to prior ap-
proaches, committing transactions in both of our
redo logging and COW implementations requires
only four persist barriers. Our memory management
algorithm (see § 5) is also designed to reduce persist
barriers in a transaction (2 per undo logging transac-
tion, and effectively zero for redo logging and COW
transactions).

• Our microbenchmarking (see § 6) comprehensively
sweeps through read-write mix ratios within trans-
actions and shows how performance trends in the
transaction runtimes change as the read-write mix
within transactions changes for different persist bar-
rier latencies. Our analysis reveals the significant
influence of a combination of factors – transaction
runtime specific bookkeeping overheads, persist bar-
rier latencies, and cache locality – which determines
the performance of a runtime. Because of the in-
terplay of these factors, no single runtime’s perfor-
mance dominates the rest in all settings. We find
similar performance trade offs in three “real world”
workloads: (i) a key-value store we developed from
scratch, (ii) a port of SQLite, and (iii) a port of mem-
cached.

2 Persistence Domain
While data hosted in persistent memory DIMMs is ex-
pected to survive power failures, the rest of the memory hi-
erarchy (e.g. processor caches, memory controller buffers,
etc.) is fundamentally not persistent. However, system
solutions do exist that make various parts of the memory
hierarchy “effectively persistent”. For instance, in bat-
tery backed systems [7, 18, 25, 26], where the processor
state and caches can be flushed out to persistent memory
DIMMs on power failure, the whole memory hierarchy
effectively becomes persistent. Another example is the
asynchronous DRAM refresh (ADR) feature provided by

...

Memory
controller

L1 L1 L1
L2 L2 L2

Memory bus

L3

Core Core Core

Caches

...Other
sockets

...
Node DIMMs

DRAM
DIMMs

NVRAM
DIMMsPDOM-2

PDOM-1
PDOM-0

Figure 2: Persistence domains of a near future processor socket
that hosts persistent memory DIMMs.

Operations Persistence domains
PDOM-0 PDOM-1 PDOM-2

Writes store store store
clwb/clflush-opt clwb/clflush-opt

Ordering
sfence sfence nop

persists
pcommit
sfence

Table 1: Persistent memory writes and primitives needed on
Intel’s upcoming processors [16] for different persistence do-
mains.

modern processors, where the memory controller buffers
are flushed out to memory DIMMs on power failure [17].
With the ADR feature, the memory controller buffers can
be considered effectively persistent since the data is guar-
anteed, discounting ADR hardware failures, to persist.
There may be other ways to slice the memory hierarchy
in persistent and nonpersistent parts; however, we focus
on 3 specific partitioning strategies that we believe will
capture most future system configurations.

We define persistence domain [33] as the portion of
memory hierarchy where data is effectively persistent.
As shown in Figure 2, we classify persistence domains
in three categories: (i) PDOM-0, which contains only
the persistent memory DIMMs. (ii) PDOM-1, which in-
cluded PDOM-0 and memory controller buffers. Modern
processors with ADR capabilities and persistent mem-
ory DIMMs effectively support PDOM-1. (iii) PDOM-2,
which includes the entire memory hierarchy as well as
processor state, such as store buffers, containing persistent
data. Battery backed systems support PDOM-2.

The persistence domain affects the instruction sequence
needed to persist updates. Table 1 depicts the instruc-
tions needed to persist these updates on (near future) Intel
processors with persistent memory [16]. There are two
phases to the persistent update process: (i) The actual
write (i.e., store) and (ii) the persist barrier. PDOM-0
and PDOM-1 require a flush instruction in addition to
the store to move data into the persistence domain. Both
the clwb and clflush-opt trigger asynchronous cache-line

2

sized writes to the memory controller; they differ in that
clflush-opt invalidates the cache line while clwb does not.
In principle, the flush instructions can be delayed, and al-
most certainly should be for multiple store instructions to
the same cache line. In practice, as they are asynchronous,
starting the writeback sooner speeds up the persist barri-
ers in the second phase of this process. In PDOM-2, flush
instructions are not needed, since store buffers and caches
are part of the persistence domain.

In PDOM-0, the persist barrier needs to ensure that all
flushes have completed (the first sfence), and then force
any updates in the memory controller to be written to the
DIMMs (pcommit). As the pcommit is asynchronous,
persistence requires the second sfence to indicate when
the pcommit has completed. In PDOM-1, the persist bar-
rier need only ensure that prior flushes have completed,
since the memory controller now resides inside the per-
sistence domain. PDOM-2 requires no further action as
data is persisted as soon as it has been stored. Intel has re-
cently deprecated the pcommit instruction [17]. However,
we include it in our discussion as a concrete example of a
PDOM-0 persistence domain. Note that clwb, clflush-opt,
and pcommit have store semantics in terms of memory
ordering, and applications must take care to avoid prob-
lematic reordering of loads with these instructions, using
sfence or other instructions with fence semantics.

3 Programming Model
Our programming model is based on the abstractions of
persistent regions, persistent data types, and transactions,
similarly to prior works [5, 6, 8, 36].
Persistent regions. We assume that a file system hosts
all persistent data accessible to applications [29, 35,
37]. Applications access persistent data directly via
a persistent-region abstraction, using the mmap inter-
face [33]. Each region has its own heap and a user instan-
tiated root pointer. Transactions do not span regions, but
can access nonpersistent objects residing outside a region.

Our persistent heap provides pm_alloc and pm_free
functions to allocate and deallocate memory from the
persistent region. To avoid memory leaks due to program
crashes and other failures, these functions can be used
only within transactions.
Transactions and accessors. Various semantic models
for persistent memory transactions have been explored in
prior work: full ACID transactions in the spirit of transac-
tional memory [8, 36], failure-atomic critical sections [6],
and failure-atomic transactions [5, 10, 20, 28]. Our work
focuses on programming models for skilled system soft-
ware developers who are adept to manage concurrency
control on their own and require just failure atomicity
of updates to persistent memory. As a result, we focus

struct foo {
int cnt;

};
// pm_foo, the persistent version of type foo
DEFINE_PM_TYPE(foo);
// x points to an instance of pm_foo
pm_foo *x;
// failure-atomic transaction for x->cnt++;
pm_txn_t txn;
do {

TXN_BEGIN(txn);
int counter; // temporary
TXN_READ(txn, x, cnt, &counter);
counter++;
TXN_WRITE(txn, x, cnt, &counter);
status = TXN_COMMIT(txn);

} while (status != TXN_COMMITTED);

Figure 3: Example of a simple transaction that increments a
counter in a persistent object.
on failure-atomic transactions that guarantee atomicity of
writes to persistent memory, i.e., “all-or-nothing” seman-
tics across failure boundaries, relegating isolation to ap-
plications. Failure-atomic transactions allow us to ensure
consistency of persistent data, while allowing applications
to leverage semantic information in their synchronization
approach. In the example from Figure 1, the assignment
statement can be delineated by a transaction to guarantee
failure atomicity. If isolation is needed, the application
might enclose the transaction or its enclosing context in a
critical section.

Similar to prior work [5, 6, 8, 20, 36], we advocate
the use of language-level constructs for transactions in
the form of lexically scoped failure-atomic blocks. How-
ever, for prototyping purposes, we have implemented a
library-based interface to our failure-atomic durable trans-
actions. Our library contains APIs for accessing complex
data structures, and beginning and ending transactions.
Figure 3 illustrates the use of the API. Using this API, we
have implemented various forms of transactional reads
and writes (e.g., for individual fields, pointers, arbitrary
sized buffers, etc.) as well as common memory buffer
operators, e.g., memcpy, memcmp, and memset.

In the example, we create a persistent version of a type
using DEFINE_PM_TYPE. This creates an opaque per-
sistent data type that encloses an argument type instance.

We support nested transactions with flat-nesting
semantics. Successful completion of a transaction
(TXN_COMMIT returns TXN_COMMITTED status)
ensures that all updates made by the transaction to per-
sistent memory have been persisted. If a failure occurs
before the transaction commits, the transaction’s effects
are rolled back during recovery. We consider only the
fail-stop failure model in our work. A transaction can

3

voluntarily roll back via the TXN_ABORT call. The
programmer will explicitly manage the control flow in all
cases (i.e., there is no automatic restart of the transaction
after abort).

PM_UNWRAP returns a reference to the type instance
wrapped within a persistent type instance. Programmers
can directly access the “unwrapped” object’s fields us-
ing loads/stores. This avoids unnecessary transactional
instrumentation overheads (e.g., when initializing a newly
allocated object). The pm_foo instance from Figure 3 is
unwrapped as follows:
foo *direct_x = PM_UNWRAP(x);
// no transactional instrumentation
direct_x->cnt = 0;
// write back and persist the update
pm_async_wb_loc(&direct_x->cnt,

sizeof(direct_x->cnt));
pm_persist_barrier();

Modifying the unwrapped object makes the programmer
responsible for writing and persisting affected cache lines,
using the primitives we provide.

Concurrency control. While our failure-atomic trans-
actions do not ensure isolation, we recognize that occa-
sionally these transactions may invoke critical sections
that modify persistent objects. This can lead to scenarios
where a transaction executes a critical section, modify-
ing persistent objects, while the prior transaction that
executed the same critical section, modifying the same
persistent objects, has still not completed. The prior trans-
action’s uncommitted writes may end up racing with the
new transaction’s reads/writes of these persistent objects.
To aid isolation for such circumstances, we provide the
facility of a deferred lock release, where the lock ac-
quired for a critical section’s execution is released when
the enclosing durable block completes its execution. Fur-
thermore, we also provide a hook for deferred operations,
where the operation is executed at the end of the enclos-
ing transaction (e.g. entire critical sections). Any issues
related to deadlocks while using deferred operations are
to be programmatically addressed by the programmer.

4 Implementing Persistent Transactions
We have developed three different transaction runtime sys-
tems: (i) undo logging, (ii) redo logging, and (iii) copy-on-
write (COW). All the runtimes store transaction metadata
in a persistent data structure called the transaction descrip-
tor, which is assigned to a thread as part of TXN_BEGIN.
A descriptor is always in one of four states: IDLE, RUN-
NING, ABORTED, or COMMITTED. A descriptor that is
not in use is in the IDLE state. TXN_BEGIN transitions
the descriptor into the RUNNING state. A transaction
commits by entering the COMMITTED state and aborts

Figure 4: Transaction write implementations. Transaction T
applies N distinct writes. pbarrier is a potentially high latency
persist barrier, async wb/flush are asynchronous cache line
write-back or flush instructions respectively.

by entering the ABORTED state. After the runtime cleans
up a descriptor’s internal state and buffers, the descriptor
returns to the IDLE state. During its execution, a transac-
tion may read, write, allocate, and deallocate persistent
objects using our API.

4.1 Undo Log based Transactions
Figure 4(a) shows transaction T ’s undo logging activities.
The undo log is implemented as a simple chunked list.
Transaction T writes w, using TXN_WRITE producing
a log record containing the original value of w. This
log record must be persisted before w is modified. A
typical implementation of the undo log append requires
two persist barriers – one to persist the new log record
and one to change the log’s tail pointer. Although correct,
this approach leads to 2N persist barriers for N appends,
which results in high overheads.

Our implementation requires only a single persist bar-
rier per record. Instead of relying on a correct tail pointer
during recovery, we infer the tail of the log. We assign
each transaction a monotonically increasing persistent
64-bit version number. Each undo record contains a trans-
action version number, a 64-bit checksum, and a 64-bit
prolog sentinel value that appears at the beginning of the
undo record. So, we write the prolog sentinel value, the
transaction’s version number, the record contents, and
then compute and write the checksum. Then we issue a
single persist barrier. If a failure occurs before or dur-
ing execution of the persist barrier, and only part of the
undo record has been persisted, we will detect a check-
sum mismatch during recovery. We also maintain the log
tail pointer, but update it after the persist barrier, so the
tail update is guaranteed to persist on or before the next
record write and persist. Recovery can rely on the follow-
ing invariant: the tail pointer will be at most one record
behind the actual end of log. So log recovery requires

4

only that we examine the record after the current end of
log and determine if there is a valid log record present.

One of the most compelling benefits of undo logging
is that transactional reads are implemented as uninstru-
mented loads [8, 5, 20, 28, 36].

An undo log transaction commits in four steps: (i) First
it ensures that all transactional writes are persisted, which
requires one persist barrier. (ii) Then it logically commits
the transaction by appending the commit record to the
transaction’s undo log. (It also switches the transaction’s
state to COMMITTED, but that does not have to persist.)
Steps (iii) and (iv) are largely related to transactional meta-
data cleanup, which requires persistence only if the trans-
action allocated or deallocated persistent memory (see
§ 5). (iii) Persist the allocation/deallocation calls’ effects
and cleans up the transaction’s metadata. (iv) Mark the
transaction IDLE; this state change needs to be persisted
only if the transaction did allocations/deallocations.

4.2 Redo Log based Transactions
Figure 4(b) shows transaction T ’s redo logging activi-
ties. Like the undo log, the redo log is implemented as
a simple chunked list. Transaction T writes w, using
TXN_WRITE producing a log record containing the
new value of w. The record need not persist at the time
of the write; if a failure occurs, the entire redo log can
be discarded. However, an implementation, like ours,
may proactively schedule a low latency asynchronous
writeback/flush of the record.

The challenge for redo logging schemes is handling
read-after-write accesses. As the new value appears only
in the log, a subsequent read must consult the log for the
latest value. A naive implementation could walk down
the whole log looking for the latest value. Furthermore,
the redo log lookup could be done for every subsequent
read done by the transaction. The resulting overhead can
be significant. We apply two optimizations to overcome
these overheads.

First, we add a 64-bit bitmap to each persistent object’s
header to indicate current writers of that object. A writer
first sets its corresponding bit during the write (the bit is
cleared after the transaction completes). A read checks the
object’s writers bitmap to determine if a redo log lookup is
necessary, and does on if so. If a lookup is not necessary,
the read becomes an uninstrumented load. Each transac-
tion maps to a unique bit in the object’s writers bitmap.
Up to 64 transactions can concurrently “own” a bit in
the writers bitmap. This can be easily extended to larger
bitmaps, but at present we force additional transactions to
consult the redo log for all their reads.

Second, we avoid scanning the entire log by main-
taining a per-transaction hash table indexed by persistent

object base addresses. The hash table record points to the
latest redo log record for that object. Each such record
also contains a pointer to the previous redo log record for
that object, if one exists. We effectively superimpose a
linked stack of records for each object within the redo log.
This avoids unnecessary traversal of unrelated log records
during a redo log lookup.

Committing a transaction requires persisting the redo
log. After the persist completes, the transaction logically
commits by updating its state to COMMITTED, and then
persists the new state with a second persist barrier. Af-
ter the logical commit, the runtime applies the redo log
to each modified object and issues a third persist barrier.
Finally, we mark the transaction IDLE, and persist it. In to-
tal, the redo logging implementation requires four persist
barriers for commit, but none on abort.

4.3 Copy-on-Write based Transactions
Our copy-on-write (COW) implementation introduces
an extra level of indirection between a persistent type
instance (the wrapper) and the real data type instance
(payload) it encloses. As shown in Figure 4(c), the per-
sistent type contains pointers to old and new versions of
the enclosed type’s instances. Before modifying an ob-
ject, a transaction creates a new copy of the payload. We
provide a special TXN_OPEN API that applications can
use to obtain read-only or read-write access to a persistent
object:

TXN_OPEN(txn, obj, mode, copy_ctor);
where mode is either read-only or read-write, and
copy_ctor is the copy constructor. The copy construc-
tor can be used to clone specialized objects (e.g. linked
structures, self-relative pointers, etc.). A NULL copy
constructor will default to using memcpy.

Each transaction descriptor maintains a write set con-
taining the list of objects the transaction has written. Ob-
jects are added to the write set in TXN_OPEN invoca-
tions with read-write mode. Object wrappers also contain
the writing transaction’s ID (assuming at most one writer
per persistent object), which is used to direct transactional
reads to the appropriate payload copy.

Payload copies, as well as writes to their wrappers,
need not be persisted during the writer’s transaction. The
transaction’s write set and the objects it writes to are
persisted using a single persist barrier at the beginning
of the commit operation. Then, the runtime updates the
transaction’s state to COMMITTED and persists it.

The post-commit cleanup requires four steps: (i) make
the modified (new) object payload the real (old) payload,
(ii) reset new to NULL, (iii) discard (deallocate) the old
payload, and (iv) clear the writer’s ID from the wrapper.
This process is susceptible to memory leaks: a failure

5

between steps (i) and (iii) can result in the reference to the
old payload being lost. We avoid this leak by adding an-
other field in the wrapper, called old_backup, that is set
to point to the old payload in TXN_OPEN. This update
is persisted during the first persist barrier in the commit
operation. old_backup is used to deallocate the old pay-
load. Next, the transaction’s allocations/deallocations are
all persisted. The third persist barrier is issued after all
this cleanup. Then, the transaction updates its state to
IDLE and persists it using a fourth persist barrier. This
ensures that no further cleanup is needed. Finally, we
clear the transaction’s ID from all the objects to which it
wrote. If a transaction aborts, only the last two clean up
related persist barriers are needed for correct rollback.

5 Persistent Memory Management
Memory management is a foundational tier in any soft-
ware stack. We anticipate that applications using trans-
actions to access persistent data will routinely allocate
and deallocate persistent objects within these transactions.
Most previous work on persistent memory management
focuses either on wear-leveling [24] or techniques for
correct allocation that tolerates failures [5, 8, 29], dis-
regarding the overhead due to persist barriers. Volos et
al. [36] present an algorithm that effectively eliminates
persist barriers for memory allocation/deallocation calls
within a transaction. But that works only in their redo
logging transactions. Our algorithm is similar in nature,
but works with all of our transaction runtimes.

We build our algorithm on previous approaches that
separate the allocator’s metadata in persistent and nonper-
sistent halves [29, 36]. Our allocator is modeled after the
Hoard allocator [4], where the heap is divided in shared
and thread-private superblocks. Each superblock, hosted
in persistent memory, contains a persistent bitmap indi-
cating allocation status of corresponding blocks, and non-
persistent metadata (free and used lists) hosted in DRAM.
A superblock is protected by a nonpersistent lock.

Each transaction maintains a persistent private alloca-
tion log that consists of all the allocation/deallocation
requests made by the transaction. In a pm_alloc call, the
nonpersistent metadata of the superblock is updated by
the transaction and a corresponding record is appended
to its allocation log. pm_free simply appends an entry to
the allocation log.

The first persist barrier in a transaction’s commit oper-
ation persists the allocation log as well. Once the trans-
action persists its COMMITTED state, operations in the
allocation log are reflected in the persistent metadata (bits
are flipped using compare-and-swap instructions to avoid
data races, and then the cache lines are written back or
flushed). The post-commit cleanup phase’s first persist

barrier persists these flipped bits, and the last persist bar-
rier marks the transaction as IDLE. Note that pm_free
calls’ nonpersistent heap metadata (free and used lists of
a superblock) is updated after the cleanup persists.

6 Empirical Evaluation
Our performance evaluation comprises two parts: (i) mi-
crobenchmarking, where we sweep through a compre-
hensive range of read/write mixes within transactions
to identify performance patterns of the transaction run-
times over changing read/write proportions under varied
assumptions about persist barrier latencies; and (ii) evalu-
ation of three “real-world” applications – a new persistent
key-value store we developed, a port of SQLite [31] that
uses our transactions to persist the database, and a per-
sistent version of memcached [22] – that confirms our
findings reported in the micrbenchmarking part.

We conducted all our experiments on Intel’s Software
Emulation Platform [29, 38]. This emulator hosts a dual
socket 16-core processor, with 512GB of DRAM. 384GB
of that DRAM is configured as “persistent memory” and
128GB acts as regular memory. Persistent memory is
accessible to applications via mmapping files hosted in
the PMFS instance [29] installed in the emulator.

The emulator emulates the clflush-opt and pcommit
instructions. The clflush-opt is implemented using the
clflush instruction. Since clflush-opt evicts the target
cache line, we expect it to lead to significant increase in
cache miss rates, thereby degrading application perfor-
mance. We therefore focus our evaluation largely on the
clwb instruction, which does not evict the target cache
line, and is likely to be the instruction of choice for ap-
plications on Intel platforms. We emulate clwb behavior
with a nop; the actual latency of persisting the data is
incurred by the subsequent persist barrier, which we emu-
late by using the emulator’s pcommit instruction. We note
that Intel recently announced deprecation of the pcommit
instruction [17] from future Intel processors; the persist
barrier in that case is simply an sfence instruction (see Ta-
ble 1). However, in the emulator, the pcommit instruction
simply stalls the calling thread for a configurable amount
of time [29, 38], which lets us experiment with different
latencies of the real persist barrier – it will be difficult
to know the real latency of a persist barrier until real
hardware becomes available, so any evaluation needs to
target a broad range of latencies, which we do in our
experiments. Latency of loads from persistent memory
is a configurable parameter as well. store latency in the
emulator is the same as DRAM store latency.

We conducted experiments over a wide range of latency
parameters for persist barriers (0 – 1000 nanoseconds)
and loads (100 – 500 nanoseconds). We report results for

6

a load latency of 300 nanoseconds, and 3 different persist
barrier latencies – 0, 100 and 500 nanoseconds, labeled
as PDOM-2, PDOM-1, and PDOM-0 respectively to map
them to the different persistence domains from our taxon-
omy. These latencies represent the overall performance
trends we observed over the broader range of latencies.

6.1 Transaction Latency
Our latency microbenchmarking focuses on understand-
ing performance of the transaction runtimes under differ-
ent read/write loads. The synthetic Array microbench-
mark developed by the SoftWrAP work [10] suffices this
purpose. Array contains a 2-dimensional array of 64-bit
integers hosted in persistent memory. The first dimension
contains 10 million slots (each is an array of integers);
the second dimension’s (slot’s) size is configurable, we
vary it from 1 (8 bytes) to 64 (512 bytes) entries. Array
continuously runs transactions, each of which randomly
accesses a contiguous set of 20 slots. The slot sizes cover
a broad range of access granularities. Each slot access
can be a simple read of all the integers in a slot, or a
read-write that increments all integers in the slot. We vary
the number of slots accessed in read-only or read-write
mode for different test runs. In addition, we implemented
two versions of slot writes: (i) a “one shot” update ver-
sion, called Array, where the transaction copies the slot
integers in a private (nonpersistent) buffer, increments
the integers in that buffer and then writes it back to the
persistent slot; and (ii) a “read-after-write intensive” ver-
sion, called Array-RAW, where each integer in the slot is
individually incremented “in-place”. The second version
helps us understand overheads related to read-after-write
accesses in the redo logging transaction runtime. We
report results as the mean of three 10-second test runs
preceded by a 10-second warmup phase (we observed less
than 5% deviation from the mean in all results). Array
microbenchmark is single threaded and is sufficient for
latency measurements.

Figure 5 shows latency results of our experiments for
slot sizes of 4 and 64 (they capture the performance pat-
terns of the configurations with other slot sizes we tested),
and over the three different persist barrier latencies dis-
cussed above. Latency graphs for Array appear in Fig-
ure 5(a)–(f). The first takeaway of these is that COW
performs worst across the board. In fact the margin grows
from 2X to 50X compared to the best performing alterna-
tive when we move from 4-integer slots to 64-integer slots.
The overheads of COW are largely related to worse cache
locality (proportionally high cache miss rates) compared
to the undo and redo logging alternatives – (i) the extra
level of indirection, and (ii) the constant cloning of ob-
jects as they are updated. This gets worse with increasing

granularity of objects.
As expected, undo logging performance degrades with

increasing persist barrier latencies. This impact is most
noticeable for PDOM-0, where the persist barrier over-
heads are high – the barrier overhead in undo logging
tends to increase the latency gap (up to 2X) with redo log-
ging as the percentage of writes per transaction increases
(Figure 5(a),(d)). The same behavior manifests in PDOM-
1 configurations (Figure 5(b),(e)), albeit at a lower scale
(up to 20% higher latency than redo logging), since the
persist barrier latencies are lower.

For PDOM-2 however, the persist barrier is a nop. This
shows inFigure 5(c), where the slot size is 4. Undo log-
ging either performs as well, or better than redo logging.
On further observation, we realized that redo logging ac-
tually performs increasingly worse than undo logging as
the write percentage grows (up to 25% worse at 100%
writes). Furthermore, at 0% writes, redo and undo log-
ging are comparable in performance. This implies that the
source of overheads is in the writes done by redo logging
transactions. We determined that the operations related
to maintaining the lookup structure for accelerating read-
after-write lookups was the source of these overheads.
Figure 5(f) presents a contrasting result, where, inspite
of zero persist barrier latency, undo logging performs
increasingly worse than redo logging as the write per-
centage per transaction grows. We determined that the
overheads in undo logging were related to the checksum
computations we needed to avoid an extra persist barrier
per undo log append. Eliminating the checksum brought
undo and redo logging performance at parity in these
test runs. This indicates an interesting trade off in per-
formance of undo logging implementations, where it is
best to use checksums for transactions that do fine grain
writes, whereas it may be best to use 2 persist barriers
per undo log append for transactions that make coarse
grained updates.

Notice that for read-only test runs (leftmost points in
these graphs), redo logging is either at parity with undo
logging, or slightly better (Figure 5 (a)). Our persistent
object header checks to detect read-after-write scenarios
appear to have no effect on redo logs performace. In the
absence of real read-after-write scenarios, all the overhead
in redo logging appears to be related to writes that do the
bookkeeping needed for fast read-after-write lookups.

Figure 5(g)–(l) show performance of the transaction
runtimes on Array-RAW as the percentage of read-after-
write instances increases. While the performance of COW
transactions remains more or less identical to their perfor-
mance on Array, both redo and undo logging transactions
perform relatively worse. This is directly attributable

7

2k

4k

8k

16k

32k

0 20 40 60 80 100

2k

4k

8k

16k

32k

0 20 40 60 80 100

2k

4k

8k

16k

32k

0 20 40 60 80 100

4k
8k

16k
32k
64k

128k
256k
512k

1024k

0 20 40 60 80 100
4k
8k

16k
32k
64k

128k
256k
512k

1024k

0 20 40 60 80 100
4k
8k

16k
32k
64k

128k
256k
512k

1024k

0 20 40 60 80 100

2k
4k
8k

16k
32k
64k

128k

0 20 40 60 80 100
2k

4k

8k

16k

32k

64k

0 20 40 60 80 100
2k

4k

8k

16k

32k

64k

0 20 40 60 80 100

32k
64k

128k
256k
512k

1024k
2048k

0 20 40 60 80 100
32k
64k

128k
256k
512k

1024k

0 20 40 60 80 100
32k
64k

128k
256k
512k

1024k

0 20 40 60 80 100

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(a) Array Slot Size (4), PDOM-0

COW

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(b) Array Slot Size (4), PDOM-1

Undo

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(c) Array Slot Size (4), PDOM-2

Redo

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(d) Array Slot Size (64), PDOM-0

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(e) Array Slot Size (64), PDOM-1

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(f) Array Slot Size (64), PDOM-2

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(g) Array (RAW) Slot Size (4), PDOM-0

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(h) Array (RAW) Slot Size (4), PDOM-1

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(i) Array (RAW) Slot Size (4), PDOM-2

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(j) Array (RAW) Slot Size (64), PDOM-0

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(k) Array (RAW) Slot Size (64), PDOM-1

A
vg

.L
at

en
cy

(n
se

cs
)

Write Percentage

(l) Array (RAW) Slot Size (64), PDOM-2

Figure 5: Average latency of transactions with increasing write percentage. Y-axes are in log scale. Each transaction accesses 20
slots. X-axes start with read-only access runs; we progressively increase read-write accesses as we move right.
to the proportional amount of churn happening on the
redo/undo logs (one log record per integer increment).
For PDOM-0 test runs, the high persist barrier latency
combined with amplified number of persist barriers (4X
or 64X) in undo logging, leads to worst performance
(even in comparison with COW transactions) beyond a
modest percentage of writes. Redo logging, on the other
hand, incurs overheads related to read-after-write lookups
(through the transaction’s lookup table and per-object
update lists), which are more modest than the persist bar-
rier overheads, but are nonethelees high enough to force
redo logging perform as badly as COW transactions for a
modest percentage of writes. At PDOM-1 persist barrier
latencies however, these lookups turn out to be relatively
more expensive, because of which undo logging performs
comparably or better than redo logging. This difference
increases furthermore for PDOM-2 where the persist bar-
rier is a nop. These results affirm the overall intuition
of read-after-write lookup overheads in redo logging in

0k

2k

4k

6k

8k

10k

12k

14k

16k

PDOM-0 PDOM-1 PDOM-2

Tr
an

sa
ct

io
n

la
te

nc
y

(n
se

c)

Eager persist / alloc-1
Lazy persist / alloc-1

Eager persist / alloc-2
Lazy persist / alloc-2

Eager persist / alloc-4
Lazy persist / alloc-4

Figure 6: Latency per transaction that simply allocates the said
number of blocks (Alloc-X), each of a random size from 1 to
512 bytes.

prior work [5, 6, 8, 28]. The critical question of how of-
ten do such instances arise in real world applications is
something we address later in our evaluation.

6.2 Memory allocation performance.
Figure 6 shows memory allocation latency, comparing
the Eager Persist approach that uses persist barriers
per allocation/deallocation call, to our Lazy Persist ap-
proach that avoids persist barriers altogether during al-

8

location/deallocation calls. There is no performance dif-
ference in PDOM-2, because the persist barrier is a nop.
However, for PDOM-1, the optimization produces a 20–
30% latency improvement. In PDOM-0, the improvement
grows to 30–100%, because the persist barrier latency is
much higher.

6.3 Persistent Key-Value Store
We implemented a persistent key-value (K-V) store from
scratch using our transactional interface. The implementa-
tion served as a vehicle to test the programmability limits
of our transaction runtimes. Our K-V store’s central data
structure is a concurrent, closed addressed, hash table
that uses chaining to resolve hash collisions. The K-V
store supports string-type keys and values, and provides
a simple get/put interface. Clients connect to the K-V
store via UNIX domain socket connections. The K-V
store spawns a thread for each connected client (we plan
to extend our implementation to let server threads handle
multiple clients concurrently).

We started from an implementation that makes use
of our transactional API to perform all persistent data
accesses. We introduced persistent types for all the per-
sistent data structures. This introduces “wrapper” objects
for all the persistent objects hosted in our K-V store. The
wrapper objects introduce a level of indirection and hence
overhead. We also implemented a hand-optimized ver-
sion of the K-V store that avoids use of persistent wrapper
types altogether. Our optimized version also aggressively
bypasses the transactional accessors wherever possible –
e.g. for read accesses, we can bypass the TXN_READ ac-
cessors and fetch the data directly from the target address
in cases where the transaction has not yet written to the
address. These optimizations can be trivially supported
with the undo and redo log runtimes. COW, however,
appears to have a fundamental limitation – it relies on
the persistent wrappers to perform the copy-on-write. As
a result, it is not possible to build such a version of our
K-V store using COW transactions. This is a significant
limitation of the COW transaction interface.

Figure 7 shows performance of our various K-V store
versions for client (hence worker) thread count ranging
from 1 to 8. All client threads are bound to 1 proces-
sor socket of the emulator, while the worker threads are
bound to the other socket. Due to space restrictions, we
report just the PDOM-2 numbers. COW experiences
cache locality overheads and performs worse than redo
and undo logging, which perform comparably. We ob-
served 12% and 14% consecutive drops in performance
for both redo and undo logging when we ran the same
experiments with PDOM-1 and PDOM-0 configurations.
COW also experiences similar performance drops. Our

0k

200k

400k

600k

800k

1000k

1200k

2 4 6 8
0k

200k

400k

600k

800k

1000k

1200k

2 4 6 8

O
pe

ra
tio

ns
/s

ec

cores

(a) Throughput - 90% reads

DRAM
Redo-opt

Redo

cores

(b) Throughput - 50% reads

Undo-opt
Undo
COW

Figure 7: Persistent K-V store throughput. Suffixes “-opt” de-
note optimized versions. Performance is measured assuming
PDOM-2. Each utilized core serves one connected client, who
issues 1 million operations according to the specified read-write
ratio. The keys are randomly drawn from a space of 238,328
keys, and the K-V store is pre-populated by 1 million random
puts. Averages of 3 consecutive runs are reported. We omit
error bars because of low variabilities in these benchmarks.
optimizations of bypassing accessors, persistent wrappers,
and locality-friendly data placement deliver performance
improvements of as much as 27% under read-dominated
workloads. This difference comes down to 8% for redo
logging and 2% for undo logging under the 50% reads
workload.

Overall, we observe negligible difference between redo
and undo logging versions (both base and optimized ver-
sions). The common case hash table accesses (gets and
puts) are extremely short transactions, accessing a few
cache lines, and updating even fewer (1–2) cache lines
transactionally (e.g. linking or unlinking a node from a
hash table bucket). Additionally, they do not contain any
read-after-write accesses. Furthermore, the workers re-
ceive requests from clients over a TCP connection, which
itself dominates the latency of client operations. This
represents a possibly significant class of real world work-
loads, where differences in these lower level abstraction
implementations may not matter to overall performance
of the application.

6.4 SQLite
SQLite [31] is a popular light-weight relational database.
It hosts the entire database in a single file, with another
file for logging (rollback or write-ahead log) that is used
to ensure ACID semantics for its transactions. SQLite can
also be configured to an “in-memory” mode where the
storage tier is completely removed. The database does not
provide durability guarantees in that configuration. We
have extended this configuration to use our transactional
API for persistence.

SQLite stages all changes to the database at a page
granularity in a page cache, and writes them out to
the database file at the commit phase. For in-memory
databases, the page cache is still populated, but it does
not get persisted during the commit. We built a persistent

9

0

400

800

1200

1600

2000

2400

Stock PDOM-0 PDOM-1 PDOM-2

#
tr

an
sa

ct
io

ns
/s

ec
In-memory

Rollback
WAL
Undo

Redo

Figure 8: TPC-C, as implemented by PyTpcc [34], results on
SQLite. For each persistence domain, we present both undo and
redo logging performance. In-memory databases and stock
databases – default unmodified SQLite with files hosted in
PMFS – are presented for comparison. In our transactional
version, all transactions are write-only (no reads).
version of in-memory SQLite by creating a “region file”
based on our persistent region abstraction that is writ-
ten to, and persisted, during the commit phase using our
transactional API. The dirty list is essentially applied in a
single transaction, thus making the transaction’s effects
durable in a failure atomic way. Our transaction effec-
tively plays the role of rollback or write-ahead logs in the
stock SQLite configuration.

Since the region file is a single large object, COW trans-
actions would entail prohibitively high overheads, which
is why we did not implement SQLite with COW transac-
tions. We however tested our SQLite port with both undo
and redo log transactions, and compared them with the
in-memory configuration, and default SQLite databases
whose files – both the database file, and journal file –
were hosted in PMFS (we tested memory-mapped files,
which is a feature supported by SQLite, but the results
were identical to the default SQLite configurations). Our
modifications and tests were carried out on SQLite 3.13.0.

On all mentioned configurations, we ran the TPC-
C [34] benchmark, as implemented by PyTpcc [34]. Fig-
ure 8 shows the results. For each configuration, we took
the average of 3 runs. As expected, the in-memory ver-
sion has highest throughput All our redo logging transac-
tions have comparable throughput, just 10% under the in-
memory version. Undo logging transactions in PDOM-1
and PDOM-2 configurations have 2-3% lower throughput
than the redo logging ones; all this overhead is attributable
to the checksum overhead incurred for the page-granular
transaction writes. Furthermore, the PDOM-0 throughput
of undo logging is 3% lower than the throughput of undo
logging transactions in PDOM-1 and PDOM-2; this is
where the 500 nanosecond persist barrier latency shows
up. This performance nicely tracks the performance we
observed in the Array microbenchmark with slot size of
64. We expect such performance pattern to emerge in
applications that do lots of coarse grain writes. The un-
modified SQLite with a rollback journal on PMFS are

about 36% to 50% slower than the in-memory database.

6.5 Memcached
We have used our transactional API to “persistify” mem-
cached [22], a widely used, high performance, in-memory
key-value store. The motivation for building a persis-
tent version of memcached is to accelerate the shutdown-
restart-warmup cycle, which can take several hours [11]
in some instances because memcached is a nonpersistent
key-value store, hosted in DRAM. A persistent mem-
cached can significantly accelerate the warmup time.
However, the cache’s state must be correctly persisti-
fied across failure events such as power failures, kernel
crashes, etc. To that end, we have ported memcached to
our transactional API.

We originally started the effort with the goal to simply
port memcached’s central data structure, a concurrent,
growable, closed addressed hash table. However, we
quickly realized that we would need to modified other
parts of memcached (LRU cache management, slab al-
locator, lazy memory reclamation, etc.) to persist mem-
cached’s entire internal state for warm restart. As a result,
this simple effort evolved into a major port of memcached
to our transactional API. Transactions ended up encom-
passing fairly complex code paths that led to some in-
teresting scenarios such as: tiny critical sections within
transactions (supported using deferred operations and lock
releases), semantically nonpersistent data located within
persistent data objects (supported using persistent genera-
tion numbers), memory leaks caused by failures because
memcached tracks nonpersistent references to key-value
pairs, which are now persistent, using reference counts
(addressed by persistently tracking key-value pairs, with
non-zero reference counts, that are removed from the hash
table), etc.

Additionally, the COW transaction runtime system re-
lies on our optimized allocator, and does not work with
memcached’s slab allocator. Furthermore, each key-value
pair contains various fields protected by different locks
so as to allow multiple threads to concurrently modify
those fields. Our COW implementation allows only one
writer at any given time. All these considerations lead
us to a significantly different data layout, so we decided
not to develop a COW based implementation of persistent
memcached. We report results for our undo and redo
logging implementations.

To evaluate memcached we ran the mutilate work-
load [3] fixing the number of client threads to 8. We
varied the number of memcached worker threads from 1
to 8. Figure 9 shows our persistent memcached’s perfor-
mance with 90/10% and 50/50% get/put ratios. First, note
that, for all thread counts, at 10% puts, the best perform-

10

0k

50k

100k

150k

200k

250k

2 4 6 8
0k

20k

40k

60k

80k

2 4 6 8
0

50

100

150

200

250

Und
o/P

0

Red
o/P

0

Und
o/P

1

Red
o/P

1

Und
o/P

2

Red
o/P

2
0

100

200

300

400

500

Und
o/P

0

Red
o/P

0

Und
o/P

1

Red
o/P

1

Und
o/P

2

Red
o/P

2

O
pe

ra
tio

ns
/s

ec

cores

(a) Throughput - 90% reads

Undo/PDOM-0
Redo/PDOM-0
Undo/PDOM-1

cores

(b) Throughput - 50% reads

Redo/PDOM-1
Undo/PDOM-2
Redo/PDOM-2 Tr

an
sa

ct
io

ns
la

te
nc

y
(u

se
c)

(c) Get / Put latency - 90% reads

Get
Put

(d) Get / Put latency - 50% reads

Figure 9: memcached scalability and latency results with 90/10% and 50/50% get/put ratios. Latency bar charts are for the 8 thread
runs. (P0 = PDOM-0, P1 = PDOM-1, P2 = PDOM-2.)

ing runtime Undo/PDOM-0 has about 10–30% lower
throughput than the original memcached, whereas the
same runtime has about 45–60% lower throughput than
the original memcached for 50% puts. This largely high-
lights the instrumentation and bookkeeping overheads
of our transaction runtimes for transactional reads and
writes.

Similar to our microbenchmark results, undo logging
performance is better than redo logging for PDOM-2
since persist barriers are nops, and redo logging does
appear to incur extra overheads for read related lookups
in the redo log. However, redo logging catches up with
undo logging on the read dominated, 10% put, test for
PDOM-1, while slightly outperforming undo logging in
the 50% put test. PDOM-0 results are more interesting.
While they perform comparably at low thread counts for
the read-dominated test, undo logging does not scale as
well as redo logging. The explanation appears in the cor-
responding latency bar chart in Figure 9(c), where we
clearly see the latency of put operations go up signifi-
cantly for undo logging (over 200 microseconds). Our
transactions end up inflating some of the critical sections
of memcached. The higher latency of puts leads to greater
lock hold intervals, which in turn hinders scalability. In
particular, the lock that experiences contention is the slab
allocator lock that protects the entire memcached heap.
Every put allocates one key-value pair, and may deal-
locate an older key-value pair that is removed from the
hash table (the key-value pair updates are done using the
copy-on-write idiom). Once the slab allocator lock is ac-
quired it needs to be released at the end of the enclosing
transaction. Since puts are so slow with undo logging,
the lock hold times are much greater, leading to higher
lock contention and lower scalability. With 50% puts, for
PDOM-0, the higher write latency (see Figure 9(d)) leads
to significant slowdown in undo logging transactions at
all thread counts.

7 Related Work
While most early work on persistent memory transaction
runtimes ignores persist barrier overheads [5, 6, 8, 28], a
growing number of efforts [10, 20, 21, 36] is addressing
the problem in different ways.

Volos et al. [36] implement redo logging transactions in
their Mnemosyne runtime. Giles et al. [10] go further with
a “lazy” cleanup proposal that moves redo log application
and cleanup to a background thread. They additionally
add a DRAM-based aliasing mechanism to permit fast
access to the committed data resident in redo logs. Our
evaluation in ?? suggests that it may not translate to per-
formance gains in practice due to the extra cache pressure.
Lu et al. [21] optimize out Mnemosyne transactions’ last
persist barrier, and propose a full processor cache flush as
a technique to checkpoint committed transactions’ results.
Kolli et al. [20] propose an undo logging based transac-
tion runtime that introduces just four persist barriers per
transaction, assuming that transactions know the data they
need to modify in advance.

In contrast to these works that focus on one or two
specific transaction runtime implementations, we perform
a far more comprehensive analysis of the design space.
Our analysis not only considers workload characteristics
but also performance implications of persistence domains.
In addition, we also consider and evaluate cache locality.

Moraru et al. [24] present a memory allocator opti-
mized for wear leveling, which can plug easily into our
allocation log technique. Volos et al. [36] presented an
allocator that uses the transaction’s redo log to track per-
sistent memory allocations. This is similar to our memory
allocator. However we splice out the allocation records
into a separate allocation log that lets us use it in undo
and COW transaction runtimes.

Work similar to ours has emerged in the in-memory
database setting [2], where the authors compare database
transactions based on “in-place” updates (similar to our
undo/redo logging runtimes), copy-on-write, and write-
ahead logging [23] implementations. While their results

11

align with ours – in-place updates tend to dominate over
the other two approaches – the two settings are signifi-
cantly different. Their runtimes are designed to optimize
database processing, with hand optimized implementa-
tions of core database data structures, whereas ours are
much lower level runtimes developed to track individ-
ual loads and stores to arbitrary data structures hosted in
persistent memory.

Different memory persistency models have been pro-
posed in academia over the past few years [9, 19, 27, 30].
However, there seems to be a convergence emerging on
the thread-local epoch persistency model [9, 27] with In-
tel’s recent deprecation of the pcommit instruction from
future Intel processors. Our work applies to all these
persistency models.

8 Conclusion
We presented a new taxonomy of persistence domains
based on our observations of support for persistent mem-
ory in past and future systems. We also presented three
novel transaction runtime systems based on undo logging,
redo logging and copy-on-write implementations of trans-
actional writes. Our runtimes are designed with the goal
to reduce persist barriers needed in a transaction. Our
allocator is also designed with the same goal and plugs
into all our transaction runtimes. Our comprehensive
evaluation of microbenchmarks and “real world” work-
loads suggests that while the nature of the workload does
affect performance of a transaction runtime, the size of
the persistence domain also has significant performance
impact. At a high level, undo logging appears to perform
best in all workload settings in PDOM-2 systems. It also
performs best in read dominated workloads as long as
there are no big write transactions. Large numbers of
writes, which entail large number of persist barriers in
undo log transactions, are costly for systems that have
high persist barrier latencies (e.g. PDOM-0 systems in
our taxonomy). Redo logging performance appears to
dominate others on write-heavy workloads in PDOM-0
and PDOM-1 systems. Because of its poor cache locality,
COW ends up not doing well in any of our workloads.
COW runtimes also impose a significantly different (ob-
ject oriented) programming model that may not align well
with the application’s requirements.

References
[1] 3D XPoint Technology Rev-

olutionizes Storage Memory.
http://www.intel.com/content/www/us/en/architecture-
and-technology/3d-xpoint-technology-
animation.html, 2015.

[2] J. Arulraj, A. Pavlo, and S. Dulloor. Let’s talk about
storage & recovery methods for non-volatile mem-
ory database systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Man-
agement of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 707–722, 2015.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Com-
puter Systems, pages 53–64, 2012.

[4] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: A scalable memory allocator
for multithreaded applications. In Proceedings of
the Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 117–128, New York,
NY, USA, 2000. ACM.

[5] B. Bridge. Nvm-direct library.
https://github.com/oracle/nvm-direct, 2015.

[6] D. R. Chakrabarti, H. Boehm, and K. Bhandari. At-
las: leveraging locks for non-volatile memory con-
sistency. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014,
part of SPLASH 2014, Portland, OR, USA, October
20-24, 2014, pages 433–452, 2014.

[7] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Ra-
jamani, and D. Lowell. The rio file cache: Surviving
operating system crashes. In Proceedings of the
Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 74–83, 1996.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-
generation, Non-volatile Memories. In Proceedings
of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 105–118, 2011.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. Lee, D. Burger, and D. Coetzee. Better i/o
through byte-addressable, persistent memory. In
Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pages 133–146,
2009.

12

[10] E. Giles, K. Doshi, and P. J. Varman. Softwrap: A
lightweight framework for transactional support of
storage class memory. In IEEE 31st Symposium
on Mass Storage Systems and Technologies, MSST
2015, Santa Clara, CA, USA, May 30 - June 5, 2015,
pages 1–14, 2015.

[11] A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler,
F. Ul Haq, and J. Wiener. Fast database restarts at
facebook. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’14, pages 541–549, 2014.

[12] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 1992.

[13] T. Harris, J. Larus, and R. Rajwar. Transactional
Memory, 2nd Edition. Morgan and Claypool Pub-
lishers, 2nd edition, 2010.

[14] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho,
Y. Higo, K. Yamane, H. Yamada, M. Shoji,
H. Hachino, C. Fukumoto, H. Nagao, and H. Kano.
A novel nonvolatile memory with spin torque trans-
fer magnetization switching: Spin-RAM. Interna-
tional Electron Devices Meeting, pages 459–462,
2005.

[15] Y. Huai. Spin-Transfer Torque MRAM (STT-
MRAM): Challenges and Prospects. AAPPS Bul-
letin, 18(6):33–40, 2008.

[16] Intel Architecture Instruction Set Ex-
tensions Programming Reference.
https://software.intel.com/sites/default/files/managed/0d/53/319433-
022.pdf, 2015.

[17] NVDIMM Block Window Driver Writer’s Guide.
http://pmem.io/documents/NVDIMM_DriverWritersGuide-
July-2016.pdf, 2016.

[18] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-atomic
persistent memory updates via justdo logging. In
Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 427–442,
2016.

[19] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas. Ef-
ficient persist barriers for multicores. In Proceedings
of the 48th International Symposium on Microarchi-
tecture, MICRO-48, pages 660–671, 2015.

[20] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F.
Wenisch. High-Performance Transactions for Per-
sistent Memories. In 21th ACM International Con-

ference on Architectural Support for Programming
Languages and Operating Systems, 2016.

[21] Y. Lu, J. Shu, and L. Sun. Blurred Persistence:
Efficient Transactions in Persistent Memory. ACM
Transactions on Storage, 12(1):3:1–3:29, 2016.

[22] Memcached – a distributed memory object caching
system. https://memcached.org/.

[23] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: A transaction recovery method
supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions
on Database Systems, 17(1):94–162, 1992.

[24] I. Moraru, D. G. Andersen, M. Kaminsky, N. To-
lia, P. Ranganathan, and N. Binkert. Consistent,
Durable, and Safe Memory Management for Byte-
addressable Non Volatile Main Memory. In Proceed-
ings of the First ACM SIGOPS Conference on Timely
Results in Operating Systems, pages 1:1–1:17, 2013.

[25] D. Narayanan and O. Hodson. Whole System Per-
sistence. In Proceedings of the 17th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2012.

[26] F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B. M.
III. Procrastination beats prevention: Timely suf-
ficient persistence for efficient crash resilience. In
Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015, pages
689–694, 2015.

[27] S. Pelley, P. M. Chen, and T. F. Wenisch. Mem-
ory persistency. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014, pages
265–276, 2014.

[28] pmem.io: Persistent Memory Programming.
http://pmem.io/, 2015.

[29] D. S. Rao, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System
software for persistent memory. In Ninth Eurosys
Conference 2014, EuroSys 2014, Amsterdam, The
Netherlands, April 13-16, 2014, page 15, 2014.

[30] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and
O. Mutlu. Thynvm: Enabling software-transparent
crash consistency in persistent memory systems. In
Proceedings of the 48th International Symposium
on Microarchitecture, pages 672–685, 2015.

13

[31] SQLite. https://www.sqlite.org/.

[32] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing Memristor found. Nature,
453:80–83, 2008.

[33] The SNIA NVM Programming Technical
Working Group. NVM Programming Model
(Version 1.0.0 Revision 10), Working Draft.
http://snia.org/sites/default/files/NVMProgrammingModel_v1r10DRAFT.pdf,
2013.

[34] TPC-C, https://www.tpc.org/tpcc.

[35] H. Volos, S. Nalli, S. Panneerselvam, V. Varadara-
jan, P. Saxena, and M. M. Swift. Aerie: flexible file-
system interfaces to storage-class memory. In Ninth
Eurosys Conference 2014, EuroSys 2014, Amster-
dam, The Netherlands, April 13-16, 2014, page 14,
2014.

[36] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In Proceedings of
the 16th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 91–104, 2011.

[37] M. Wilcox. DAX: Page cache bypass for filesystems
on memory storage. http://lwn.net/Articles/618064/,
2014.

[38] Y. Zhang and S. Swanson. A study of application
performance with non-volatile main memory. In
IEEE 31st Symposium on Mass Storage Systems and
Technologies, MSST 2015, Santa Clara, CA, USA,
May 30 - June 5, 2015, pages 1–10, 2015.

14

	Introduction
	Persistence Domain
	Programming Model
	Implementing Persistent Transactions
	Undo Log based Transactions
	Redo Log based Transactions
	Copy-on-Write based Transactions

	Persistent Memory Management
	Empirical Evaluation
	Transaction Latency
	Memory allocation performance.
	Persistent Key-Value Store
	SQLite
	Memcached

	Related Work
	Conclusion

