
Oracle Labs
23rd January 2020

Cristina Cifuentes and Gavin Bierman

What is a Secure Programming Language?

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and
practices at any time, and the development, release, and timing of any
features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily re!ect the views of Oracle.

Copyright © 2020, Oracle and/or its affiliates 2

exploited vulnerabilities due to
buffer errors (2013-2017)5899

National Vulnerability Database, http://nvd.nist.gov

Copyright © 2020, Oracle and/or its affiliates 3

http://nvd.nist.gov/

exploited vulnerabilities due to
injection errors (2013-2017)5851

Copyright © 2020, Oracle and/or its affiliates 4

National Vulnerability Database, http://nvd.nist.gov

http://nvd.nist.gov/

exploited vulnerabilities due to
information leak (2013-2017)3106

Copyright © 2020, Oracle and/or its affiliates 5

National Vulnerability Database, http://nvd.nist.gov

http://nvd.nist.gov/

(labeled*) exploited vulnerabilities
in NVD were bu!er errors,
injections and information leak
(2013-2017)53%

Copyright © 2020, Oracle and/or its affiliates 6

National Vulnerability Database, http://nvd.nist.gov
* Based on NIST’s top vulnerabilities

http://nvd.nist.gov/

(labeled) exploited vulnerabilities
in NVD were buffer errors,
injections and information leak
(2013-2017)53%

All of th
ese issues are within the realm

of Programming Language design

Copyright © 2020, Oracle and/or its affiliates 7

National Vulnerability Database, http://nvd.nist.gov
* Based on NIST’s top vulnerabilities

http://nvd.nist.gov/

Copyright © 2020, Oracle and/or its a!liates 8

Latest breaking news

2018-2019

exploited vulnerabilities due to
injection errors (2018-2019)

Copyright © 2020, Oracle and/or its affiliates 9

5970

National Vulnerability Database, http://nvd.nist.gov

http://nvd.nist.gov/

exploited vulnerabilities due to
injection errors (2018-2019)

exploited vulnerabilities due to
bu!er errors (2018-2019)

Copyright © 2020, Oracle and/or its affiliates 10

5970
4651

National Vulnerability Database, http://nvd.nist.gov

http://nvd.nist.gov/

exploited vulnerabilities due to
injection errors (2018-2019)

exploited vulnerabilities due to
bu!er errors (2018-2019)

exploited vulnerabilities due to
information leak (2018-2019)

Copyright © 2020, Oracle and/or its affiliates 11

5970
4651
1980

National Vulnerability Database, h!p://nvd.nist.gov

http://nvd.nist.gov/

(labeled) exploited vulnerabilities
in NVD were injections, buffer
errors and information leak (2018-
2019)

Copyright © 2020, Oracle and/or its affiliates 12

45%
National Vulnerability Database, h!p://nvd.nist.gov

http://nvd.nist.gov/

(labeled) exploited vulnerabilities
in NVD were injections, buffer
errors and information leak (2018-
2019)

Copyright © 2020, Oracle and/or its a!liates 13

45%
National Vulnerability Database, h"p://nvd.nist.gov

All of th
ese issues are within the realm

of Programming Language design

http://nvd.nist.gov/

Copyright © 2020, Oracle and/or its affiliates 14

Buffer overflow used in
the Morris worm

Cross-site scripting
exploits

SQL injection explained
in the literature

1988 1990s 1998

Copyright © 2020, Oracle and/or its affiliates 15

Examples of the Three Vulnerability
Categories

Copyright © 2020, Oracle and/or its a!liates 16

Buffer Errors

void host_lookup (char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);

/* routine that ensures user_supplied_addr is in the right format for
conversion */

validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

https://cwe.mitre.org/data/definitions/121.html

Copyright © 2020, Oracle and/or its affiliates 17

Buffer Errors

void host_lookup (char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);

/* routine that ensures user_supplied_addr is in the right format for
conversion */

validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

https://cwe.mitre.org/data/definitions/121.html

Copyright © 2020, Oracle and/or its a!liates 18

Buffer Errors

define BUFSIZE 256
int main (int argc, char **argv) {
char *buf;
buf = (char *)malloc(sizeof(char)*BUFSIZE);
strcpy(buf, argv[1]);

}

https://cwe.mitre.org/data/definitions/122.html

Copyright © 2020, Oracle and/or its a!liates 19

Buffer Errors

define BUFSIZE 256
int main (int argc, char **argv) {
char *buf;
buf = (char *)malloc(sizeof(char)*BUFSIZE);
strcpy(buf, argv[1]);

}

https://cwe.mitre.org/data/definitions/122.html

Copyright © 2020, Oracle and/or its a!liates 20

Cross-Site Scripting

<% String eid = request.getParameter("eid "); %>
...
Employee ID: <%= eid %>

https://cwe.mitre.org/data/definitions/79.html

Copyright © 2020, Oracle and/or its a!liates 21

Cross-Site Scripting

<% String eid = request.getParameter("eid "); %>
...
Employee ID: <%= eid %>

h"ps://cwe.mitre.org/data/de#nitions/79.html

Copyright © 2020, Oracle and/or its affiliates 22

Cross-Site Scripting

<% Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery (“select * from emp where id="+eid);
if (rs != null) {

rs.next();
String name = rs.getString (“name");

}%>

Employee Name: <%= name %>

https://cwe.mitre.org/data/definitions/79.html

Copyright © 2020, Oracle and/or its a!liates 23

Cross-Site Scripting

<% Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery (“select * from emp where id="+eid);
if (rs != null) {

rs.next();
String name = rs.getString (“name");

}%>

Employee Name: <%= name %>

h"ps://cwe.mitre.org/data/de#nitions/79.html

Copyright © 2020, Oracle and/or its affiliates 24

SQL Injection

...
string userName = ctx.getAuthenticatedUserName();
string query = “SELECT * FROM items WHERE owner = ’" + userName +

"’ AND itemname = ’" + ItemName.Text + "’";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...

h!ps://cwe.mitre.org/data/de"nitions/89.html

Copyright © 2020, Oracle and/or its affiliates 25

SQL Injection

...
string userName = ctx.getAuthenticatedUserName();
string query = “SELECT * FROM items WHERE owner = ’" + userName +

"’ AND itemname = ’" + ItemName.Text + "’";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...

h!ps://cwe.mitre.org/data/de"nitions/89.html

Copyright © 2020, Oracle and/or its affiliates 26

Information Leak

locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...
catch (Exception e) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage ("Sorry, this app has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e(“ExampleActivity", “Caught exception: " + e + ” While on User:"

+ User.toString());
}

h!ps://cwe.mitre.org/data/de"nitions/532.html

Copyright © 2020, Oracle and/or its affiliates 27

Information Leak

locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...
catch (Exception e) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage ("Sorry, this app has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e(“ExampleActivity", “Caught exception: " + e + ” While on User:"

+ User.toString());
}

https://cwe.mitre.org/data/definitions/532.html

Copyright © 2020, Oracle and/or its affiliates 28

Mainstream Languages and Vulnerabilities

Top Mainstream Languages Over the Past 10 Years

Based on TIOBE index as of
January 2019

Java
C

C++
Python

C#
PHP

JavaScript
Ruby

Copyright © 2020, Oracle and/or its a!liates 29 h"ps://www.tiobe.com/tiobe-index/

Copyright © 2020, Oracle and/or its affiliates 30

Ruby,
JS 1.1Java, C#,

JavaScript

Prevent
buffer errors

Prevent
injections

Prevent
information leaks

Today’s Status –
Mainstream
Languages

PHP
(library)

A Secure Language is One that Provides First-class Support for These
Three Categories

Prevent
bu!er
errors

Prevent
injection

errors

Prevent
information
leak errors

Copyright © 2020, Oracle and/or its a"liates 31

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

cognitive load

What to Consider when Talking about Abstractions

Copyright © 2020, Oracle and/or its a!liates 32

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

cognitive load

What to Consider when Talking about Abstractions

Copyright © 2020, Oracle and/or its a!liates 33

Ideal
abstraction

L L

L

Copyright © 2020, Oracle and/or its a!liates 34

Language Support Addressing
Buffer Errors

Buffer Errors – The Problem: Unsafe Abstraction

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

Manual
management of
pointers
(C, C++, …)

cognitive load

Copyright © 2020, Oracle and/or its affiliates 35

Buffer Errors – Solutions: Safe Abstractions

Managed
memory
(Lisp, Java, JS, …)*

Lifetimes +
ownership
(Rust)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

cognitive load

Copyright © 2020, Oracle and/or its affiliates 36 * Diagram may change based on application

Buffer Errors – Solutions: Safe Abstractions

Managed
memory
(Lisp, Java, JS, …)*

Lifetimes +
ownership
(Rust)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

cognitive load

Copyright © 2020, Oracle and/or its affiliates 37

I’m
 not saying Java is slow!

* Diagram may change based on application

Bu!er Errors – Solutions: Safe Abstractions

Managed
memory
(Lisp, Java, JS, …)*

Lifetimes +
ownership
(Rust)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

cognitive load

Copyright © 2020, Oracle and/or its affiliates 38 * Diagram may change based on application

Memory Safety Through The Rust
Language

Copyright © 2020, Oracle and/or its a!liates 39

Rust is a systems programming language that runs fast, prevents memory corruption, and guarantees
memory and thread safety

No garbage collection

Two new concepts in the type system
• Ownership
• Lifetime / borrowing

- Shared borrow (&T) – cannot mutate it
- Mutable borrow (&mut T) – cannot alias it

https://www.rust-lang.org
Rust Language

Copyright © 2020, Oracle and/or its affiliates 40

https://www.rust-lang.org/

fn main() {
let mut i = 3; // Lifetime for `i` starts. ────────────────┐
{ │

let borrow1 = &i; // `borrow1` lifetime starts.─┐ │
println!("borrow1: {}", borrow1); // │ │

} // `borrow1` ends. ─────────────────────────────────┘ │
│

{ │
let borrow2 = &mut i; // `borrow2` lifetime starts.──┐ │
*borrow2 = 5; // │ │

} // `borrow2` ends. ────────────────────────────────────┘ │
│

} // lifetime ends. ───┘

Lifetimes

• Rust compiler checks
lifetimes are valid to ensure
variables are used safely

• Borrows allow data to be
used elsewhere, without
giving up ownership

• There can be at most 1
mutable reference to a
resource

http://rustbyexample.com/scope/lifetime.html

shared borrow

mutable borrow

Copyright © 2020, Oracle and/or its affiliates 41

Confidential – Oracle Internal/Restricted/Highly Restricted 42

fn main() {
{

let mut borrow3 = &mut i;
*borrow3 += 1;
println!("borrow3: {}", borrow3);
let borrow4 = &i; // error[E0502]: cannot borrow `i` as immutable

// because it is also borrowed as mutable
println!("borrow4: {}", borrow4);

}
}

Lifetimes

Copyright © 2020, Oracle and/or its a!liates 42

No buffer overflows
No null pointer dereference
No double freeing memory
No use after free
No stale pointers
No data races
No arithmetic overflows
Warns about uninitialised memory and variables

Rust Memory Safety Guarantees

Copyright © 2020, Oracle and/or its a!liates 43

Calling foreign code
Calling unsafe code
Dereferencing a raw pointer

Must opt-in to use them
Rust’s Unsafe Features

Copyright © 2020, Oracle and/or its affiliates 44

Ownership and lifetimes allow for memory safety guarantees
• No buffer overflows, no null pointer dereferences, no double freeing memory, no stale pointers, no

data races, no arithmetic overflows

Unsafe code
• Needed to interface with native C code
• To implement low-level libraries (e.g., Rust’s own libraries, a user’s library)
• Unsafe code can void memory safety guarantees

Rust

Copyright © 2020, Oracle and/or its affiliates 45

Copyright © 2020, Oracle and/or its affiliates 46

Language Support Addressing
Injection Errors

Injections – The Problem: Unsafe Abstraction

cognitive load

Manual string
concatenation and
sanitisation
(C, PHP, Python, Java,
JavaScript, …)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

Copyright © 2020, Oracle and/or its a!liates 47

Injections – Solutions: Safe Abstractions

cognitive load

Taint mode
(Perl, Ruby)

LINQ to SQL
(.NET)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

Copyright © 2020, Oracle and/or its affiliates 48

Avoiding Injection Attacks with Perl and
Ruby

Copyright © 2020, Oracle and/or its affiliates 49

Perl is a rapid-prototyping programming language

Taint Mode – concept introduced in Perl 3, 1989
• Tracks external/input (tainted) values
• Runtime implements taint checks

h!ps://www.perl.org
Perl Language

Copyright © 2020, Oracle and/or its a"liates 50

https://www.perl.org/

Default tainted values
• All command-line arguments, environment variables, locale information, results of some system

calls (readdir(), readlink()), the variable of shmread(), the messages returned by
msgrcv(), the password, gcos, and shell fields returned by the getpwxxx() calls, and all file
inputs

Tainted data may not be used directly or indirectly in
• any command that invokes a sub-shell, nor in
• any command that modifies files, directories, or processes; except for

- Arguments to print and syswrite
- Symbolic methods and symbolic subreferences
- Hash keys are never tainted

Taint Mode Perl 3, 4, 5

Copyright © 2020, Oracle and/or its affiliates 51

Expands Perl’s taint mode – 4 SAFE levels
• 0: no safety
• 1: disallows use of tainted data by potentially dangerous operations

default on Unix systems when Ruby script running as setuid
• 2: prohibits loading of program !les from globally-writable locations
• 3: all newly created objects are considered tainted

https://www.ruby-lang.org
Ruby

Copyright © 2020, Oracle and/or its a"liates 52

require ‘cgi’
cgi = CGI::new(“html4”)
Assume input is an arithmetic expression
Fetch the value of the form field “expression”
expr = cgi[“expression”].to_s
begin
result = eval(expr)
rescue Exception => detail
handle bad expressions
end
display result of arithmetic expression back to user

Sample Vulnerable Code Due to Tainted Input

• External data is tainted

• User can type into the form
system(“rm *”)

http://phrogz.net/ProgrammingRuby/taint.html

Copyright © 2020, Oracle and/or its affiliates 53

require ‘cgi’
$SAFE = 1
cgi = CGI::new(“html4”)
Assume input is an arithmetic expression
Fetch the value of the form field “expression”
expr = cgi[“expression”].to_s
if expr =~ %r{^[-+*/\d\seE.()]*$}

expr.untaint
result = eval(expr)
display result of arithmetic expression back to user

else
display error message

SAFE Level and Untaint Example

• Run CGI script at safe level 1
• Raises exception if

program passes the form
data to eval

• Simple sanity check performed
on the form data to untaint if
the data looked innocuous

http://phrogz.net/ProgrammingRuby/taint.html

Copyright © 2020, Oracle and/or its affiliates 54

require ‘cgi’
$SAFE = 1

cgi = CGI::new(“html4”)
expr = cgi[“expression”].to_s
if expr =~ %r{^[-+*/\d\seE.()]*$}

expr.untaint
result = eval(expr)

end
print “#{expr}:#{result}\n”

SAFE Level and XSS Example

• External data is tainted

• Tainted data is sanitized

• Taint is not tracked to print

Modification of http://phrogz.net/ProgrammingRuby/taint.html

Copyright © 2020, Oracle and/or its affiliates 55

Ruby

Extends Perl’s taint mode to track direct data
flows through SAFE modes 1-3
Programmatic taint/untaint methods

Perl

Runtime tracks tainted data not to be used in
subshell commands, or commands that modify
!les, directories, or processes (with some
exceptions)

Perl and Ruby’s Taint Mode

Cannot track XSS as do not track taint to print and syswrite
Do not track indirect/implicit data "ows

Not suitable to prevent today’s Cloud injections

Copyright © 2020, Oracle and/or its a#liates 56

Copyright © 2020, Oracle and/or its affiliates 57

Language Support Addressing
Information Leak Errors

Information Leaks – The Problem: Unsafe Abstraction

cognitive load

Manual tracking
of sensitive data
(C, Java, JavaScript, …)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

Copyright © 2020, Oracle and/or its affiliates 58

Information Leaks – Solutions: Safe Abstractions

cognitive load

Policy-agnostic
programming
(Jeeves)

pe
rf

or
m

an
ce

 o
ve

rh
ea

d

Policy
annotations
(JIF, Fabric)

Copyright © 2020, Oracle and/or its a!liates 59

Avoiding Information Leaks with
Policy-Agnostic Programming

Copyright © 2020, Oracle and/or its affiliates 60

Goal: factor out information flow policies so that policies can be high-level and programs can be policy-
agnostic

Main concept – Faceted values
• Tracked by the language runtime
• Extended to DBs through web framework that includes relational operators
• Jeeves – extends Python with faceted values

Jeeves language and Jacqueline web framework
https://github.com/jeanqasaur/jeeves

Policy-Agnostic Programming

“Preventing Information Leaks with Policy-Agnostic Programming”, Jean Yang, PhD thesis, Sep 2015

Copyright © 2020, Oracle and/or its affiliates 61

https://github.com/jeanqasaur/jeeves

Faceted records in the DB

• Faceted record (p ? s : ns)
• Stored as two faceted rows of non-faceted

relational records
id val fid fpolicy
1 s 1 p==True
2 ns 1 p==False

• Allows for faceted queries using WHERE and
JOIN clauses

Faceted values
• Used for sensitive values
• Policy guards secret and non-secret value,

i.e.,
<s | ns>(p)

equivalent to: if (p) <s> else <ns>;

Developer speci!es policies outside the code

Language runtime enforces policy

Faceted Values

Copyright © 2020, Oracle and/or its affiliates 62

class Event(Model):
name = CharField(max_length=256)
time = DayTimeField()
...

public value for name field
def jacqueline_get_public_name(event):

return “Private event”

policy for name field
@label_for(‘name’)
def jacqueline_restrict_event(event, ctxt):

return(EventGuest.objects.get(
event=self, guest=ctxt) != None)

class EventGuest(Model):
event = ForeignKey(Event)
guest = ForeignKey(UserProfile)

Alice wants to plan a surprise party for Bob
at 7pm next Tuesday. She should be able to
create an event such that information is
visible only to guests. Bob should see that
he has an event 7pm next Tuesday, but not
that it is a party. Everyone else may see that
there is a private event, but not event
details.

Example: Social Calendar App

http://www.cs.cmu.edu/~jyang2/papers/p631-yang.pdf

Person
ID

Event name Faceted ID Policy

1 ‘Surprise party’ 1 ‘p=True’

2 ‘Private event’ 1 ‘p=False’

Copyright © 2020, Oracle and/or its a!liates 63

Automatically-generated code with faceted
records*; policy enforced at query time
SELECT EventGuest.event,

EventGuest.guest,
EventGuest.fid,
EventGuest.fpolicy,
UserProfile.fpolicy

FROM EventGuest
JOIN UserProfile
ON EventGuest.guest_id =

UserProfile.fid
WHERE UserProfile.name = ‘Alice’;

Without faceted records; policy not enforced at
the query level
SELECT EventGuest.event,

EventGuest.guest
FROM EventGuest
JOIN UserProfile
ON EventGuest.guest_id =

UserProfile.id
WHERE UserProfile.name = ‘Alice’;

Example: Social Calendar App Query

* SQL API used by developer, facets introduced by the system

Copyright © 2020, Oracle and/or its affiliates 64

Performance
• 1.75x overhead on stress tests
• At par viewing pro!les for a single user
• Faster viewing pro!les for a single paper in

conference management system (as policies
resolved once)

Applications
• Conference management system
• Health record manager
• Course manager

Reduced lines of code
• Policy code: 106 LOC central vs 130 LOC

spread out in the code
• Auditing policy code: 200 LOC vs 575 LOC,

therefore, 65% reduced size of application-
specific trusted code base

Status – Results

Copyright © 2020, Oracle and/or its a"liates 65

New paradigm that centralises policy code outside of the main application and tracks information flows
relevant to information leak at runtime

Main benefits
• Application and database code do not need to be trusted
• Policies are localised
• The size of the policy is smaller due to automatic policy enforcement

Status
• Academic prototype

Policy-Agnostic Programming

Copyright © 2020, Oracle and/or its affiliates 66

Copyright © 2020, Oracle and/or its affiliates 67

Recap

Top Mainstream Languages Over the Past 10 Years

Based on TIOBE index as of
January 2019

Java
C

C++
Python

C#
PHP

JavaScript
Ruby

Copyright © 2020, Oracle and/or its affiliates 68

A Secure Language is One that Provides First-class Support for These
Three Categories

Prevent
bu!er
errors

Prevent
injection

errors

Prevent
information
leak errors

Copyright © 2020, Oracle and/or its a"liates 69

Copyright © 2020, Oracle and/or its affiliates 70

Today’s mainstream languages do not
support our developers in writing secure

code that is free of buffer errors, injections,
or information leaks.

Copyright © 2020, Oracle and/or its a!liates 71

Our mainstream languages are not
secure languages.

Copyright © 2020, Oracle and/or its a!liates 72

Prevent
buffer errors

Prevent
injections

Prevent
information leaks

Secure
Abstractions

Managed
memory

Ownership
and lifetimes

Taint tracking

Built-in
sanitisation

Information
flow

Policy
annotations

Policy-agnostic
programming

Copyright © 2020, Oracle and/or its a!liates 73

Prevent
buffer errors

Prevent
injections

Prevent
information leaks

Future

New
languages

Abstraction 1 Abstraction 2

Abstraction 3

Abstraction 4

Abstraction 5

Abstraction 6

Abstraction N+1
Abstraction N

Abstraction N+2

Copyright © 2020, Oracle and/or its a!liates 74

Future

Your new
secure

language

Prevent
buffer errors

Prevent
injections

Prevent
information leaks

Copyright © 2020, Oracle and/or its affiliates 75

In the future, what if we had one or more
secure programming languages?

Are we “done” with vulnerabilities?

Copyright © 2020, Oracle and/or its affiliates 76

Resource management errors
• Use after free
• Double free
• Memory corruption
• Type casting error
• Worker termination error

Race condition errors
• Concurrent execution using shared resource without proper synchronization
• Time-of-check, Time-of-use

Other Vulnerabilities in the Realm of Programming Languages

Copyright © 2020, Oracle and/or its affiliates 77

Various works including Rust
• Resource management via lifetimes – no double freeing memory nor use after free issues

Project Verona
Ma!hew Parkinson et al, Microsoft, 2019
• 3 core ideas:

• Data race freedom, Concurrent owners, and Linear regions

• Resource management via linear regions
• Can’t access memory outside the region
• Can’t access memory once region has been freed

• Nov 2019 "rst public presentation: https://vimeo.com/376180843
• Open sourced Jan 2020: https://github.com/microsoft/verona

Recent Projects That Prevent Aspects of Resource Management Errors

https://vimeo.com/376180843
https://github.com/microsoft/verona

Copyright © 2020, Oracle and/or its affiliates 78

Various works including Rust and Project Verona

Pony
Sylvan Clebsch et al, Imperial College, 2014
• Actors for concurrency
• Data race free type system
• Reference capabilities attached to the path to an object
• Memory safe
• https://github.com/ponylang/ponyc

Recent Projects That Prevent Data Race Errors

Approaches explored in the research
community

• Multi-lingual compilers and runtimes [1], and
linking types [2].
Project Verona – compartmentalisation for
legacy resources

• Compilation that preserves security properties
via translations that are fully abstract

Issue

• Interoperability/Foreign Function Interface
and properties provided by each language

• Complexity of modifying a VM

Some Practical Issues to Consider

Copyright © 2020, Oracle and/or its affiliates 79

[2] Daniel Pa!erson and Amal Ahmed. Linking types for multi-language software: Have your cake and eat it too. SNAPL 2017
[1] Thomas Würthinger et al. Practical partial evaluation for high-performance dynamic language runtimes, PLDI 2017

million software developers
worldwide (11M professional,
7.5M hobbyist)18.5

h!p://www.idc.com, 2014 Worldwide Software Developer and ICT-Skilled Worker Estimations

Copyright © 2020, Oracle and/or its affiliates 80

http://www.idc.com/

Copyright © 2020, Oracle and/or its affiliates 81

Security is not just for expert developers.

Copyright © 2020, Oracle and/or its a!liates 82

Copyright © 2020, Oracle and/or its affiliates 83

It’s time to introduce security
abstractions into our language

design.

h!p://labs.oracle.com
@criscifuentes

@GavinBierman

cristina.cifuentes@oracle.com
gavin.bierman@oracle.com

Cristina Cifuentes and Gavin Bierman, What is a Secure Programming Language?
3rd Summit on Advances in Programming Languages (SNAPL), LIPIcs 136, 2019.

Our mission is to help people
see data in new ways, discover insights,
unlock endless possibilities.

