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Abstract. LibraBFT is a Byzantine Fault Tolerant (BFT) consensus
protocol based on HotStuff. We present an abstract model of the pro-
tocol underlying HotStuff / LibraBFT, and formal, machine-checked
proofs of their core correctness (safety) property and an extended condi-
tion that enables non-participating parties to verify committed results.
(Liveness properties would be proved for specific implementations, not
for the abstract model presented in this paper.)
A key contribution is precisely defining assumptions about the behav-
ior of honest peers, in an abstract way, independent of any particular
implementation. Therefore, our work is an important step towards prov-
ing correctness of an entire class of concrete implementations, without
repeating the hard work of proving correctness of the underlying proto-
col. The abstract proofs are for a single configuration (epoch); extending
these proofs across configuration changes is future work. Our models and
proofs are expressed in Agda, and are available in open source.

1 Introduction

There has been phenomenal interest in decentralized systems that enable coor-
dination among peers that do not necessarily trust each other. This interest has
largely been driven in recent years by the emergence of blockchain technology.
When the set of participants is limited by permissioning or proof of stake [11, 23],
Byzantine Fault Tolerant (BFT) [27] consensus—which tolerates some byzantine
peers actively deviating from the protocol—is of interest.

Due to attractive properties relative to previous BFT consensus protocols,
implementations based on HotStuff [41] are being developed and adopted. For
example, the Diem Foundation (formerly Libra Association) was until recently
developing LibraBFT based on HotStuff [5, 37]. (LibraBFT was renamed
to DiemBFT before being discontinued; other variants are emerging.)

Many published consensus algorithms, including some with manual correct-
ness proofs, have been shown to be incorrect [12, 38]. Therefore, precise, machine-
checked formal verification is essential, particularly for new algorithms being
⋆ The final publication is available at https://link.springer.com/book/9783031067747.
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adopted in practice. Some of the papers on HotStuff / LibraBFT include
brief correctness arguments, but they lack many details and are not machine
checked. Furthermore, LibraBFT uses data structures, messages and logic, that
differ significantly from versions on which those informal proofs were based.

Our contributions are as follows:

– a precise, abstract model of the protocol underlying HotStuff / LibraBFT;
– precise formulation of assumptions; and
– formal, machine-checked proofs of core correctness (safety) properties, plus

a novel extended condition that enables additional functionality.

Proving correctness for an abstraction of the protocol enables verifying any
concrete implementation by proving that its handlers ensure the assumptions of
our abstract proofs. Our contribution is thus an important step towards proving
correctness for an entire class of concrete implementations. However, this class
does not include all possible variants. In particular, DiemBFT recently added
an option for committing based on 2-chains, rather than 3-chains, as our work
assumes (see Section 3.1). Adapting our techniques to accommodate 2-chain-
based implementations is future work.

This paper focuses on the metatheory around an abstraction of a system of
peers participating in the HotStuff / LibraBFT protocol, and assumptions
about which peers can participate, rules that honest peers obey, and the inter-
section of any two quorums containing at least one honest peer. We state and
prove key correctness properties, such as that any two committed blocks do not
conflict (i.e., they belong to the same ordered chain of committed blocks).

Our ongoing work [7] aims to use the results presented in this paper to verify
a concrete Haskell implementation that we have developed based on the Diem
Foundation’s open-source Rust implementation [18]. We have built a system
model that can be instantiated with data types and handlers, yielding a model of
a distributed system in which honest peers execute those handlers and byzantine
ones are constrained only by being unable to forge signatures of honest peers. We
have ported this implementation to Agda, using a library we have developed [13]
to enable the ported code to closely mirror the original, thus reducing the risk
of error. We have made substantial progress towards proving that the resulting
Agda port satisfies the assumptions established in this paper.

LibraBFT supports configuration changes (also known as epoch changes),
whereby parameters such as the number and identities of participating peers
can be changed. The contribution described in this paper is an abstract model
for a single epoch and formal, machine-checked proofs of its correctness condi-
tions. Stating and proving cross-epoch properties is future work. Nevertheless,
the Haskell implementation we are verifying supports epoch changes, and our
verification infrastructure is prepared for multiple epochs. In particular, our ab-
stract modules are parameterized by an “epoch configuration” structure.

Our models, definitions and proofs are expressed in Agda [1, 32], a dependently-
typed programming language and proof assistant. We chose Agda for this work
because its syntax is similar to Haskell’s, making it easier to develop and have
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confidence in a model of the implementation we aim to verify. This paper is in-
tended to be reasonably self contained and does not require the reader to know
Agda. To that end, we will explain Agda-specific features and syntax that are
important for following the paper. We encourage interested readers to explore
the open source proofs in detail, and we hope that this paper will provide a
useful overview and guide that will make them more accessible. For readers who
would like to learn about Agda, we recommend starting with the tutorial in [39].

In Section 2, we overview salient aspects of HotStuff / LibraBFT to mo-
tivate our approach to abstractly modeling the protocol and formally verifying
correctness properties. In Section 3, we present the definitions used to develop
the formal abstract model of a system of peers participating in the protocol, and
to define traditional and extended correctness properties. We also describe their
proofs, which are available in open source [7]. Related work is summarized in Sec-
tion 4 and concluding remarks and future work appear in Section 5. Additional
proof overviews are included in the extended version of this paper [14].

2 An Overview of HotStuff / LibraBFT

The following overview does not fully describe HotStuff and LibraBFT: it
highlights aspects that our abstraction must accommodate to enable our proofs.
Details are in the relevant papers and repositories [5, 7, 18, 37, 41].

Peers participating in the HotStuff / LibraBFT protocol repeatedly agree
to extend a chain of blocks that is initially empty (represented by a genesis
record). Each block identifies (directly or indirectly) the block that it extends
(or the genesis record if none) via one or more cryptographic hashes. This com-
mon hash chaining [36] technique ensures that each block uniquely identifies its
predecessor, unless an adversary finds a hash collision (e.g., two different blocks
that hash to the same value); it is a standard assumption that a computationally
bounded adversary cannot do so [30, Chapter 9].

We require that two (honest) peers that faithfully follow the protocol cannot
be convinced to extend the chain in conflicting ways: if honest peer p1 (resp.,
p2 ) determines that block b1 (resp. b2 ) is in the chain, then the chain up to
one of the blocks extends the chain up to the other. This must hold even if some
(byzantine) peers (up to some threshold, as discussed below) actively misbehave.

A peer can propose to add a new block to a chain, and others can vote to
support the proposal. A proposed block can include a special reconfiguration
(epoch change) transaction, which would change the set of peers participating
and/or other parameters. To prevent impersonation, messages are signed.

A valid proposal contains or identifies a quorum certificate that represents a
quorum of votes supporting the previous block. Based on assumptions discussed
below, we can be sure that any two quorums each contain a vote from at least one
honest peer in common. An honest participant will refuse to vote for a proposal
if the requirements for the quorum certificate and previous blocks are not met.
This ensures that the quorum certificate associated with each block in a chain
satisfies these requirements, even though some peers that contributed votes to
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the quorum certificates may be dishonest. The conditions for committing a block
are designed to ensure that honest peers never contribute votes to two quorums
that cause conflicting blocks to be committed.

If a byzantine proposer sends different proposals to different peers, a quorum
of votes for the same proposal may not be generated. In this case, waiting peers
may time out, and initiate a new effort to extend the chain; this can result in
competing proposals to extend the same chain with different blocks. To distin-
guish between proposals, each proposed block has an associated round, which
must be larger than that of the block that it extends. Because competing pro-
posals are possible, peers collectively build a tree of records, and follow specified
rules to determine when a given proposal has been committed. The essence of
the protocol is in the rules that honest peers must follow, and what information
a peer must verify before committing a proposal.

The goal of this work is an abstract model of the protocol that is independent
of all these details, capturing just enough detail to prove that, if the assumptions
are not violated, then honest peers will not commit conflicting proposals.

3 Correctness properties and proofs

We prove our high-level abstract correctness properties in module
LibraBFT .Abstract .Properties (in file LibraBFT/Abstract/Properties.agda),
which receives several module parameters that can be instantiated in order to
relate a particular implementation to the abstract machinery.

module LibraBFT .Abstract .Properties
(E : EpochConfig) (UID : Set)

(_ ?
=UID_ : (u0 u1 : UID) → Dec (u0 ≡ u1 ))

(V : VoteEvidence E UID)
where . . .

We first describe EpochConfig ; the other module parameters are explained
later. EpochConfig represents configuration information for an epoch, including:
how many peers participate in the epoch (authorsN ), their identities (toNodeId),
and their public keys (getPubKey), as well as requirements such as each member
having a different public key (PK--inj). Members are identified by values of type
Fin authorsN : the natural numbers less than authorsN ; for example, we have
getPubKey : Member → PK where Member = Fin authorsN .

An EpochConfig also provides IsQuorum, a predicate indicating what the im-
plementation considers to be a quorum. The type of IsQuorum is List Member →
Set ; Set is Agda’s way of representing an arbitrary type. This definition is then
used to define another important field of an EpochConfig :

bft--assumption : ∀ {xs ys } → IsQuorum xs → IsQuorum ys
→ ∃[a](a ∈ xs × a ∈ ys × MetaHonestPK (getPubKey a))
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Here, bft--assumption requires that the intersection of any two quorums con-
tains at least one honest peer.5 Agda supports implicit arguments, listed in curly
braces, which need not be provided explicitly if their values can be inferred from
context, e.g., IsQuorum xs implies that xs is of type List Member . The ∃[a]·
notation says that there is an a which satisfies the condition—a product of three
conditions, in this case. The type of a must be implied by context; here, a ∈ xs
implies that a is of type Member .

To inherit the correctness properties we prove, an implementation must pro-
vide an EpochConfig as a module parameter. Part of constructing it is proving
bft--assumption based on whatever assumptions and definition of IsQuorum the
implementation uses. One common approach is to assume n peers with equal
“voting power”, at most f of which are byzantine, and to ensure that n > 3f ;
in this case, a set of peers is a quorum iff it contains at least 2n/3 distinct
peers. LibraBFT .Abstract .BFT contains a lemma that can be used to prove
that such assumptions imply bft--assumption. The lemma is sufficiently general
to accommodate LibraBFT’s approach of assigning (potentially non-uniform)
voting power to peers, and considering a set of peers to be a quorum iff its
combined voting power exceeds two thirds of the total voting power.

The remainder of this section is in context of a single EpochConfig called E .

3.1 Abstract Records and RecordChains

A Record can be a Block , a quorum certificate (QC ) or the epoch’s genesis
(initial) Record ; precise definitions are below. (These are abstract records that
may not correlate closely to data structures and message formats used by an
implementation; for example, in LibraBFT, blocks contain the previous QC.)
HotStuff-based algorithms grow a tree of Records rooted at the epoch’s genesis
record, where nodes contain a Block or a QC . Paths (called RecordChains) from
the root begin with the genesis record and then alternate between Blocks and
QC s. For example, the existence of a path from the root to a record r is captured
by the type RecordChain r being inhabited. Figure 1 illustrates a tree of Records.

genesis b0 q0 b1 q1

b2 q2

b3 q3

b4 q4

b5 q5

b6 q6

Tree of Records

RecordChain (Q q6 )

Fig. 1. A tree of Records with a RecordChain from genesis to abstract Record Q q6 .
5 MetaHonestPK is a predicate representing whether a peer owning a key behaves

honestly. The Meta prefix identifies this as being part of the formal model and not
accessible to implementations, which must not depend on knowing who is honest.
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While typical implementations carry more information, abstractly, a Block
comprises its round number, an identifier of type UID for itself and for the quo-
rum certificate it extends, if any (a value of type Maybe UID is either nothing or
just x for some x of type UID). UID can be any type that has decidable equal-
ity, as represented by the second and third module parameters; these are passed
to other modules in the Abstract namespace as needed. Definitions below are in
modules LibraBFT .Abstract .Records and LibraBFT .Abstract .RecordChain.

Typical implementations obtain a Block ’s id by applying a cryptographic
hash function to some or all of its contents; thus identifiers may not be unique.
Our correctness properties are therefore proved modulo “injectivity failures” on
(supposedly) unique ids. We do not assume that such injectivity failures do
not exist, which would make our proofs meaningless because they can occur in
practice, however unlikely. We elaborate below and in Sections 4 and 5.

Abstractly, a Vote is by a member of the epoch, for a round and Block id.

record Block : Set where
constructor mkBlock
field bRound : Round

bId : UID
bPrevQC : Maybe UID

record Vote : Set where
constructor mkVote
field vRound : Round

vMember : Member
vBlockUID : UID

A quorum certificate (QC ) represents enough Votes to certify that a Block
has been accepted by a quorum of members. It includes the Block ’s id and round,
and a list of Votes and evidence that the QC is “valid” (representing properties
that honest peers verify before accepting the QC), i.e.,:
1. The list of voting Members represents a quorum.
2. All Votes are for the Block ’s id.
3. All Votes are for the same round.

Honest peers accept a (concrete) Vote only if it satisfies implementation-specific
conditions captured by the module parameter V of type VoteEvidence E UID , an
implementation-specific predicate on abstract Votes. To enable proofs to access
the verified conditions, we add a fourth coherence clause to QCs:
4. For each Vote in the QC , there is evidence that a message was sent con-

taining a concrete representation of the (abstract) Vote that satisfies the
implementation-specific conditions.
Putting this all together, we have:

record QC : Set where
constructor mkQC
field qRound : Round

qCertBlockId : UID
qVotes : List Vote
qVotes--C1 : IsQuorum (List--map vMember qVotes)
qVotes--C2 : All (λ v → vBlockUID v ≡ qCertBlockId) qVotes
qVotes--C3 : All (λ v → vRound v ≡ qRound) qVotes
qVotes--C4 : All V qVotes
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All (from the Agda standard library) accepts a predicate and a list, and
requires that each element of the list satisfies the predicate.

Next, we define a Record to be either a Block , a QC , or the special genesis
record I . There is a constructor for each case, and the B and Q constructors
take arguments of the appropriate type to form a Record .

data Record : Set where
I : Record
B : Block → Record
Q : QC → Record

We then say that a record r ′ extends another record r , denoted r ← r ′,
whenever one of the following conditions is met:

1. r is the genesis Record and r ′ is a Block for round greater than 0 and not
identifying any previous Block .

2. r is a QC and r ′ is a Block with a round higher than r ’s and with a bPrevQC
field identifying r .

3. r is a Block and r ′ is a QC certifying r .

We capture these conditions in the following Agda datatype; _←_ indicates that
← is an infix operator with two arguments. Values of this type can be constructed
using one of three constructors (I←B , Q←B or B←Q), each of which requires
several arguments to establish a value of _←_ for a pair of Records.

data _←_ : Record → Record → Set where
I←B : ∀ {b} → 0 < getRound b → bPrevQC b ≡ nothing

→ I ← (B b)
Q←B : ∀ {q b} → getRound q < getRound b

→ just (qCertBlockId q) ≡ bPrevQC b
→ Q q ← B b

B←Q : ∀ {b q } → getRound q ≡ getRound b → bId b ≡ qCertBlockId q
→ B b ← Q q

RecordChains are in the reflexive, transitive closure of _←_, starting at the
genesis record I . Sometimes, we reason about paths starting at records other than
I ; we therefore define RecordChain using the more specific RecordChainFrom.

data RecordChainFrom (o : Record) : Record → Set where
empty : RecordChainFrom o o
step : ∀ {r r ′} → RecordChainFrom o r

→ r ← r ′

→ RecordChainFrom o r ′

RecordChain : Record → Set
RecordChain = RecordChainFrom I

Next, we present definitions needed to specify when a Block can be commit-
ted. For k > 0, a K--chain is a sequence of k Blocks, each of which is extended
by a QC , such that each Block (except the first) extends the QC that extends
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the previous Block . Furthermore, each adjacent pair of Blocks must satisfy the
relation R, which can be instantiated with Simple (which holds for any pair of
Blocks) or Contig (which holds only if the rounds of the two Blocks are con-
tiguous: the second Block ’s round is one greater than that of the first; the first
parameter to R enables a definition of Contig that does not require a predecessor
for the first Block ; see module LibraBFT .Abstract .RecordChain). K--chains are
defined as follows.

data K--chain (R : N → Record → Record → Set)
: (k : N) {o r : Record } → RecordChainFrom o r → Set where
0--chain : ∀ {o r } {rc : RecordChainFrom o r } → K--chain R 0 rc
s--chain : ∀ {k o r } {rc : RecordChainFrom o r } {b : Block } {q : QC }

→ (r←b : r ← B b) → (prf : R k r (B b))
→ (b←q : B b ← Q q) → K--chain R k rc
→ K--chain R (suc k) (step (step rc r←b) b←q)

Block b0 (and those preceding it) are committed if b0 is the head of a con-
tiguous 3-chain: there is a RecordChain that contains b followed by blocks b1
and b2 , such that the rounds of blocks b0 , b1 and b2 are consecutive. This is
called a CommitRule (kchainBlock n c3 is the nth Block from the end of c3 ):

data CommitRuleFrom {o r : Record }
(rc : RecordChainFrom o r) (b : Block) : Set where

commit--rule : (c3 : K--chain Contig 3 rc) → b ≡ kchainBlock 2 c3
→ CommitRuleFrom rc b

3.2 First correctness property: thmS5

We can now explain the first high-level property we prove for our abstract model,
thmS5 . (Because our work has been influenced by versions of the HotStuff [41]
and LibraBFT papers [5, 37], some of our properties are named after proper-
ties presented informally in those papers. For example, thmS5 is named after
Theorem S5 in [5].) It states that, if two blocks b and b′ are committed via
CommitRule rc b and CommitRule rc′ b′, respectively, then one of the blocks
is contained in the record chain of the other. This property ensures that all
committed Blocks are on a single non-branching path in the tree of Records.

thmS5 : ∀ {q q ′} → {rc : RecordChain (Q q)} → AllInSys rc
→ {rc′ : RecordChain (Q q ′)} → AllInSys rc′

→ {b b′ : Block } → CommitRule rc b → CommitRule rc′ b′

→ Either NonInjective--≡ (Either ((B b) ∈RC rc′) ((B b′) ∈RC rc))

AllInSys rc means that each record in rc is “in” the abstract system accord-
ing to an implementation-specific predicate over abstract Records called InSys,
which is provided as a module parameter. For purposes of AllInSys, a record r
being “in” a record chain rc is captured by a simple recursive definition: if rc is
formed by extending record chain rc′ by record r ′, then r is “in” rc iff r = r ′
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or r is “in” rc′. On the other hand, as explained in Section 3.4, ∈RC represents
a more complicated notion of a record being “in” a record chain.

Note that thmS5 requires that either NonInjective--≡ holds or one of the
committed Blocks is in a RecordChain ending at the other. The NonInjective--≡
disjunct—which is shared by many of the properties discussed below—reflects
that we prove thmS5 modulo injectivity of Block ids, as discussed above.

In Section 3.6, we explain how we refine the definition of thmS5 and other
properties in order to relate our abstract proofs to the security properties of a
concrete implementation that is proved correct using them. For now, however,
we can think of the following simplified definition of NonInjective--≡:

NonInjective--≡ : Set
NonInjective--≡ = Σ (Block × Block)

(λ {(b0 , b1 ) → b0 ̸≡ b1 × bId b0 ≡ bId b1 })

The Σ notation is similar to the ∃[·]· notation introduced earlier, except that
it specifies the type of the existentially quantified value (not just a name, as with
∃[·]·) and the condition on the value of that type is expressed as a predicate on
that type. Thus, a value of type NonInjective--≡ comprises a pair of (abstract)
Blocks—b0 and b1—that are different but have the same id.

3.3 Precisely defining protocol rules
Module LibraBFT .Abstract .RecordChain.Properties contains the proof of thmS5 ,
which requires module parameters representing assumptions about Records that
are InSys. These assumptions capture the key properties that an implementation
must ensure. Part of our contribution is to precisely define these assumptions in
an abstract way, independent of any particular implementation.

Implementations described in various papers [5, 37, 41] are all based on the
same core ideas, but differ substantially in detail. None of these papers gives a
precise definition of the core protocol. Early versions of the LibraBFT papers [5]
come closest, providing explicit statements of two “voting constraints”.

These voting constraints (“Increasing Round” and “Preferred Round”) were
a starting point for us, but they are not entirely suitable for our purposes. For ex-
ample, the “Increasing Round” constraint is originally stated as: An honest node
that voted once for B in the past may only vote for B ′ if round (B) < round (B ′).
However, to interpret this as a protocol rule, we would need to define precisely
what it means to have “voted in the past”. Our proof efforts revealed that it suf-
fices to require that an honest peer does not sign and send different (abstract)
votes for the same round (regardless of order):

VotesOnlyOnceRule : Set ℓ
VotesOnlyOnceRule = (a : Member) → MetaHonestMember a

→ ∀ {q q ′} → InSys (Q q) → InSys (Q q ′)
→ (v : a ∈QC q) (v ′ : a ∈QC q ′)
→ vRound (∈QC --Vote q v) ≡ vRound (∈QC --Vote q ′ v ′)
→ ∈QC --Vote q v ≡ ∈QC --Vote q ′ v ′
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For generality, InSys is assumed to return a type from some arbitrary universe
[40] with level ℓ. The v parameter is evidence that there is a Vote by member
a represented in q (a QC ), and ∈QC --Vote q v is that (abstract) Vote. Thus,
VotesOnlyOnceRule requires that, if there are two Votes for the same round by
an honest member a in QC s in the system, then the Votes are equal.

The second constraint—PreferredRoundRule—is more complicated. It is
based on the voting constraint called “Locked Round” in early versions of the Li-
braBFT paper [5]; similar constraints on voting are followed by HotStuff [41]
and by later versions of LibraBFT [37]. The essence of this rule is that, if an
honest peer contributes a Vote to q (a QC ) that commits a Block (c3 is essen-
tially a CommitRule that commits the Block identified by kchainBlock 2 c3 ),
then it does not vote in a higher round for a Block unless the round of the pre-
vious Block is at least that of the committed Block . This is a key requirement
to avoid voting to commit another Block that conflicts with the first.

PreferredRoundRule : Set ℓ
PreferredRoundRule

= ∀ a {q q ′} → MetaHonestMember a → InSys (Q q) → InSys (Q q ′)
→ {rc : RecordChain (Q q)} {n : N} → (c3 : K--chain Contig (3 + n) rc)
→ (v : a ∈QC q) (rc′ : RecordChain (Q q ′)) (v ′ : a ∈QC q ′)
→ vRound (∈QC --Vote q v) < vRound (∈QC --Vote q ′ v ′)
→ Either NonInjective--≡

(getRound (kchainBlock (suc (suc zero)) c3 ) ⩽ prevRound rc′)

3.4 The proof of thmS5

Our proof of thmS5 is similar to the manual proof presented an early version
of the LibraBFT paper [5]. However, a formal, machine-checked proof must
address many details that are glossed over in the manual proof. Furthermore, as
discussed in Section 3.3, making our assumptions about honest peers’ Votes pre-
cise and implementation-independent required somewhat different assumptions.

To help the reader approach the formal, machine-checked proofs in our open-
source development [7], we describe below some of its key proofs and properties.

We first introduce two key lemmas. Roughly speaking, lemmaS2 states that
there can be at most one certified Block per round. Its proof depends on the
bft--assumption: for two QC s, there is some honest peer with Votes in each. By
the assumption that honest peers obey VotesOnlyOnceRule, if the blocks certified
by the two QC s have the same round, then both Votes are for the same BlockId .
However, this does not imply the QC s certify the same Block . For this reason,
the conclusion of lemmaS2 is that either bId is non-injective or b0 ≡ b1 .

lemmaS2 : ∀ {b0 b1 : Block } {q0 q1 : QC } → InSys (Q q0 ) → InSys (Q q1 )
→ (p0 : B b0 ← Q q0 ) (p1 : B b1 ← Q q1 )
→ getRound b0 ≡ getRound b1
→ Either NonInjective--≡ (b0 ≡ b1 )

Similarly, lemmaS3 makes the PreferredRoundRule apply to QC s.
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lemmaS3 : ∀ {r2 q ′} {rc : RecordChain r2 } → InSys r2
→ (rc′ : RecordChain (Q q ′)) → InSys (Q q ′)
→ (c3 : kchain Contig 3 rc) → round r2 < getRound q ′

→ Either NonInjective--≡ (getRound (kchainBlock (suc (suc zero)) c3 )
⩽ prevRound rc′)

The proof of thmS5 depends on a non-symmetric variant of it called propS4 :

propS4 : ∀ {q q ′} {rc : RecordChain (Q q)} → AllInSys rc
→ (rc′ : RecordChain (Q q ′)) → AllInSys rc′

→ (c3 : K--chain Contig 3 rc)
→ getRound (kchainBlock (suc (suc zero)) c3 ) ⩽ getRound q ′

→ Either NonInjective--≡ (B (kchainBlock (suc (suc zero)) c3 ) ∈RC rc′)

Recall that ∈RC is a specific representation of what it means for a Record
to be “in” a RecordChain that is precisely defined later, and note that c3 is a
K--chain Contig 3 rc, for some rc, i.e., a CommitRule.

Proof overviews for thmS5 and propS4 are in the extended paper [14].

Finally, we explain what it means for a Block to be “in” a RecordChain, as
captured by the ∈RC predicate. It is tempting to think that, if RecordChains rc
and rc′ both end at block b, then the requirements of _←_ ensure that rc and rc′

are the same RecordChain. However, suppose we have q ← b and q ′ ← b, where
q and q ′ are QC s. The definition of _←_ requires that just (qCertBlockId q) ≡
bprevQC b ≡ just (qCertBlockId q ′). This does not imply that q ≡ q ′ because
q and q ′ may include different Votes, reflecting the reality that two peers may
be convinced to extend the same Block by two different valid QC s.

Therefore, we need a notion of equivalent RecordChains that contain the
same Blocks and equivalent QC s: two QCs are equivalent iff they certify the
same Block (i.e, their qCertBlockId components are equal). These notions are
captured by ≈RC (defined in LibraBFT .Abstract .RecordChain), which requires
the two RecordChains to be “pointwise equivalent” meaning that the correspond-
ing Records in the two RecordChains are equivalent. A lemma RC--irrelevant
shows that, if two record chains rc and rc′ end at the same Record , then they
are equivalent (i.e., rc ≈RC rc′), unless there is an injectivity failure.

The K--chain--∈RC property used in the proof of propS4 states that, if a
RecordChain rc1 ends at a block b that is in a K--chain based on another record
chain rc, then another Block that is earlier in the K--chain is also “in” rc1 . To
enable proving this, ∈RC must allow for the possibility that the other Block is
contained in an equivalent RecordChain. The definition of ∈RC therefore has an
additional constructor beyond the two obvious ones, which enables the Record
in question to be “transported” from an equivalent RecordChain:
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data _∈RC_ {o : Record } (r0 : Record) :
∀ {r1 } → RecordChainFrom o r1 → Set where

here : ∀ {rc : RecordChainFrom o r0 } → r0 ∈RC rc
there : ∀ {r1 r2 } {rc : RecordChainFrom o r1 } → (p : r1 ← r2 )

→ r0 ∈RC rc → r0 ∈RC (step rc p)
transp : ∀ {r } {rc0 : RecordChainFrom o r } {rc1 : RecordChainFrom o r }

→ r0 ∈RC rc0 → rc0 ≈RC rc1 → r0 ∈RC rc1

3.5 Traditional and extended correctness properties

Our core correctness property CommitsDoNotConflict is thmS5 without the
NonInjective--≡ disjunct. It is proved in LibraBFT .Abstract .Properties, which
receives an additional module parameter no--collisions--InSys providing evidence
that there are no injectivity failures between Blocks that satisfy InSys. Note
that, if an implementation reaches a state in which this does not hold, then
there is an injectivity failure between concrete Records at the implementation
level; for a typical implementation, this signifies a collision for a cryptographic
hash function among Records that are actually in the system, contradicting the
standard assumption that a computationally bounded adversary is unable to find
such collisions. To prove CommitsDoNotConflict , we invoke thmS5 and then use
no--collisions--InSys to eliminate the possibility of an injectivity failure.

To invoke CommitsDoNotConflict for a particular implementation, we need
to provide AllInSys rc, where rc is the RecordChain for the first CommitRule
(and similarly for rc′). To enable this, honest voters in typical implementations
will vote to extend a Block only after verifying that the Block extends a QC (or
the initial Record) that the peer already knows is in the system. Thus, a peer
that verifies a CommitRule based on a record chain rc that ends in a QC (q)
knows that every Record in rc is “in the system”: AllInSys rc.

Extended correctness condition We are also interested in enabling parties that
do not participate in the protocol to verify commits. Suppose a peer p provides
to a client c the contents of a CommitRule that c can verify. In this case, c
cannot invoke CommitsDoNotConflict (or thmS5 ), because it does not know the
RecordChain on which the CommitRule is based.

For this purpose, we define and prove a variant of CommitsDoNotConflict
called CommitsDoNotConflict′. This condition ensures that even a party that
does not participate in consensus can confirm commits and will not confirm
conflicting commits.

CommitsDoNotConflict′ : ∀ {o o′ q q ′}
→ {rcf : RecordChainFrom o (Q q)} → AllInSys rcf
→ {rc′ : RecordChainFrom o′ (Q q ′)} → AllInSys rc′

→ {b b′ : Block } → CommitRuleFrom rcf b → CommitRuleFrom rcf′ b′
→ Either Σ (RecordChain (Q q ′)) ((B b) ∈RC_)

Σ (RecordChain (Q q)) ((B b′) ∈RC_)
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CommitsDoNotConflict′ does not require CommitRules based on full
RecordChains; instead, CommitRuleFroms based on RecordChainFroms suffice.
This property shows that a party can validate just the Records required to form
a CommitRuleFrom, and confirm that the Block it claims to commit has indeed
been committed, and that there cannot be another commit that conflicts with
it. Here, (B b) ∈RC_ is a predicate over values of type RecordChain (Q q ′),
so CommitsDoNotConflict′ says that, if there are two CommitRuleFroms based
on RecordChainFroms that end with a QC and have all of their Records in the
system, then (unless there is an injectivity failure), one of committed Blocks is
in a RecordChain that contains the other.

To prove this property, we require an additional assumption about the im-
plementation, which is provided as a module parameter ∈QC⇒AllSent, of type
Complete InSys, where:

Complete : ∀ {ℓ} → (Record → Set ℓ) → Set ℓ
Complete ∈sys = ∀ {a q } → MetaHonestMember a

→ a ∈QC q → ∈sys (Q q)
→ ∃[b] (Σ (RecordChain (B b)) AllInSys × B b ← Q q)

Here, Record → Set ℓ is a predicate on (abstract) Records representing
what Records an implementation considers to be “in the system”.

This assumption (indirectly) requires that an honest peer sends a Vote for a
Block id (which may subsequently be represented in a QC ) only if it knows that
there is a Block with that id and a RecordChain up to that Block whose Records
are all “in the system” (for example the peer may have validated all of those
Records itself, or it may have validated sufficient information to be confident
that all of them have been validated by some honest peer, unless there is a hash
collision among Records that are in the system).

The extended version of this paper [14] includes proof overviews for
CommitsDoNotConflict′, and for a lemma crf⇒cr on which it depends.

3.6 Relating non-injectivity to security properties
Recall from Section 3.2 that we prove our abstract properties modulo injectivity
of Block ids. However, the simplified NonInjective--≡ disjunct used in the prop-
erty definitions presented so far is insufficient. The reason is that it is trivial to
construct two different abstract Blocks with the same id, meaning that we could
prove thmS5 with a single-line proof, independent of the actual protocol. Worse,
we could accidentally do the same in context of legitimate-looking proofs.

The issue is that the abstract Blocks we could trivially construct bear no
relation to any real Blocks and ids produced in the execution of a concrete
implementation. To resolve this problem, we strengthen the first disjunct of
thmS5 to NonInjective--≡--InSys, defined as follows:

NonInjective--≡--InSys : Set
NonInjective--≡--InSys =

Σ NonInjective--≡ λ {((b0 , b1 ) , , ) → InSys (B b0 ) × InSys (B b1 )}
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This definition requires that the proof not only provides different Blocks
b0 and b1 with the same id, but also proof that the implementation considers
the Records B b0 and B b1 to be “in the system”. The meaning of “in the
system” is specified by the implementation-provided predicate InSys and is thus
beyond the scope of this paper. However, in ongoing work, we are proving a
real implementation correct using the results presented here. In that broader
context, we instantiate InSys with a predicate that holds only for Blocks that
are contained in network messages that have actually been sent. In this way, from
the perspective of that concrete implementation, we ensure that our correctness
properties hold unless and until an adversary actually finds a hash collision and
introduces it into the system. We contrast this approach to some related efforts
in Section 4.

The NonInjective--≡ and NonInjective--≡--InSys definitions stated above are
actually simplified versions of more general definitions we use in our proofs;
details are available in our open source development [7]. These more general
definitions are required because, at different stages of our proofs, we use different
predicates to capture evidence collected so far about the conflicting Blocks, so
that we can build up to the proof for thmS5 that both Blocks satisfy InSys.

4 Related work

4.1 HotStuff/LibraBFT

Before open sourcing our work in December 2020 [7], we were not aware of
any formal verification work related to the HotStuff / LibraBFT protocols
beyond manual proof sketches [5, 37, 41]; these are useful and have influenced
our work significantly, but are far from detailed, precise proofs. We have since
learned of two other pieces of work involving mechanical proofs of correctness
of variants of the HotStuff/LibraBFT algorithm, and one involving model
checking.

Librachain [20] is a Coq-based model of the data structures used in Li-
braBFT. It contains a single commit from May 2020, described as “experi-
mental”; we are not aware of any paper describing this work. The Librachain
model commits to some structural details that are not central to the core pro-
tocol. For example, it assumes that the QuorumCert that a new Block extends
is included in the Block record; this is one implementation choice, but certainly
not fundamental. Furthermore, the proofs assume various conditions have been
validated for the data structures, and are thus intimately tied to the particular
implementation types. In contrast, we model an abstraction of the core protocol,
and establish precise requirements for any implementation to enjoy the correct-
ness properties we prove. The Librachain development also uses a hypothesis
that the hash function used is injective, which is not true of hash functions that
are used in practice. Our properties are proved to hold unless and until a spe-
cific injectivity failure exists between (abstract) Records that are actually “in
the system” (see Section 3.6); when instantiated with implementations that use
cryptographic hash functions to assign ids, this ensures that the result holds
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unless and until a peer succeeds in finding a specific hash collision, violating the
assumption that a computationally bounded adversary cannot do so.

More recently, Leander [22] has described work modeling and proving correct-
ness for one specific, simplified variant of HotStuff. Hashes are not explicitly
modeled, but the way the relationship between blocks is modeled amounts to an
assumption that hashing is injective. Leander modeled this simplified variant in
TLA+ and Ivy, and the paper is focused on comparing the tools for this purpose.

Kukharenko et al. [25] use TLA+ [26] to model check basic HotStuff, but
not the more practical chained variant used by LibraBFT. Again, our work
applies to an abstraction of the protocol that can be instantiated for all versions
of HotStuff and LibraBFT, as well as variants that may not yet exist.

Model checking has the advantage of requiring less work (defining a model
and correctness properties and then “pushing the button”) than developing pre-
cise, machine-checked correctness proofs. It can also provide insight into errors
found. Kukharenko et al. ran one of their models with seven participants of
which three are byzantine (correctness is not guaranteed in this case), and found
a counterexample showing how the byzantine peers can violate correctness.

To limit the state space, Kukharenko et al. developed a restricted model, in
which a node (analogous to our Block) can be extended only by one of two nodes,
and a more general model in which any node can extend any other (from some
fixed set). The restricted model, with just four peers (one byzantine), took over
seven hours to check. The more general model took over 17 days. Our approach
imposes no such limitations, and Agda checks our proofs in under one minute.
Finally, for the more general model, TLA+ estimates an “optimistic” probability
of 0.3 that it has in fact not explored the entire state space due to hash collisions
on states, leaving open the possibility of an unfound bug even for this minimal
configuration. We consider that Kukharenko et al.’s work complements ours, but
does not obviate the need for the machine-checked correctness proofs.

4.2 Other BFT consensus protocols

Pîrlea and Sergey present Toychain [33, 34], which models Nakamoto consen-
sus [31] and proves correctness properties about it using Coq [6]. Although
Nakamoto consensus differs substantially from HotStuff/LibraBFT, Toy-
chain is the closest prior work to ours in terms of modeling structures (collec-
tions of trees of records) and reasoning about their properties. Their model can
be instantiated with different implementation components, and they prove that
any implementation that provides components satisfying certain requirements is
correct. In contrast, each of the LibraBFT-related efforts mentioned above [20,
22, 25] proves properties about one particular model of HotStuff/LibraBFT.

While Toychain indeed establishes some generality by enabling instantiation
with specific components, we impose no structure whatsoever on an implemen-
tation: if the externally visible behaviour of honest peers for a given implemen-
tation complies with two precisely stated rules, then that implementation can
inherit the correctness properties we have proved of the abstract model.
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Toychain initially assumed an injective hash function, which requires trusting
that the proofs do not abuse the power granted by a false assumption. Inter-
estingly, subsequent versions of Toychain addressed this issue by removing the
assumption that the hash function used is injective. The bulk of Chapter 3 of
Pîrlea’s thesis [33] is devoted to describing the complexity that this undertaking
involved, reporting that every proof had to be changed, and citing an example
of one proof that grew from 10 lines to 150 to accommodate this enhancement!

In contrast, as described in Section 3.6, we have taken a different approach.
Our abstract model is aware only of ids assigned to Blocks that an implementa-
tion considers to be “in the system”, not hash functions. We too rested our ini-
tial development on an unsound foundation by assuming that ids were injective.
However, because our abstraction freed us from reasoning about hash functions
in our correctness proofs, it was not particualrly disruptive to later augment our
proofs to provide evidence of specific injectivity failures when necessary, tying
those injectivity failures to Records that the implementation considers to be in
the system.

The work that is perhaps closest to our broader project is Velisarios [35],
which uses the Coq theorem prover [6] and provides a framework for modeling
distributed systems with byzantine peers, analogous to our system model. It is
based on a Logic of Events [29] approach, in contrast to our state transition
system approach. Velisarios is instantiated with definitions modeling PBFT [15]
to prove PBFT correct. Coq supports extraction to OCaml, enabling an imple-
mentation to be derived from the PBFT model. Agda has support for extracting
to Haskell or Javascript. However, we have not experimented with this. The goal
of our ongoing work is to model our practical Haskell implementation in Agda
and prove correctness for that model using the results presented in this paper.

Alturki et al. [2] use Coq to formally verify correctness of Algorand’s [21]
consensus protocol. Their correctness condition is slightly different as Algorand’s
protocol seeks to ensure that exactly one block is certified per round, implying a
total order on all certified blocks. Crary [17] reports on work towards verifying
correctness for the consensus mechanism of Hashgraph [4] in Coq. Losa and
Dodds [28] describe formal verification of safety and liveness properties for the
Stellar consensus protocol using Ivy and Isabelle/HOL. Alturki et al. [3] use Coq
to formally verify properties for Gasper [11]—Ethereum 2.0’s Proof of Stake
consensus mechanism. Rather than assuming that any two quorums intersect
on at least one honest node, they prove that, if (using our terminology) two
conflicting blocks are committed, then there exist two quorums whose common
members can have their stake slashed. This property would be satisfied if only
the first offense results in slashing; presumably, a stronger property that ties the
conflicting blocks to specific quorums related to those blocks could be proved.

There is also work model checking other BFT consensus protocols. For exam-
ple, Tholoniat and Gramoli [38] have used ByMC [24] to model check RedBelly’s
consensus algorithm [16]; ByMC is a model checker designed to mitigate the state
space blowup for algorithms in which processes wait for a threshold of messages.
While basic HotStuff may fit this structure, chained HotStuff does not.
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Braithwaite et al. [8] report on work in progress towards model checking Ten-
dermint [9] using TLA+; so far, they have gained useful insight into the algorithm
using very small configurations, and have found and fixed some specification bugs
as a result. Nonetheless, their experience again highlights the challenges of model
checking related to state space and execution time.

5 Concluding remarks and future work

We have presented a formal model of the essence of a Byzantine Fault Toler-
ant consensus protocol used in several existing implementations, and proved its
safety properties—including one that enables non-participants to verify commits—
for a single epoch, during which configuration does not change. Extending our
proofs to accommodate epoch changes (reconfiguration) is future work.

Our contributions include precisely defining implementation assumptions and
correctness conditions, and developing formal, machine-checked proofs of correct-
ness properties for any implementation satisfying the assumptions. Our model,
definitions, and proofs are all expressed in Agda, and are available in open source.

Our approach enables verifying implementations by proving only that honest
peers obey the rules established by our abstract assumptions, without repeating
the hard work of proving the underlying protocol correct each time.

Our thmS5 property establishes correctness unless it can provide evidence of a
specific injectivity failure between Blocks that are in the system. Thus our proofs
are independent of how specific implementations assign Block ids, and ensure
that they hold unless and until an injectivity failure actually occurs. In this way,
our abstract proofs support proving that implementations that use crypotgraphic
hash functions to assign ids behave correctly, based on the standard assumption
that a computationally bounded adversary cannot produce a hash collision.

In our broader project [7], we have defined a system model in which mes-
sages can be lost, duplicated and arbitrarily delayed, and dishonest peers are
constrained only by their inability to forge signatures of honest peers. We have
ported our Haskell implementation to Agda using a library we have devel-
oped [13], instantiated our system model with its types and handlers, and made
substantial progress towards proving that it satisfies the required assumptions.

Beyond that, extending our system model to support proofs of liveness in
the partial synchrony model [19] is future work. A pragmatic intermediate point
is to prove within our existing system model that, from any reachable state
that has Blocks available to commit, there is some execution in which another
Block is committed (called plausible liveness by Buterin and Griffith [10]). These
liveness properties would pertain to a model of a specific implementation; liveness
properties do not make sense for the abstract model presented in this paper.
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