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Abstract-In this paper we study the problem of sen- 
sor allocation in Unmanned Aerial Vehicles (UAVs). Each 
UAV uses perception-based rules for generalizing decision 
strategy across similar states and reinforcement learning 
for adapting these rules to the uncertain, dynamic envi- 
ronment. A big challenge for reinforcement learning algo- 

plementary how to allocate their individual sen- 
sors to appearing targets and how to distribute themselves 
as a team in space to match the density and importance of 
targets underneath. We address this problem using a CO- 

Moreover, the sensor allocation policy of each UAV 
should be aware of other nearby UAVs to reduce the 
chance oftracking unnecessarily the same targets. That is, 
at the individual level, uAv,s need to be dynam- 
ically allocated to tracking various targets. At the team 

these sensors need to he allocated to different regions of 
the search space in proportion to the density and impor- 
tance of targets there, in order to maximize the team effi- 
ciencv. 

rithms in this prohlem,is that ~ A V ~  need to learn two level, each UAV can he treated as a composite sensor, and 

evolutionary approach, where the policies are learned sepa- 
rately, but they use a common reward function. The appli- 
cability of our approach to the UAV domain is verified using 
a high-fidelity robotic simulator. Based on our  results, we 
believe that the eo-evolutionary reinforcement learning ap- 
proach to  reducing dimensionality of the action space pre- 
sented in this paper is general enough to be applicable to 
many other multi-objective optimization problems, partic- 
ularly those that involve a tradeoff between individual opti- 
mality and team-level optimality. 

I. INTRODUCTION 

The problem of sensor allocation in teams of UAVs op- 
erating in uncertain, ,dynamic environments is very chal- 
lenging. No existing centralized control approaches can 
provide a fully adequate solution, since at any point in 
time the space of possible future states of each UAV is 
very large, possibly continuous. Any centralized approach 
that keeps track of all UAV’s states will be defeated by the 
“curse of dimensionality” - exponential explosion of pos- 
sible states to consider as the number of UAVs increases. 
In addition, if the local environment of each UAV also 
contains a large number of objects (e.g. targets, obstacles, 
etc.) whose properties change over time, developing good 
sensor allocation policies even for a single UAV becomes 
a major challenge. 

We propose to address the above challenges by using 
perception-based reinforcement leaming in conjunction 
with the distributed co-evolutionary multilevel learning 
framework described in [l]. Instead of using a single pol- 
icy for decision-making that involves both sensor man- 
agement and geographical UAV allocation together, this 
framework uses two different but complementary policies 
on individual and group levels that co-evolve toward a 
common goal. 

In section I1 we describe the way in which rule-based 
systems in combination with the Computational Theory of 
Perceptions (CTP) can be used for evaluating various ac- 
tion altematives available to autonomous decision makers. 
Section I11 presents equations of a reinforcement learning 
algorithm for tuning the coefficients of perception-based 
rules. In section IV we describe a mathematical program- 
ming formulation of the sensor allocation problem faced 
by a team of UAVs. A perception-based co-evolutionary 
reinforcement leaming approach for solving this’problem 
is described in section V. The experimental results are 
presented in section VI and section VI1 concludes the pa- 
per. 

11. COMPUTATIONAL THEORY OF PERCEPTIONS 
Proposed by Lotfi Zadeh [3], the Computational Theory 

of Perceptions (CTP) is based on Computing with Words 

0-7803-7810-5/03/$17.00 02003 IEEE 125 The IEEE International Conference on F u u y  Systems 

mailto:I)@iiscorp.com


(CW), where granulation plays a critical role for data 
compression. By granulating input variables and treat- 
ing them as high-level perceptions, compact and broadly 
applicable inference rules can be defined. In the UAV do- 
main, we will use the following perception-based rules for 
evaluating state-action pairs during UAV sensor allocation 
policies: 

Rule i: IF SI is Sl and s2 is 5'; and ... and S K  is Sk 
THEN (Value is qi), 

where s j  is the j th  attribute of the currently considered 
state-action pair, S; is the corresponding fuzzy label and 
q' is a tunable coefficient representing the value suggested 
for this state-action pair by rule i. Each fuzzy label can be 
represented by a membership function psi ( s j )  : R + 
R that maps its input into a degree to which this input 
belongs to the fuzzy category (linguistic term) described 
by the label. The weight of each rule will be computed 
using the product inference: U*(.) = n?==, ps;(sj).  The 
final conclusion of a fuzzy rulebase function f(s)  with M 
rules is given by: 

After defining the perception-based rules for UAV sen- 
sor allocation, we will use reinforcement learning to tune 
the rule recommendations qi,  corresponding to each per- 
ception. 

111. REINFORCEMENT LEARNING ALGORITHM 
In our simulations we have combined the Q-learning al- 

gorithm of Watkins [ 2 ]  with perception-based fuzzy logic 
function approximation. In the original Q-learning algo- 
rithm, Q(Z, a) is defined as an expectation of a discounted 
sum of future rewards after taking action a in state 2: and 
following the optimal policy thereafter. Once the accurate 
Q-values have been computed for all state-action pairs, 
the optimal policy can be defined by taking in each state 2: 

the action a that maximizes Q(z ,  a). In order to learn the 
optimal Q-values, the following equation is used at every 
time step, after taking action at in state zt, receiving the 
reward rt and moving to the next state zt+l: 

Q(2:t, at) = Q(2:t, at) t at&, ( 2 )  

where at is the learning rate and St is given by: 

St = rt +rmyQ(z t+l ,a)  -&(%at), (3) 

with y being the discounting factor. The above equation 
was proven to converge to optimal Q-values in finite state 
and action spaces if each action is chosen infinitely many 
times in each possible state and the learning rate is suit- 
ably decreased at every time step. 

When the state space is very large or continuous, Q- 
learning cannot explore all possible states, and hence the 
Q-values need to be generalized across similar states. This 
is accomplished by using a function approximation archi- 
tecture Q(z,  a, e), where 0 is the matrix of tunable pa- 
rameters, whose columns correspond to possible actions. 
That is, if the j th possible action was taken at time t ,  then 
the j t h  column of 0 is used to compute the approximation 
to Q ( z t ,  at). The basic parameter updating rule used by 
discounted Q-learning for such an architecture is: 

0t + et + at&VetQ(2: t ,a t ,  et), (4) 

where & is the Bellman error used in the corresponding 
learning rule for the look-up table case presented in equa- 
tion (3). Notice that only the column of 0 corresponding 
to action at gets updated. 

In the general version of discounted Q(X)-learning, 
equation (4) becomes: 

t 
@t 0t +at& (7X)t-'Ve,Q(2:,,a,,0t), ( 5 )  

7=T0 

where To is the time when the current episode began. 

value at any time t using a perception-based rulebase is: 
The analytical expression for approximating the Q- 

K 
&(.,a, 0 )  = O d 4 ~ k ( z ) ,  (6) 

where Ok(a)  can be interpreted as the Q-value of taking 
the action a in the k-th fuzzy state Sk and pk(2:) is the de- 
gree of membership of state 2: to s k .  If generalization over 
action space is used, then equation (6) still applies after 
changing pk(") to pk(2:,a) and learning only K param- 
eters Bk,  k = 1, ..., K instead of K parameters for each 
possible action a. In this case, V,,Q(zt, at, 8,) becomes 
the vector (p l (z t ,  at), . . . ,p ~ ( z t ,  a t ) )T .  Thus, equations 
(4) and (5) can now be rewritten component wise as: 

k=O 

8k ek t at'&!Jk(2:t,at),  (7) 

t 
8k ek +at& ( 'TA)t-7Pk(2:7?'-h) .  ( 8 )  

T=TO 
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The above equations have a natural interpretation in the 
realm of fuzzy state aggregations: the Q-value of a fuzzy 
state-action pair ( S k ,  a )  gets updated proportionally to its 
contribution to the Q-value of the state-action pair (zt, a t )  

the multi-UAV sensor allocation requires that UAVs do 
not duplicate each other’s efforts by allocating all of their 
sensors to the single highest-valued target while leaving 
other targets unattended. The second component of the 

in equation (6). 

IV. PROBLEM FORMULATION 
We have developed a mathematical programming 

framework, which allows finding sensor allocation poli- 
cies that are optimal not only for individual UAVs but also 
for the multi-UAV team as a whole. The objective of each 
UAV is to choose actions in consecutive time periods t = 

0, 1, 2, ._. so as to maximize the expected value of the 
discounted sum of future rewards: 

(9) 

subject to the constraint on the sequence of states st: 

st+l = f ( S t , a t ) ,  (10) 

where y is the discounting factor and rt(st, at)  is the 
reward received attime t in state st after taking the action 
at. 

We chose a very general reward function, which reflects 
simultaneously many of the problem complexities that we 
would like the team of UAVs to optimize. The reward 
received by the kth UAV for tracking all targets within its 
sensor range (e.g. its field of vision) after having aligned 
itself with target j is given by: 

where N is the total number of targets within its field of 
vision once the sensors are pointed at target j ,  M is the 
number of UAVs tracking target TI, dkn is the distance be- 
tween UAV k and target n, and V ,  is the value of target 
n. The above form of the reward function allows UAVs to 
leam the sensor allocation policy that tends to track targets 
that have higher values, that are closer to the UAV, targets 
that are bunched together, and that do not cause increased 
competition among UAVs for rewards. 

The.action at of each UAV needs to optimize simul- 
taneously two aspects of the reward function. On the one 
hand, the UAV needs to be close to the high-valued targets 
in order to maximize the first term of the reward function, a. On the other hand, the team-level optimality of 

l+d‘ reward function, kn , attempts to prevent such a 
E,”=, iizz 

behavior by rewarding eachUAV more for tracking targets 
that do not have many other UAVs around them. There- 
fore, the action of each UAV has two components: indi- 
vidual decision of choosing the target with which to align 
the sensors and the team-level decision of where to posi- 
tion itself in the metric space inhabited by other UAVs. 
Because of the different physical nature of these compo- 
nents, different parts of the state st will be most relevant 
for making each decision. 

To complete the mathematical programming formula- 
tion of the multi-UAV sensor allocation policy, the state 
transition function j needs to be specified in equation 
(10). Due to the complexity of the considered problem, 
this function cannot be expressed analytically. However, 
it can be simulated by following the motion strategy of 
all UAVs as well as by simulating appearance and disap- 
pearance of targets in the search area. Fortunately, the 
simulation-based description of the state transition targets 
is sufficient for reinforcement learning algorithms to learn 
how to iteratively improve the actions in order to maxi- 
mize the reward function rt(st, at) .  

V. SOLUTION METHODOLOGY 

In order to make UAVs leam policies that are both 
tractable and robust to changes in the number of targets 
or UAVs observed, we developed an approach allowing 
each UAV observe only the most relevant parts ofthe com- 
plete state vector (involving information about all targets 
and all UAVs) at each time step t when making the indi- 
vidual sensor allocation decision. Also, we developed a 
potential-field feature extraction method that can be used 
by the team-level motion strategy [ 5 ] .  These methods are 
general in nature and can be used in many different prob- 
lem scenarios. 

In order to extract the most relevant information from 
the high-dimensional state vector, we used the potential 
field approach for compactly encoding information about 
location of multiple objects. That is, since the presence of 
each object - target or UAV - is important only in its local 
neighborhood, we treated it as a potential charge, whose 
value decays with the squared distance from it. With this 
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view, we found the following two variables to be sufficient 
for learning the proper direction of change in the individ- 
ual sensor allocation component of the action at by UAV 
k: 

1) 411 = C L *  
P 1 2) 4 2 1  = Cm=l -> 

1m 

where N is the total number of targets within UAV’s field 
of vision once the sensors are pointed at target j, P is 
the total number of other UAVs and djm is the distance 
between target j and UAV m. The variable 411 represents 
the sum of potentials of all targets that the UAV expects to 
track if it aligns its sensors with the j th  target, while 421 
represents the sum of potentials of all other UAVs near the 
j t h  target. 

Using the same potential field approach, we found the 
following two variables to be sufficient for learning the 
proper direction of change in the team-level motion com- 
ponent of the action at: 

1) y[l] =“Target potential” 
2) y[2] = “UAV potential” 
The gradient of the “Target potential” determines for 

each UAV the direction of motion leading to the greatest 
concentration of targets. All else being equal, this should 
be the preferred direction of motion. The gradient of the 
“UAV potential” determines for each UAV the direction 
of motion leading to the greatest concentration of other 
UAVs. All else being equal, this should be the least pre- 
ferred direction of motion, so as to cause least competition 
for available targets. The team-level motion strategy for 
each UAV will help it to tradeoff the target and the UAV 
potentials at future locations in various circumstances. 

More specifically, a target j contributes the following 
amount to the target potential at location a in the world: 
Pij = &, where is the value of the j t h  target and 
dij is the distance between the target and the considered 
location. A similar formula holds for computing the UAV 
field, except that the potential sources are other UAVs and 
6 = 1 is the value assigned to each UAV. Different val- 
ues may be assigned to different UAVs in case of a het- 
erogeneous set of UAVs that have different capabilities. 
The variable q is the sum of potential of all targets at the 
considered location for the UAV, and 22 is the sum of po- 
tential of all other UAVs. A graphical representation of 
this tile world is shown in Fig. 1, with darker locations 
having a higher target potential. 

The decision variables used by UAVs are assigned to 
a number of fuzzy categories depending on the level of 

Fig. 1. 
locations having a higher target potential. 

A potential surface model of the UAV domain, with darker 

granularity intended for it. For example, in the simpli- 
fied case, we can have two fuzzy categories, SMALL and 
LARGE. Each state variable will be SMALL to a certain 
degree and LARGE to a certain degree, according to the 
value of these linguistic categories at each point in space. 
In our simulations, we chose a simple linearly decreasing 
functions for SMALL and a linearly increasing function 
for LARGE. 

If only two fuzzy labels are used for both the individ- 
ual sensor allocation decision and the team-level motion 
planning decision, then the following rules will be used 
by each UAV (for evaluating the utility of aligning its sen- 
sors with each of the targets or for evaluating the utility of 
moving in each of the possible major directions): 

IF (SI is SMALL) and (s2 is SMALL) then (q’) 
IF (sl is SMALL) and (s2 is LARGE) then (4’) 
IF (SI is LARGE) and (s2 is SMALL) then (q3)  
IF (SI is LARGE) and (s2 is LARGE) then (q4), 
where s stands for the individual decision variable 2 or 

team-level decision variable y as explained in the previ- 
ous section. The final utility of each target is computed by 
combining the recommendations of individual rules using 
equation (1). The values q’, ..., q4 are tuned by equation 
(8) with To = 0 for both policies. Since the input vari- 
ables 2 and y combine information about the state of the 
UAV and the action being considered, they in effect imple- 
ment a generalization over the action space. This allows 
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learning only a single vector of parameters, common to all 
actions. 

The overall learning procedure of a UAV is as fol- 
lows. First, the UAV selects its next location by ehoos- 
ing the one with the highest Q-value with probability pl 
and choosing any other location at random with probabil- 
ity 1 - p l .  After arriving at the new location, the UAV 
chooses its next target toward which its sensors should be 
pointed. The target with the highest Q-value (from the 
individual sensor allocation policy) is chosen with prob- 
ability p2 and any other target is chosen at random with 
probability 1 - p z .  Once the motion and rotation phases 
have been accomplished, the UAV computes its one-step 
reward according to equation (1 1) and uses it for updating 
the Q-values of both fuzzy rulebases according to equa- 
tion (8). After updating the Q-values, the UAV selects a 
new location and sensor alignment direction, and the cycle 
repeats. 

The potential field motion planning strategy described 
above is fully distributed and robust to any changes in 
the environment. The decisions of each UAV change 
gradually as the environment changes without the need 
for a complete “re-planning” of classical planning strate- 
gies. Also note that the individual and team sensor allo- 
cation policies are affecting each other’s environment by 
changing the relationship between actions and expected 
rewards. However, since both UAV allocation policy and 
sensor allocation policy have the same common goals: 
tracking higher valued targets, closer targets, targets sur- 
rounded by other nearby targets, and tendency to reduce 
competition with other UAVs, it is expected that they will 
be able to tune themselves in a co-evolutionary manner. 

VI. EXPERIMENTAL RESULTS 

Player-Stage software [6] was used for simulating our 
problem setup. A bounded environment with no physical 
obstacles was chosen for clarity of our results. We used a 
simple 2D square-shaped environment of length 2 units 
with no physical obstacles. In our experimental setup, 
3 UAVs move in this environment, attempting to track 6 
moving targets. Targets have different values represented 
by their color. Size of a UAV and targets is 0.05 units and 
0.025 units respectively. 

The targets use sonar sensors to detect UAVs around 
them. If a UAV comes closer than a pre-selected minimum 
threshold distance to any target, the target moves in the 
exact opposite direction from the UAV in order to avoid it. 

The UAVs can move over each other and over the targets 
in the 2D simulator. 

Each UAV has the following set of simulated sensors: 
1) Sony EVID30 pan-tilt-zoom camera set to a range 

of 60 degrees, with ACTS - a fast color segmenta- 
tion program for identifying colors of targets com- 
ing in the camera’s range (the target’s color gets 
translated into the target’s value) 

2) SICK LMS-200 laser rangefinder for measuring 
distance to other targets or UAVs 

3) GPS device for exactly locating its own position in 
the environment with respect to a fixed reference 
point. 

In the beginning of our simulation process, antecedent 
labels for the fuzzy rules used by each UAV had to be 
created. In order to accomplish this, a simple simulation 
was used, where the UAVs and targets move in the en- 
vironment, and data corresponding to the state variables 
is collected. The UAVs tend to avoid other UAVs, while 
targets tend to avoid UAVs and each other. Based on the 
range and distribution of data obtained, the fuzzy cate- 
gories LOW and HIGH were identified for each state vari- 
able. Since two state variables were used by the individ- 
ual sensor allocation policy as well as by the UAV motion 
policy, 4 rules were created for each of them. 

A sensible set of initial Q-values was assigned to the 
policies, and performance of the UAVs measured as the 
average reward was evaluated. The antecedent labels 
were then manually tuned to improve the average reward, 
while ensuring that all rules are triggered to similar cu- 
mulative levels for effective learning during the training 
phase. This tuning could have also be done using our co- 
evolutionaly reinforcement learning algorithm at the ex- 
pense of adding extra complexity to the problem. 

The TD(X) updating of fuzzy rulebase parameters 
based on equation (8) was used, with Ok being the con- 
sequent label parameters qk in accordance with the fuzzy 
rulebase presented in the previous section. A training 
run had a fixed duration of 30 minutes, which translates 
into about 1500 steps for one UAV. The UAVs and tar- 
gets were placed in the environment randomly at the start 
of each simulation. After every 60 seconds, they were 
re-randomized to ensure that all possible states have been 
visited adequately. Both co-evolutionary policies used the 
same one step reward function, as given by equation (1 I). 

During learning, the UAVs used and updated a com- 
mon policy for individual sensor allocation and a common 
policy for team-level UAV allocation. Such a coopera- 
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X = 0 X = 0.5 X = 0.9 
Before leaming I .  1 1.1 1.1 
After learning 2.55 2.52 2.25 

TABLE I 
AVERAGE REWARD OF THE FINAL POLICY L E A R N E D  B Y  UAVS 

tive learning method for RL agents can potentially speed 
up the learning process by more than a factor of N if N 
agents are participating [4]. The leaming proceeded from 
a completely uninformed situation where all Q values are 
set to 0. In the beginning, each UAV used high explo- 
ration probabilities p l  and pz.  However, over time both 
p l  and p~ were decreased geometrically by a factor e ,  and 
each UAV tended to choose actions that have the highest 
Q value. 

Table I shows the values of the average reward received 
by the UAVs during the testing phase for various values 
of the TD-parameter A. The table also shows the values 
of the average reward for the initial policy that used Q- 
values equal to 0 - choosing all actions with equal prob- 
ability. The following values for the key parameters were 
used: 

Learning rate (Y for both policies = 0.75 
Discounting factory = 0.9 
Exploration decay rate E = 0.998 

As Table I shows, the UAVs significantly improved 
their performance as a result of learning with our co- 
evolutionary algorithm. The decrease in performance for 
higher values of X is most likely caused by the fact that 
as the time separation between actions and rewards in- 
creases, the connection between them decreases faster 
than in a single-policy reinforcement leaming due to the 
presence of a second policy, which is also changing with 
time. 

The performance improvement recorded in Table I 
demonstrates the effectiveness of the two methods we 
used for reducing the dimensionality of the state space: 
evaluating targets one at a time for individual sensor allo- 
cation and using potential fields for team-level decision- 
making. These results also demonstrate the benefits of the 
co-evolutionary leaming between the individual and the 
team-level policies in reinforcement learning implemen- 
tation. 

VII. CONCLUSIONS 
In this paper, we studied a co-evolutionary approach for 

sensor allocation in UAVs. The Perception based Rein- 
forcement Learning ( P E )  algorithm was proposed for the 
joint optimization of individual sensor allocation policy 
and the team motion policy. Experimental results demon- 
strated the benefits of the two-level learning organization. 
We conclude that co-evolutionary PRL seems to be a very 
promising approach which needs to be further investigated 
in the field of Unmanned Aerial Vehicles and other areas. 
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