
RSSolver: A tool for solving large non-linear,
non-convex discrete optimization problems

Kresimir Mihic1, David Vengerov1 and Andrew Vakhutinsky2

Oracle Labs1 & Oracle Retail Business Unit2

October 12, 2012



RS Algorithm

RS Solver

Case Studies: Revenue Management Problems
Regular Price Optimization Problem
Shelf Space Optimization Problem

Summary

2 / 27



RS Solver

I A tool for solving hard combinatorial problems (solution space is
finite):

I That include complex constraints among the function’s input and
output variables.

I That are non-linear and non-convex (the optimal solution does not
need to be guaranteed)

I Built around Randomized Search (RS) algorithm

I Implemented in Java

I Supports modern, parallel, multi-threading implementation
paradigm.

I Standardized I/O interface

3 / 27



RS Algorithm

RS Solver

Case Studies: Revenue Management Problems
Regular Price Optimization Problem
Shelf Space Optimization Problem

Summary

4 / 27



RS Algorithm

I It builds on a stochastic nature of the Simulated Annealing (SA)
methodology, but:

I includes a mechanism for structural exploration of the solution space
I derives its convergence criteria on a quality of the result rather than

on a ”temperature” schedule
I does not recognize the concept of ”temperature” what makes it

easier to implement across a wide range of problems

I Can be seen as a generalization of GRASP [?] algorithm.

5 / 27



RS Algorithm: The Big Picture

I The algorithm consists of two sequential phases, exploration and
exploitation phase, that alternate until RS converges to some locally
optimal solution or until maximum run time is reached.

I Each phase consists of repetitive cycles where components of the
solution vector are considered in random order using uniform
probability distribution.

I In the exploitation phase, the algorithm seeks to improve the current
solution vector

I The exploration phase serves as a mean to ”escape” locally optimal
points.

6 / 27



RS Algorithm: Top View

7 / 27



Exploitation phase

1: let S0 be the current solution vector.
2: for each component i ∈ S0 (randomly chosen without replacement)

do
3: among all the values allowed for the component i find the value

that satisfies constraints and maximizes (minimizes) the
objective value with all the other components unchanged. Set i to
that value.

4: end for
5: repeat steps 2-4 if terminating criteria not reached

8 / 27



Exploration phase

1: let S0 be the current solution vector.
2: for each component i ∈ S0 (randomly chosen without replacement)

do
3: choose a value from the set of all the values allowed for the

component i at random.
4: accept the random value if it does not decrease the previously

found best objective value by more than a specified percentage
number.

5: if the new objective value > the best objective value, return from
the exploration phase

6: end for
7: return to the step 2 if terminating criteria not reached

9 / 27



RS Algorithm

RS Solver

Case Studies: Revenue Management Problems
Regular Price Optimization Problem
Shelf Space Optimization Problem

Summary

10 / 27



RS Solver

I Implemented in Java

I Provides a standardized input/output interface:
I RSDecisionVariable()
I RSFunction()
I RSObjective()
I RSConstraint()
I RSSolve()

I Enables users to extend the interface and define specialized objective
and constraint functions

I Provides a set of easy to use run-time parameters that control
quality and speed of the tool.

11 / 27



RS Solver: Decision Variables

I x = RSDecisionVariable(descriptor, domain, image)

si = RSDecisionVariable(“shelf position”, {2, 3, 4, 7, 8},{0.9, 1.1, 1.0, 0.8 0.7})
I domain ={allowed shelf positions for item i}
I image = {shelf coefficients}

ni = RSDecisionVariable(“numberOfFacings”, {0, 4, 6, 8},{0, 0.8, 1.1, 2, 2.3})
I domain ={allowed number of facings for item i}
I image = {demand}

pi = RSDecisionVariable(“price”, {5.09, 5.19, 5.49, 6.09},{})
I domain ={price ladder for item i}
I image = empty set

12 / 27



RS Solver: Functions

I Providing primitive algebraic, logic and set functions: sum(), max(),
log(),..., ifThen(), or(),..., memberOf(), subsetOf(),
atLeastNofM(),...

I Complex functions build using a composition principle

I Open interface: users can modify built-in functions and add their
own specialized functions

I f = RSFunction(type,parameters)

f (x) =
∑

i cixi
f (x) = RSFunction(“dot”,{c1, c2, ...cn}, {x1, x2, ...xn})

f (x , y , z) = g(x)− h(yi ) ·max[l(zi ), k(y), g(x)] ∗ l(y) + n(z)
m(x , y , z) = RSFunction(“max”,l(z), k(y), g(x))
m̃(x , y , z) = RSFunction(“times”,h(y),m(x , y , z), l(y))
f (x , y , z) = RSFunction(“sum”,g(x), m̃(x , y , z), n(z))

I Functions of different types can be combined

13 / 27



RS Solver: Objective

I f0 = RSObjective(type,objective function)

f0 = RSObjective(“maximize”, revenueFunct)
I revenueFunct(price, demand) = RSFunction(....)

f0 = RSObjective(“mimimize”, costFunct)
I costFunct(..) = RSFunction(....)

14 / 27



RS Solver: Constraints

I c : RSConstraint(algebraic function, comparison operator, rhs value)

I l : RSConstraint(logic or set function, rhs boolean)

c1 : f (x) ≤ n
I c1 = RSConstraint(f (x),“<= ”,n)

c2 : f (x) = k
I c1 = RSConstraint(f (x),“=”,k)

l1 : s(x) = true
I l1 = RSConstraint(s(x), true)

15 / 27



RS Algorithm

RS Solver

Case Studies: Revenue Management Problems
Regular Price Optimization Problem
Shelf Space Optimization Problem

Summary

16 / 27



Regular Price Optimization (RPO) Problem

I Objective: Given a set of product items I we want to find a price for
each item such that the objective function (margin, sales volume,
revenue) is maximized.

I Develop customized pricing strategies that address demographics and
competitive characteristics of the store’s trading area

I Hold the retailer’s image constant while adapting to neighborhood
differences on demand

I Constraints:
I Price constraints
I Business constraints
I Maximum number of items allowed to have their prices changed

17 / 27



Objective Value

I Supporting the multi-objective optimization by using the weights:

f0 = Wv · Volume + Wr · Revenue + Wm ·Margin

I Revenue and Margin are functions of sales volume and the price
vector

I Sales volume is a function of the price vector and “elasticity” matrix

I “Elasticity” matrix γ correlates prices along the items and defines
how much a change in pricing of item i affects volume of item j :

Vi = V 0
i ·
∏
j∈I

(
pj
p0
j

)γi,j

,∀i ∈ I

18 / 27



Experimental Results: Maximizing Margin

Test Set Num. Items Num. Constraints Price Ladder Type

628-item-L 628 0 linearized
628-item-M 628 0 “magic” numbers
7D-hypercube 128 448 linearized
9D-hypercube 512 2304 linearized

Gurobi Randomized Search

Test Set Runtime Improvement Runtime Improvement
(s) (%) (s) (%)

628-item-L 5.4 6.4 5.1 6.4
628-item-M 243.6 9.0 5.7 17.7
7D-hypercube 1.1 5.6 7.5 4.5
9D-hypercube 21 5.4 34 4.7

I Linearized price ladder example: {0.9p0, 0.92p0, ..., p0, 1.02p0, ..., 1.1p0}
I “Magic” number price ladder example: {5.09,5.19,5.29,...,5.49}

19 / 27



Shelf Space Optimization Problem

I Objectives:

1. Determine shelf location and the number of facings for each item
that would maximize a business criteria subject to the total shelf
capacity, inventory replenishment constraints and adjacency rules.

2. Minimize the total cost of changing the current layout.

I Constraints:
I Shelf capacity
I Category and brand boundaries
I Item group adjacency
I Shelf uniqueness

20 / 27



Sales volume as the function of number of facings

I Given the replenishment policy and demand forecast, compute sales
volume as a function of the number of facings (lost sales are due to
insufficient storage space)

I Demand may depend on:
I shelf position (e.g. eye level vs. bottom)
I number of facings

I The volume as a function of facings increases with diminishing return

21 / 27



Experimental Results: Run-time

(a)

(b)

22 / 27



Experimental Results: Quality

I RSSolver S: run-time parameters set for speed

I RSSolver Q: run-time parameters set for quality of results

23 / 27



Experimental Results: Scaling

I Number of decisions variables = 2xnumber of items (shelf position & number of
facings per item)

I RSSolver S, single thread run, average runtime over different aisle lengths

24 / 27



Experimental Results: Multi-threading

I Max number of parallel tasks in this experiment is 5

I A single thread run needs 5 “loops” to execute 5 tasks

I For 2-thread run, RS executes 3 loops and for 3-thread and 4-thread 2 “loops“.
5-thread run is done in a single “loop”

I The difference in nThread=3 and nThread=4 speedup is the consequence of
scheduling - individual tasks require different amount of time to be processed

I Difference in speedup with respect to number of items is due parallelization
overhead: having more items reults in longer “loop” processing time, and the
overhead becomes less significant.

25 / 27



RS Algorithm

RS Solver

Case Studies: Revenue Management Problems
Regular Price Optimization Problem
Shelf Space Optimization Problem

Summary

26 / 27



Summary

I RSSolver is tool for solving complex multi-dimensional combinatorial
problems.

I The tool implements RS algorithm that uses internal structure of a
problem to explore the search space and finds good solutions very
quickly

I Implementation done in Java programming language

I For reasonable run-time parameter settings, RS does not guarantee
that the solution is the global optimum. The global optimum can be
reached in time t → inf

I Execution time speedup scales almost linearly with number of
threads

I Execution time scales polinomialy with number of variables

I Case studies show that RSSolver produces results of a simmilar or
better quality then the commercial solver (Gurobi) within
comparable or shorter run-time

27 / 27


	RS Algorithm
	RS Solver
	Case Studies: Revenue Management Problems
	Regular Price Optimization Problem
	Shelf Space Optimization Problem

	Summary

