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Abstract

Entailment Graphs based on open relation ex-001
traction run the risk of learning spurious en-002
tailments (e.g. win against ⊨ lose to) from003
antonymous predications that are observed with004
the same entities referring to different times.005
Previous research has demonstrated the poten-006
tial of using temporality as a signal to avoid007
learning these entailments in the sports do-008
main. We investigate whether this extends to009
the general news domain. Our method intro-010
duces a temporal window that is set dynami-011
cally for each eventuality using a temporally-012
informed language model. We evaluate our013
models on a sports-specific dataset, and ANT –014
a novel general-domain dataset based on Word-015
Net antonym pairs. We find that whilst it may016
be useful to reinterpret the Distributional Inclu-017
sion Hypothesis to include time for the sports018
news domain, this does not apply to the general019
news domain.020

1 Introduction021

The ability to recognise textual entailment and para-022

phrase is essential to many NLP applications, in-023

cluding open-domain question answering over un-024

structured data. This setting frequently poses the025

challenge that the answer to the question is not ex-026

plicitly stated in the text, and can only be inferred027

using entailment rules and/or paraphrases. For ex-028

ample, the question might ask “Did Arsenal play029

Man United last night?” and the post-match report030

states “Arsenal beat Man United 1-0”. A system031

that can recognise that beat ⊨ play will be able to032

provide the correct answer (“yes”).033

Entailment Graphs (Berant et al., 2011, 2015;034

Hosseini et al., 2018), learned using unsupervised035

methods applied over large text corpora, have been036

proposed as a means to support answering such037

questions. Entailment Graphs comprise nodes rep-038

resenting predicates, and edges representing the039

entailment relation between them. They can be040

learned using the Distributional Inclusion Hypoth- 041

esis (DIH), which states that a predicate p entails a 042

predicate q if the context set in which p can be used 043

is included in the context set of q (Dagan et al., 044

1999; Geffet and Dagan, 2005). For predicates, the 045

context set is usually interpreted as co-occurring 046

argument pairs. 047

However, the argument pair-based, atemporal 048

formulation of the DIH does not support the class 049

of predicate pairs that are antonyms and occur fre- 050

quently within a window of time with the same 051

argument pairs, such as winning and losing (Guil- 052

lou et al., 2020). For example, sports teams often 053

play against each other multiple times in a season, 054

likely with different outcomes, so that predicates 055

such as win against and lose to are both likely 056

to apply to the same sports team argument pairs 057

(e.g. Arsenal, Man United). Consequently, current 058

state-of-the-art methods for learning Entailment 059

Graphs may commonly learn erroneous entailment 060

relations between these pairs of highly correlated 061

predicates (e.g. to win ⊨ to lose). 062

Guillou et al. (2020) propose an algorithm that 063

circumvents this issue by considering argument 064

pair occurrences only when the eventualities tem- 065

porally overlap. This effectively reinterprets the 066

DIH’s context set as containing both argument pairs 067

and time. They refine Entailment Graph induction 068

for the sports news domain. We extend their work 069

by applying the method to the general news do- 070

main, and propose setting different size temporal 071

comparison windows for the different predicates 072

contained in the general domain. We dynamically 073

assign a different window size for each eventuality 074

in the corpus using a temporally-aware language 075

model (Zhou et al., 2020) that predicts the expected 076

duration of the eventuality. We evaluate the Entail- 077

ment Graphs on the Sports Entailment Dataset of 078

Guillou et al. (2020), and ANT – a novel dataset 079

derived from WordNet (Miller, 1995) antonyms. 080

We find that refining the DIH’s context to include 081
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time (in addition to argument pairs) is beneficial for082

the sports news domain, but that this does not ex-083

tend to the general news domain. We do, however,084

identify predicates in legal news as another possible085

area in which temporal information may be useful086

for learning Entailment Graphs. Our contributions087

are: 1) the application of a temporally informed088

Entailment Graph learning method to the general089

news domain, and 2) ANT, a novel general-domain090

entailment dataset based on WordNet antonyms.091

2 Background092

2.1 Entailment Graphs093

Entailment Graph Induction uses directional distri-094

butional similarity measures to determine whether095

an entailment relation holds between two predi-096

cates p and q. Successful measures include the097

purely directional Weed’s precision score (Weeds098

and Weir, 2003), and the Balanced Inclusion score099

(BInc) (Szpektor and Dagan, 2008), which com-100

bines both symmetric and directional measures. We101

use these two scores as our baselines. Both scores102

are based on the Distributional Inclusion Hypoth-103

esis (DIH), which states that p entails q if the set104

of contexts in which p can be used is included in105

the context set of q (Dagan et al., 1999; Geffet and106

Dagan, 2005). When applying the hypothesis to107

predicates, the context set has mostly been taken to108

refer to argument pairs (e.g. by Berant et al. (2011)109

and Hosseini et al. (2018)).110

Entailment Graphs have been built for a range111

of domains, including health (Levy et al., 2014),112

news (Hosseini et al., 2018), and commonsense113

(Yu et al., 2020). By focusing on the news domain114

we are able to leverage two sources of temporal in-115

formation: the publication dates of the articles and116

the rich set of temporal expressions within them.117

Previous work has also considered a number of op-118

tions for representing nodes in the graphs: typed119

binary predicates (Berant et al., 2011; Hosseini120

et al., 2018), Open-IE propositions (Levy et al.,121

2014), and eventualities (Yu et al., 2020). We use122

typed predicates, following Hosseini et al. (2018).123

2.2 Temporality and Entailment Graphs124

Guillou et al. (2020) incorporated temporal infor-125

mation into the graph learning framework of Hos-126

seini et al. (2018), extending the local entailment127

score computation method to incorporate tempo-128

ral filtering of eventualities. This reinterprets the129

DIH to include time in the context set of any given130

predicate. Unlike in Hosseini et al. (2018) where 131

all eventualities of pairs of predicates that share 132

the same arguments are considered for compari- 133

son, Guillou et al. (2020) aim to compare only 134

those eventualities of predicates with shared argu- 135

ments for which the underlying eventualities are 136

temporally close to each other. The strength of 137

this method is its ability to separate out instances 138

of recurring eventualities, e.g. sports matches that 139

occur between the same pair of teams. Following 140

promising results for the sports domain, we extend 141

the method to the general news domain. 142

2.3 Evaluating Entailment Graphs 143

Entailment Graphs are typically evaluated using 144

datasets comprised of premise-hypothesis sentence 145

pairs with labels denoting the entailment relation 146

that holds between them. Dataset construction has 147

been framed as a number of manual annotation 148

tasks, e.g. image captioning (Bowman et al., 2015), 149

question answering (Levy and Dagan, 2016), and 150

fact verification (Schmitt and Schütze, 2019). 151

Evaluating entailments that involve temporality 152

has received less attention. The FraCas test suite 153

(Cooper et al., 1996) contains only a small number 154

of temporal examples that based on entailments 155

between predicates. TEA (Kober et al., 2019), 156

which comprises sentence pairs in which tempo- 157

rally ordered predications have varying tense and 158

aspect, does not include non-entailments that can 159

be learned through the temporal separation of even- 160

tualities (e.g. outcome predicates win - lose). The 161

Sports Entailment Dataset (Guillou et al., 2020) of 162

entailment pairs between paraphrases of the pred- 163

icates play, win, lose, and tie, was developed to 164

address this gap. However, its narrow focus on 165

sports makes it unsuitable for evaluating graphs 166

for the general news domain. This motivates the 167

construction of the general-domain ANT dataset. 168

2.4 Antonym Detection 169

Related to our work is the field of antonym detec- 170

tion, in which antonyms are distinguished from 171

other semantic relations such as synonymy. We 172

focus on the related but distinct task of Recogniz- 173

ing Textual Entailment (RTE) in the presence of 174

antonymy, which can be seen as a more challenging 175

version of the typical RTE setup. Antonymy de- 176

tection is evaluated using various datasets, notably 177

the relation classification-style EVALution dataset 178

(Santus et al., 2015) and PPDB-based dataset of 179

Rajana et al. (2017), and the multiple-choice GRE 180
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question dataset (Mohammad et al., 2013). To com-181

pare our work to previous Entailment Graph mod-182

els, we instead opt for the RTE paradigm, focusing183

on sentences containing binary predications. We184

note that the labels in ANT can easily be remapped185

for the evaluation of antonym detection systems.186

3 Method187

3.1 Relation Extraction188

We start by extracting relation triples from a cor-189

pus of news articles. We use MONTEE (Bijl de190

Vroe et al., 2021), an open-domain system that191

uses the RotatingCCG parser (Stanojević and Steed-192

man, 2019) and extracts relations consisting of193

predicates and their arguments by traversing the194

resulting CCG dependency graph. For each sen-195

tence we extract all potential binary relations of196

the form arg1-predicate-arg2 (e.g. Arsenal-beat-197

Man United)1. Arguments, which may be either198

Named Entities or general entities (all other nouns199

and noun phrases), are mapped to their fine-grained200

FIGER types (Ling and Weld, 2012) (e.g. PER-201

SON, DISEASE, etc.).202

We extended MONTEE to add temporal inter-203

vals to binary relations where there is a path in the204

dependency graph between the predicate and a tem-205

poral expression in the text. The temporal intervals206

consist of the start and end date of the eventuality,207

and are derived using SUTime (Chang and Man-208

ning, 2012) – a tool for automatically identifying209

and resolving temporal expressions (such as “Mon-210

day 7th March 2022”) found in the text, to a calen-211

dar date range. Expressions such as “yesterday” are212

resolved relative to the article’s publication date.213

3.2 Graph Learning with Temporal Filtering214

To learn Entailment Graphs we use the temporal215

filtering method of Guillou et al. (2020) which ex-216

tends the graph learning framework of Hosseini217

et al. (2018). The input is the set of typed binary218

relations paired with their time intervals. The out-219

put is a set of graphs, one for each pair of FIGER220

types found in the set of binary relations. We focus221

on locally learned entailments, leaving an investi-222

gation of the interaction between temporality and223

globalisation to future work.224

In Hosseini et al. (2018) similarity scores be-225

tween predicates are computed over feature vectors,226

with one feature vector per typed predicate. The227

1As we are not concerned with the intersection of tempo-
rality and modality, we do not tag relations for modality.

play Arsenal Man United 18/1/2021
beat Arsenal Man United 18/1/2021
play Arsenal Man United 12/2/2021
lose to Arsenal Man United 12/2/2021

Pair play- beat- play- lose- beat- lose -
beat play lose play lose beat

Regular 2 1 2 1 1 1
Filtered 1 1 1 1 0 0

Figure 1: Above: Two sports matches between the same
teams. Below: Regular and temporally filtered counts.

feature in the vector is the argument pair from the 228

binary relation (e.g. Arsenal, Man United) and the 229

value is the pointwise mutual information (PMI) 230

between the predicate and argument pair. Guillou 231

et al. (2020) add a method to filter the counts of 232

predicate p according to whether each eventuality’s 233

time interval overlaps with any of q’s. That is, an 234

eventuality in p is retained (and counted) if it is 235

temporally close enough to any eventuality in q. 236

The goal of this process is to separate out different 237

instances of recurring eventualities involving the 238

same argument pairs. 239

For example, suppose two football matches are 240

held between Arsenal and Man United, one de- 241

scribed as happening on 8th January 2021 where 242

“Arsenal played and beat Man United.”, and another 243

on 12th February 2021 where “Arsenal played and 244

lost to Man United” (see the upper section of Fig- 245

ure 1). The algorithm computes a filtered count 246

for each argument pair for the pair p-q: the total 247

number of eventualities of predicate p with a time 248

interval that temporally overlaps with the time in- 249

terval of any eventuality of predicate q, and vice 250

versa. In this case the filtered count for play-beat = 251

1 and play-lose to = 1 as there is a temporal overlap 252

for the play and beat events in the first match and 253

the play and lose to events in the second. Crucially, 254

beat-lose to = 0 as there is no temporal overlap be- 255

tween the beat and lose to events, which occurred 256

on different days. See Figure 1 for an illustrated ex- 257

ample and Guillou et al. (2020) for further details. 258

We use the filtered counts to compute the temporal 259

similarity measures described in Section 3.4. The 260

regular, unfiltered, counts are used to compute their 261

(standard) non-temporal counterparts. 262

Following completion of the temporal filtering 263

process for all predicate pairs, we learn the follow- 264

ing entailment relations: beat ⊨ play, lose to ⊨ 265

play, and lose to ⊭ beat (and its reverse). Without 266
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temporal filtering a spurious entailment relation267

between beat and lose to (and vice versa), which268

occur within a similar context (i.e. they share the269

same argument pair), would be learned.270

3.3 Dynamic Temporal Window271

Although a uniform temporal window is suitable272

for sports matches, which are typically concluded273

within a single day, it may be less suitable for other274

eventualities. We follow the recommendation of275

Guillou et al. (2020) and apply a dynamic win-276

dow on a per-predicate basis to reflect that different277

eventualities remain relevant for different lengths278

of time. For example, the window around infor-279

mation stating that a person is president should be280

larger than a report of a person visiting a location.281

We incorporate a temporally-aware language282

model, TacoLM (Zhou et al., 2020), and use it283

as the basis for per-predicate dynamic windowing.284

TacoLM predicts the expected duration of an even-285

tuality using the context provided by the sentence286

in which the eventuality mention occurs. For each287

eventuality in a sentence it assigns a duration label288

from the set {seconds,minutes, hours, days,289

weeks,months, years, decades, centuries}. In290

a small number of cases TacoLM is unable to make291

a prediction, indicated by the no_prediction label2.292

In the uniform window model, each eventuality293

e is assigned a temporal interval et = [tstart −294

w, tend + w], where tstart and tend are predicted295

using SUTime(e), and w is the model’s fixed win-296

dow size. In the dynamic window model, we in-297

stead assign et = [tstart −map(TLM(e)), tend +298

map(TLM(e))]. Here map(TLM(e)) is299

TacoLM’s prediction mapped to a concrete duration300

value: {seconds,minutes, hours, days} 7→ 5,301

weeks 7→ 15, months 7→ 30, years 7→ 365,302

decades 7→ 3, 650, centuries 7→ 36, 500. That303

is, for shorter durations we maintain a uniform win-304

dow of 5 days, extending it only for eventualities305

with longer durations.306

3.4 Similarity Measures307

We compute both a symmetric and a directional308

temporally-informed similarity measure to learn309

entailments, making use of the temporally filtered310

counts and PMI scores described in Section 3.2.311

We adapted BInc (Szpektor and Dagan, 2008) and312

Weeds’ precision (Weeds and Weir, 2003).313

2249,262 [0.61%] eventuality mentions in the NewsSpike
corpus

Temporal Weed’s precision: Weed’s precision 314

is computed using the temporally-filtered counts. 315

Temporal BInc-based measure: As a proxy to 316

computing Conditional PMI between an argument 317

pair, predicate p, and predicate q, which would 318

be computationally expensive (if not infeasible) 319

given the existing graph construction framework, 320

we scale the original PMI scores. The temporally 321

filtered PMI t = PMI · (ct/c), i.e. the original 322

PMI multiplied by the ratio of filtered counts (ct) 323

to regular counts (c). We refer to this measure as T. 324

Binc (Ratio PMI). 325

4 Evaluation 326

We evaluate the Entailment Graphs using two dif- 327

ferent entailment datasets. 1) the Sports Entailment 328

Dataset (Guillou et al., 2020) which contains 1,312 329

entailment pairs, focusing on events that occur be- 330

tween two sports teams. 2) ANT, a novel dataset 331

based on WordNet antonym pairs. ANT addresses 332

the need for a general-domain, RTE-style dataset 333

containing antonyms. 334

4.1 ANT Dataset Construction Overview 335

ANT3 contains entailment pair examples of the 336

form premise, hypothesis, label. The premise 337

and hypothesis take the form of natural English 338

sentences containing a subject, predicate, and ob- 339

ject. The label denotes one of four types of en- 340

tailment relation: 1) Antonym: non-entailments 341

between antonymous predicates (e.g. acquit - con- 342

vict), 2) Directional Entailments an antonymous 343

predicate and a related third predicate (e.g. acquit 344

⊨ indict), 3) Directional Non-Entailments, the re- 345

verse of each Directional Entailment (e.g. indict 346

⊭ acquit), and 4) Paraphrases of each predicate 347

in the antonym pair (e.g. acquit - absolve). For 348

a standard entailment evaluation setup, we map: 349

(Antonyms,Dir.Non-Entailments) 7→ 0 and 350

(Paraphrases,Dir.Entailments) 7→ 1. Our re- 351

leased dataset contains the original four labels as 352

these may be useful in future research. 353

Dataset construction was semi-automatic. The 354

manual steps were carried out by two expert anno- 355

tators: one native, and one fluent English speaker4. 356

Our dataset generation method uses the entailment 357

relations between manually annotated predicate 358

clusters to generate entailment pairs. By ensuring 359

that most of the annotation occurs at the predicate 360

3https://anonymous-link.com
4Both annotators were authors of this paper
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level, rather than the predicate-pair or sentence-361

pair level, we are able to generate thousands of362

high quality entailment pairs from hundreds of an-363

notated predicates. This is in contrast with the con-364

struction processes of the Levy (Levy and Dagan,365

2016) and SherLIiC (Schmitt and Schütze, 2019)366

datasets, which involved generating large numbers367

of candidate entailment pairs of varying quality,368

prior to manual annotation by crowd-source work-369

ers. Our method also avoids the issue of selection370

bias present in Zeichner et al. (2012) and SherLIiC,371

that arises from using a similarity measure to auto-372

matically pre-select candidate entailments.373

4.2 Antonym Pair Selection374

We started by automatically collecting a list of375

477 lemmatised verb antonym pairs from Word-376

Net (Miller, 1995) and propose these as possible377

conflicting predicate pairs. Although WordNet’s378

antonym set is not large, the high quality of its an-379

notations makes WordNet a reliable starting point.380

We excluded antonym pairs that express a type381

of temporal entailment (e.g. fall asleep and wake382

up), as these appear to express a more complicated383

relationship than simple antonymy. While these384

predicate pairs are antonymous when interpreted385

as simultaneous eventualities, they also entail each386

other at some temporal distance (e.g. you cannot387

fall asleep and wake up at the same time, but you388

need to fall asleep before you can wake up). If one389

of the two human annotators marked the antonym390

pair as having a possible temporal entailment be-391

tween the predicates, we removed it from the set.392

This step resulted in 283 remaining antonym pairs.393

We also removed pairs that were highly spe-394

cific (e.g. dehydrogenate-hydrogenate) as these395

are likely to be infrequent in the general domain,396

pairs resulting from simple alternation of prepo-397

sitions or morphemes (scale up-scale down; de-398

ceive-undeceive), and duplicate pairs in the British399

spelling.5 We were left with 114 antonym pairs.400

4.3 Entailment Cluster Construction401

For each antonym pair, we identified possible para-402

phrases and third predicates that are entailed by403

both. We used the online Merriam-Webster The-404

saurus (Merriam-Webster, 2021), which includes405

both (near) synonyms and antonyms, and the Relat-406

edwords website (RelatedWords, 2021) – an online407

5We prefer American English spellings (e.g. colonize)
over British English spellings (colonise) as the training corpus
contains mostly American English news articles.

tool for finding related words beyond synonyms, 408

which combines a number of NLP resources in- 409

cluding word embedding spaces, ConceptNet and 410

WordNet. This helped us find less typical para- 411

phrases and often suggested entailed predicates. 412

For each antonym pair we created an entailment 413

cluster C = (A1, A2, E), where A1 and A2 are the 414

sets of predicates containing the first and second 415

predicate in the seed antonym pair respectively, 416

plus their paraphrases, and E is a set of predicates 417

entailed by all the elements in ∪(A1, A2). 418

Each cluster was then manually annotated with 419

a set of argument type pairs (distinct from the 420

FIGER types for Named Entities), which were 421

later used for instantiating simple sentences. For 422

example, the cluster for the antonym seed pair 423

refresh-tire receives a set containing a single ar- 424

gument type pair, activity#generic_person. We 425

allowed predicates with a specific word sense 426

to be assigned a specific set of types. For ex- 427

ample, for the enjoy-suffer through pair, the en- 428

tailed predicate see is assigned the set containing 429

just the type generic_person#entertainment_watch, 430

to avoid it being paired with arguments from 431

the entertainment_read type. This also enabled 432

us to specify argument order, allowing a pred- 433

icate pair like refresh(activity#generic_person) - 434

do(generic_person#activity). 435

4.4 Entailment Pair Generation 436

The aim of the generation step is to automatically 437

convert the entailment clusters into the dataset for- 438

mat required for evaluation: premise, hypothesis, 439

and a label denoting the type of entailment relation 440

that holds between them. 441

To generate entailment pairs we take the cross 442

product of different sets in the cluster. Directional 443

Entailments are generated by ∪(A1 ×E,A2 ×E), 444

Antonyms by ∪(A1 × A2, A2 × A1), Directional 445

Non-Entailments by ∪(E×A1, E×A2) and Para- 446

phrases by ∪(A1 × A1, A2 × A2), excluding du- 447

plicate predicates. We exclude an entailment pair 448

if no intersection is found in the sets of its argu- 449

ment types, or if it already occurs as part of another 450

antonym pair’s cluster. 451

To generate a sentence for a predicate we need 452

to populate its subject and object arguments. We 453

therefore manually created argument strings for 454

each argument type, ensuring they combine effec- 455

tively with all predicates in the cluster. For ex- 456

ample, the argument type politician maps to ar- 457
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guments like Hillary Clinton, used to instantiate458

sentences for predicates like govern. We used the459

Relatedwords website (RelatedWords, 2021) for460

inspiration. We then sampled an argument type461

pair from the intersection of those that apply for462

both predicates in the entailment pair. For each463

argument type we sampled non-identical argument464

strings. This produces an entailment example of465

the form (arg1, predicate1, arg2. arg1, predicate2,466

arg2. label). For example, (The school, admitted,467

Jean. The school, evaluated, Jean. 1) represents468

the directional entailment admit ⊨ evaluate. Fi-469

nally, both annotators made a single pass over the470

dataset to identify errors, and corrected the clus-471

ters accordingly. For example, they encountered472

unforeseen predicate-argument mismatches stem-473

ming from word sense ambiguity. Whilst this re-474

finement method may be repeated indefinitely, we475

found that after a single manual pass the quality of476

the generated sentence pairs was very high.477

The test portion6 of ANT (based on 100 Word-478

Net antonym pairs) contains 6,300 entailment pairs:479

1,800 Antonyms, 1,465 Directional Entailments,480

1,465 Directional Non-Entailments, and 1,570 Para-481

phrases. For the purpose of evaluation we used482

the following data subsets: 1) Base: Antonyms483

and Directional Entailments, and 2) Directional:484

Antonyms and Directional Non-Entailments.485

4.5 Error Analysis486

To verify the dataset’s quality we conducted an er-487

ror analysis on 200 examples, with 50 examples488

per label sampled randomly from the test set. We489

found 82.5% (165 /200) examples to be correct,490

confirming that the dataset is of high quality. Of491

the 35 incorrect examples we labelled five as a492

syntactic error, 18 as a semantic error, and 12 as493

unnatural/disfluent. The syntactic errors were at-494

tributed to wrong verb tense or a missing auxiliary495

verb in the predication. Sometimes semantic errors496

resulted from the introduction of subtle meaning497

change, such as for the directional non-entailment498

“Morgan changed the server” - “Morgan upgraded499

the server” (here changed might be interpreted as500

replaced). They also arose due to predicate pairs501

that were overlooked in cluster construction, e.g.502

look down on is an antonym of like but not neces-503

sarily a paraphrase of dislike - you can dislike (a504

person) without looking down on (them). Unnatu-505

6ANT also contains a small development set (based on 14
antonym pairs) for use with supervised learning techniques

ral sentences were often the result of odd argument- 506

predicate combinations, e.g. “Gale expended gas”. 507

5 Experimental Setup 508

We used the NewsSpike corpus of multi-source 509

news text (Zhang and Weld, 2013) for all of our 510

experiments. NewsSpike comprises approx. 0.5M 511

articles, collected over a period of 6 weeks. 512

Using MONTEE, we extracted 40,669,470 bi- 513

nary relation triples from NewsSpike. Of these 514

8,107,944 (19.94%) binary relations are extracted 515

with a temporal interval resolved by SUTime 516

(Chang and Manning, 2012) from a temporal ex- 517

pression in the text. As the temporal filtering 518

method relies on the information contained in the 519

time intervals to compute the temporal overlap of 520

two eventualities, the sparseness of temporal ex- 521

pressions in the text raises a problem. To address 522

this we employ the strategy described in Guillou 523

et al. (2020), using the SUTime temporal interval 524

if it is available and backing off to the document 525

publication date if not. 526

We used the entGraph7 framework with the ex- 527

tension of temporal filtering by Guillou et al. (2020) 528

to train the Entailment Graphs. See Appendix A 529

for hardware requirements and parameter settings. 530

We conducted experiments using two main set- 531

tings. For the sports domain we apply a uniform 532

window of 5 days on either side of the temporal 533

intervals. We chose this setting because the evalu- 534

ation predicates all refer to sports matches. Since 535

these have a short duration and occur frequently 536

between different pairs of teams, the window for 537

which a match stays relevant to the readers, and for 538

which the preconditions and consequences of the 539

eventuality hold, is typically short. 540

For the general domain the duration of eventu- 541

alities is highly variable, ranging from minutes or 542

hours, to years, decades, or even centuries. These 543

eventualities may also remain relevant for much 544

longer than the sports matches. We therefore apply 545

a dynamic window around each time interval8 (see 546

Section 3.3 for details). 547

6 Results 548

Table 1 contains Area Under the precision-recall 549

Curve (AUC) scores for the Base and Directional 550

subsets of the Sports and ANT datasets. For the 551

7https://github.com/mjhosseini/entGraph
8We also investigated using a uniform window which led

to slightly worse results
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Sports ANT

Data subset Base Dir. Base Dir.
Recall < threshold 0.75 0.75 0.3 0.3

Similarity measure:

Weed’s Pr (Count) 0.440 0.460 0.181 0.199
T. Weed’s Pr (Count) 0.455 0.472 0.180 0.198

BInc (PMI) 0.471 0.432 0.161 0.178
T. BInc (Ratio PMI) 0.495 0.437 0.161 0.178

BInc (Count) 0.462 0.419 0.159 0.167
T. BInc (Count) 0.481 0.430 0.160 0.167

Table 1: AUC scores for the Base and Directional sub-
sets of the Sports Entailment and ANT datasets.

Sports subsets the temporal measures consistently552

outperform their non-temporal counterparts. In553

spite of the consistency across similarity scores,554

the difference is not statistically significant. For the555

Base and Directional subsets of ANT, performance556

of the temporal measures and their non-temporal557

counterparts is not significantly different. This sug-558

gests that the atemporal formulation of the DIH by559

Dagan et al. (1999) and Geffet and Dagan (2005)560

is appropriate for the general domain.561

Figure 2 contains the precision-recall curves for562

the Sports Entailment and ANT datasets9. Each563

point on the curve represents a different entailment564

score threshold, with higher thresholds correspond-565

ing to lower recall, and vice versa. To provide a566

fair comparison between similarity scores that have567

different recall ranges, we compute AUC under a568

recall threshold, chosen separately for each dataset569

(See threshold values in Table 1). For the Sports570

Entailment Dataset we observe higher precision for571

the temporal measures compared with their non-572

temporal counterparts at the lower recall ranges.573

For the ANT dataset we make two observations.574

Firstly, recall is very low. This is due to the absence575

of many of the entailment pairs in the Entailment576

Graphs. Secondly, in contrast to the Sports En-577

tailment Dataset, the curves for the temporal and578

non-temporal measures are very similar, confirm-579

ing that the temporal distributions for this domain’s580

eventualities are such that temporal filtering has a581

negligible effect. This is further confirmed by the582

analysis presented in Table 2.583

True False δ(T − F )

Sports
% Scaled 31.5 35.8 -4.2
% Overlap 72.8 65.8 7.1

ANT
% Scaled 53.0 51.8 1.2
% Overlap 50.4 50.4 0.0

Table 2: Analysing the difference in effect of temporal
filtering between the Sports and ANT base datasets.

7 Analysis and Discussion 584

Table 2 contains statistics of temporal separation 585

for the Base subset of the Sports Entailment and 586

ANT datasets. % Scaled is the percentage of PMI 587

scores (for each co-occurrence P,Q,AP of rela- 588

tions (P,AP ) where P and Q are predicates, and 589

AP is an argument pair) that are scaled down by 590

the temporal filtering method. % Overlap is the 591

percentage of eventuality comparisons (ep, eq) that 592

result in a temporal overlap. When the method is 593

effective, we expect % Scaled to be higher for false 594

predicate pairs than true predicate pairs (as scores 595

of antonymous predicate pairs should be scaled 596

down). Scaling should be inversely related to the 597

average Overlap, which we expect to be higher for 598

true predicate pairs than false predicate pairs. 599

We indeed find that % Scaled is higher for false 600

predicates pairs in the Sports Entailment Dataset, 601

whereas there is a small difference in the wrong di- 602

rection for the ANT dataset. This helps explain the 603

differences observed in the Base dataset precision- 604

recall graphs A (Sports Entailment Dataset) and C 605

(ANT dataset) in Figure 2. Furthermore, % Over- 606

lap has the expected correlation, showing that our 607

method works for the temporal distribution of the 608

sports domain data, but not for the general-domain 609

data. That is, it can be applied successfully when 610

there are antonymous predicate pairs that are found 611

applying to the same argument pairs in the data, 612

with occurrences that are temporally disjoint more 613

often than entailing predicate pairs. In our training 614

corpus, this distribution holds for sports predicate 615

pairs but not for general domain predicate pairs. 616

Breaking down the % Scaled statistic per predi- 617

cate pair in the ANT dataset, we do find antonyms 618

for which many scores are scaled down, indicating 619

that there may be predicates in the general domain 620

where temporality is a useful signal. For exam- 621

ple, the antonymous predicate pairs that are scaled 622

9We also include AUC scores and precision-recall plots for
the Levy/Holt dataset, used in previous research (Appendix B).
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Figure 2: Precision-recall plots for the Sports Entailment Dataset (A) base and (B) directional subsets, and the ANT
dataset (C) base and (D) directional subsets

most include violate-respect, convict-acquit, allow-623

prohibit and (thing) kills (person)-(person) survives624

(thing), suggesting that predicates in legal news are625

worth exploring in future research. Examples found626

in the corpus also support this idea for other pred-627

icate pairs. We find “Cameron, who [...], leaves628

London today [...]” and “Cameron will instead629

stay in London [...]”, referring to dates a month630

apart. The atemporal baseline models use this data631

to erroneously support that leave ⊨ stay in, whereas632

our method successfully disentangles the evidence.633

Future research could further investigate which634

domains or predicates stand to benefit from tempo-635

ral information. This could inform models that are636

able to decide whether to apply temporal filtering637

for particular predicate pairs. Another direction is638

to explore how Entailment Graphs can be used to639

learn temporal entailments (such as wake up - go to640

sleep), which were excluded from the ANT dataset.641

Combining this with recent work on Multivalent642

Entailment Graphs will be essential here, as many643

of the entailment edges may be multivalent (e.g.644

“A kills B” ⊨ “B is dead”, see also McKenna et al. 645

(2021)). We might also consider the interaction of 646

temporality and modality, since the temporal signal 647

should be more able to separate antonymous data 648

when it does not include binary relations that are 649

stated as occurring with some degree of uncertainty 650

(see also Guillou et al. (2021)). 651

8 Conclusion 652

We applied the temporal filtering method of Guil- 653

lou et al. (2020) to the construction of Entailment 654

Graphs for the general news domain. We evaluated 655

the performance of the temporal filtering method on 656

two entailment datasets. The results on the Sports 657

Entailment Dataset suggest that a reformulation of 658

the Distributional Inclusion Hypothesis to incorpo- 659

rate time would be beneficial for the sports domain. 660

In contrast, the results on the general-domain ANT 661

dataset suggest that the atemporal formulation of 662

the DIH is appropriate for the general domain, al- 663

though there may still be specific predicates for 664

which the temporal formulation is effective. 665
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A Experimental Settings / Requirements852

With the following exceptions we used MONTEE’s853

default settings to extract binary relations. We854

enabled the SUTime component to ensure that855

each binary relation with a predicate that could856

be linked to a time expression was assigned a857

time interval derived from SUTime [includeTem-858

poral=True]. These time intervals were used when859

computing the temporal similarity measures but ig-860

nored during the computation of the non-temporal861

measures. We disabled unary relation extraction862

[writeUnaryRels=False], and restricted binary rela-863

tions to only those that include at least one named864

entity [acceptGGBinary=False].865

We used the entGraph framework of Hosseini866

et al. (2018) to construct Entailment Graphs. We867

raised the threshold values for infrequent predicates868

[minPredForArgPair=4] and argument pairs [mi-869

nArgPairForPred=4] for all type-pair graphs (with870

the exception of the very large THING#THING871

graph for which we used settings of 6 and 6 respec-872

tively), and used the default values for all other873

parameters.874

All of the experiments were conducted on a sin-875

gle server which has two Intel Xeon E5-2697 v4876

2.3GHz CPUs (each with 18 cores) and 330GB877

RAM. The computational cost of training a single878

Entailment Graph is approximately one day and879

160GB RAM. Evaluation of both the Levy/Holt880

and ANT datasets using the entGraph evaluation881

scripts takes approximately 6 hours per graph.882

B Results on the Levy/Holt Dataset883

Previous work on Entailment Graphs has reported884

performance on the general-domain Levy/Holt885

(Levy and Dagan, 2016; Holt, 2018) dataset of886

18,407 entailment pairs (Hosseini et al., 2018, 2019,887

2021; McKenna et al., 2021; Guillou et al., 2021).888

Although not designed for evaluating performance889

on the task of temporally separating eventualities,890

we also include results on the Levy/Holt dataset for891

the interested reader. We use the same dev/test split892

proposed by (Hosseini et al., 2018): 5,486 pairs for893

dev and 12,921 pairs for test.894

AUC scores are provided in Table 3. Figure 3895

contains the precision-recall plots for the Levy/Holt896

dev and test sets, and their directional-only compo-897

nents. (Note that the uniform class distribution is898

not shown for the dev and test sets as they fall be-899

low the 0.3 precision threshold. The uniform class900

distribution is 0.198 precision for dev and 0.219901

Dev Test

Data subset All Dir. All Dir.
Recall < threshold 0.45 0.5 0.45 0.5

Similarity measure:

Weed’s Pr (Count) 0.215 0.217 0.207 0.220
T. Weed’s Pr (Count) 0.215 0.216 0.204 0.219

BInc (PMI) 0.221 0.203 0.212 0.203
T. BInc (Ratio PMI) 0.221 0.199 0.209 0.203

BInc (Count) 0.217 0.208 0.205 0.201
T. BInc (Count) 0.217 0.200 0.202 0.199

Table 3: AUC scores for the Levy/Holt datasets: All
examples and Directional only examples for the dev and
test sets. Settings: dynamic window, 5 day default.

precision for test.) 902

As for the ANT dataset, we observe that perfor- 903

mance of the temporal and non-temporal measures 904

are very similar on the Levy/Holt dataset. This 905

further supports the claim in Section 6 that the 906

temporal distributions for the eventualities in the 907

general domain are such that temporal filtering has 908

a negligible effect. 909
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Figure 3: Precision-recall plots for the Levy/Holt dataset subsets: (A) dev, (B) dev directional-only component, (C)
test, and (D) test directional-only component
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