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Abstract—Oracle has an anomaly detection solution for monitor-
ing time-series telemetry signals for dense-sensor IoT prognostic
applications. It integrates an advanced prognostic pattern recog-
nition technique called Multivariate State Estimation Technique
(MSET) for high-sensitivity prognostic fault monitoring applica-
tions in commercial nuclear power and aerospace applications.
MSET has since been spun off and met with commercial success
for prognostic Machine Learning (ML) applications in a broad
range of safety critical applications, including NASA space
shuttles, oil-and-gas asset prognostics, and commercial aviation
streaming prognostics. MSET proves to possess significant
advantages over conventional ML solutions including neural
networks, autoassociative kernel regression, and support vector
machines. The main advantages include earlier warning of incipi-
ent anomalies in complex time-series signatures, and much lower
overhead compute cost due to the deterministic mathematical
structure of MSET. Both are crucial for dense-sensor avionic
IoT prognostics. In addition, Oracle has developed an extensive
portfolio of data preprocessing innovations around MSET to
solve the common big-data challenges that cause conventional
ML algorithms to perform poorly regarding prognostic accuracy
(i.e, false/missed alarm probabilities). Oracle’s MSET-based
prognostic solution helps increase avionic reliability margins and
system availability objectives while reducing costly sources of
“no fault found” events that have become a significant sparing-
logistics issue for many industries including aerospace and
avionics. Moreover, by utilizing and correlating information
from all on-board telemetry sensors (e.g., distributed pressure,
voltage, temperature, current, airflow and hydraulic flow), MSET
is able to provide the best possible prediction of failure precursors
and onset of small degradation for the electronic components
used on aircrafts, benefiting the aviation Prognostics and Health
Management (PHM) system.
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1. INTRODUCTION
Prognostics and Health Management (PHM) solutions for
mission critical systems require a comprehensive methodology
for proactively detecting and isolating failure mechanisms,
avoiding Type I and Type II errors (false- and missed-alarms),
recommending and unambiguously guiding condition based
monitoring (CBM) actions, and estimating in real time the
remaining useful life (RUL) of critical components and
associated subsystems [1]. Conventional surveillance methods
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that have been applied to mechanical assets (motors, pumps,
valves, hydraulics, etc.) have enhanced the availability
and serviceability of those assets; but now the elements
of least reliability have been pushed into the computing
elements, peripherals, and interconnecting networks, areas
where conventional PHM approaches have heretofore not been
successfully adapted for determining electronic component
health, performance tolerances, or quantitative RUL estimation
[2,3]. This mismatch in PHM capabilities between mechanical
assets and increasingly predominant computing and control
elements often results in apparent and actual decreases in
overall equipment readiness and test program precision.

A common challenge for operators of complex aerospace and
military systems is the early detection of incipient degradation
of sensors and the components the sensors monitor in order
to avoid unplanned outages, to orderly plan for preventative
maintenance activities, and to assure that continued optimal
quality-of-service (QoS) levels are attained. In such systems,
there are usually a large number of sensors serving many
functions, including input to control systems, monitoring of
dynamic physical parameters and component performance
limits, and system environmental conditions. Oftentimes, an
embedded or offline PHM system is used to perform real-
time analysis of data from sensors. Most of these diagnostic
systems employ simple tests (e.g., threshold, mean value, etc.)
that are sensitive only to gross changes in the process mean,
or to large steps or spikes that exceed a threshold limit to
determine whether or not a failure has occurred [4]. These
methods can fail dramatically, especially in situations where
noisy data are present or only a slight drift is noted prior to
catastrophic failure.

To address these challenges and detect incipient faults in
process equipment, at the earliest possible stage of develop-
ment, it is necessary to analyze the characteristics of the noise
carried by sensor telemetry signals (both wired and wireless)
monitoring the process in addition to the mean values of these
signals. Analyzing the noise is a requirement because small
initial disturbances will cause subtle changes in the stochastic
properties of sensor signatures, well prior to any measurable
changes in the signal mean. The monitored variables are
physical variables (distributed internal temperatures, currents,
voltages, vibration, acoustics, etc). The telemetry data
encompass an extensive array of environmental, performance,
and reliability variables sampled at regular intervals. These
variables provide a rich foundation for building PHM models
for several system components individually as well as for the
system as a whole [5–7].

This paper showcases a multivariate pattern recognition tech-
nique developed by Oracle for accurate electronic prognostics
in aircraft assets. In addition, a data preprocessing system
dedicated to time series telemetry data is introduced. It is
composed of a set of ancillary techniques that can handle the
imperfections in the real world telemetry data, including dra-
matic differences in sampling frequencies for the multitudes
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of sensors, disparate signal-to-noise ratios, the presence of
missing values, and spikiness in classes of sensors. These
data imperfections are often observed on the aircraft assets
and cause conventional ML prognostic algorithms to perform
poorly (i.e. low prognostic accuracy and high false positive
and false negative decisions). The remainder of the paper
is organized as follows. In Section 2, the multivariate time
series anomaly detection technique is introduced. Section 3
introduces the ancillary techniques with detailed examples.
Finally, Section 4 concludes the paper.

2. MULTIVARIATE ANOMALY DETECTION
TECHNIQUE

Architecture of MSET

Oracle’s ML prognostic technique is based on an innovative
algorithm called Multivariate State Estimation technique
(MSET [8]). MSET was originally designed to monitor all
sensors and instrumentation in commercial nuclear power
plants to increase safety margins and reduce Operations-and-
Maintenance costs through predictive maintenance [5], but
then has been spun off to NASA Space Shuttles, commercial
avionics, and Navy Destroyers. Over the years, MSET has
been evolved and scaled to the big data prognostic applica-
tions commonly seen in safety-critical industries including
aerospace, utilities, and computer systems [7, 9].

The MSET framework consists of a training phase and a
monitoring phase. The training procedure is used to char-
acterize the monitored equipment using historical, error-free
operating data covering the envelope of possible operating
regimes for the system variables under surveillance. This
training procedure evaluates the available training data and
selects an optimal subset of the data observations that are
determined to best characterize the monitored asset’s normal
operation. It creates a stored model of the equipment that
is used in the monitoring procedure to estimate the expected
values of the signals under surveillance. In the monitoring
step, new incoming observations for all the asset signals used
in conjunction with the trained MSET model to estimate the
expected values of the signals.

Fault detection of the monitoring phase is performed by the
Sequential Probability Ratio Test module (SPRT [10]). The
SPRT technique proves to be sensitive not only to disturbances
in signal mean, but also to the subtle changes in the statistical
moments of the monitored signals. Instead of threshold limits
that trigger faults when a signal increases beyond a nominal
value, the SPRT technique is based on user-specified false-
alarm and missed-alarm probabilities, allowing the end user to
control the likelihood of missed detection or false alarms. For
sudden gross failures of sensors or system components, SPRT
divulges the disturbance as fast as a conventional threshold
limit check; however, for slow degradation that evolves over
a long time period, SPRT raises a warning of the incipience
or onset of the disturbance before it would be apparent to
threshold based rules.

Mathematical Derivation of MSET

The mathematical derivation of the latest MSET algorithm is
outlined in this section.

The main objective of MSET is to make a quantitative
assessment of the current operation status by using the degree
of similarity between historical normal operating data and
the current surveillance observations. First, the degree of

similarity between two matrices A and B of the same column
size is defined by A ⊗ B, where ⊗ represents a proprietary
non-linear matrix operator.

Assume the historical data D from the monitored system under
normal operation consisting of m measurements and n sensors
is available. A data subset D, consisting of m′ measurements
and n sensors that preserves prominent non-linear dynamic
and inter-correlations between the sensors, is selected:

D =

 X1,1 . . . X1,n
...

. . .
...

Xm′,1 . . . Xm′,n

 ∈ R[⋗
′×⋉] (1)

The pairwise correlation between the measurements in D can
be quantified by:

D⊤ ⊗D, (2)

To minimize the Euclidean norm between the estimated and
measured data vectors Xobs, a weight w is defined by:

w = (D⊤ ⊗D)
∗
(D⊤ ⊗Xobs), (3)

where sign ∗ indicates pseudoinverse calculation, which
can accommodate a singular matrix caused by two or more
repeated or highly correlated sensor signals in the dataset (i.e.,
high collinearity).

To proceed, MSET estimates Xest are produced for new
observations Xobs by:

Xest = D(D⊤ ⊗D)
∗
(D⊤ ⊗Xobs). (4)

The residual errors between the MSET estimates and the actual
observations are:

e = Xest −Xobs. (5)

Finally, the residuals e go through SPRT, which is based on
considering the log likelihood ratio (LLR) as a function of
observation numbers:

LLR = log

[ ∏n
i=1 P (ei|normal)∏n

i=1 P (ei|abnormal)

]
. (6)

The SPRT algorithm quantifies both mean and variance shifts
between the normal distribution and any degraded distribution
to flag anomalies.

3. TIME-AWARE MACHINE INTELLIGENCE
SYSTEM

The data pre-processing system that functions upstream of
MSET is further introduced in this section. They consist
of a set of techniques dedicated to the time series telemetry
data which we call the Time-Aware Machine Intelligence
(TAMI) system. It is designed to solve challenges emerging
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from the use of distributed-acquisition modules (DAQ) in
electronic systems. For example, software clocks that are in
widespread use generate a clock signal from MHz “ticks” of
a microprocessor chip. Depending on the workload of the
CPU or the Dynamic Voltage and Frequency Scaling (which
varies the clock rates with instantaneous local temperatures)
implemented in all chips, significant clock skew in the
software clocks occurs. Another consequential instance of
phase variability occurs when packets flow through complex
networks in aviation assets. The packets flowing from the same
source, to the same target device, through the wireless network
mesh can arrive at different times depending on the paths
through the network mesh. The arrival time discrepancies are
minuscule but can have a substantive effect on the prognostic
ML algorithms capacity to discover incipient problems in
hardware and software systems.

The reason that TAMI is important to advanced prognostics is
that ML Intelligence (in the form of high accuracy diagnostics,
prognostics, and root-cause-analyses) is heavily dependent on
whether Event A precedes Event B, or is exactly simultaneous
with B. Relying on notions of ”uniform wall-clock” time is
insufficient. Thus, multiple techniques around TAMI were
developed to address these issues.

There are three key foundational technologies in the develop-
ment of the TAMI system [11–13]. These technology areas
solve increasingly complex “time aware” challenges in various
industries including aerospace, which can all be divided into
the following phases of time-aware solution portfolios:

(a) Upsampling and downsampling of telemetry streams with
disparate instrumentation sampling rates. It is common
that the ML community uses simplistic “interpolation”
routines. Conventional analytical interpolation is unsatis-
factory for ML prognostics of mission-critical and safety-
critical assets, whereas imputation utilizing MSET2 is
more robust.

(b) Time asynchronies resulting from clock-mismatch issues
and from variable clock skew issues in DAQ aggregators.

(c) Non-uniform flow of the fundamental “time dimension”.
For many use cases, assuming a uniform flow of “wall-
clock time” throughout complex engineering assets is
naive. What is required as a foundational principle for
advanced Machine Learning prognostics is an internal ex-
plicit time dimension as a building block for synchronous
network knowledge representation.

In this section, we showcase a few of the most prominent
“time aware” challenges observed from the aerospace assets,
along with the corresponding solution.

Monitoring Complex Systems with Disparate Sampling Rates

The expansions of dense-sensor applications across many
industrial segments are fast growing in the past decade. For
example, a typical large commercial airplane has 7,500 sensors.
Across avionics and other IoT industries, it is quite common
that different sensors (e.g. temperatures, voltages, currents,
fan speeds, vibration levels, rotation speeds for rotating
machinery, etc) are sampled at drastically different sampling
frequencies, yielding a set of telemetry signals with non-
uniform sampling rates; however, ML prognostic algorithms
cannot tolerate non-uniform sampling rates for signals. The
catalyst and foundation for a robust TAMI infrastructure is
creating uniform sampling rates for all the signals under
surveillance, in a manner that does not influence the accuracy
of the ML algorithms.

The conventional approach to address non-uniform sampling
rates is to apply interpolation based methods, wherein the
non-uniform sampling signals are first upsampled through
an interpolation method on a univariate basis to be able to
work with any time-series ML technique. Unfortunately, for
prognostic health monitoring and proactive/predictive mainte-
nance applications, these signals yield sub-optimal prognostics
because each signal goes through an independent interpolation
process, which unavoidably creates correlation discrepancies
between the individual upsampled signals. Whether an ML
user conducts simple linear interpolation (e.g. mean between
the last measured value and the next measured value), or
utilizes more sophisticated interpolation algorithms such as,
exponentially weighted moving averages, cubic splines, and
inverse Lagrangian interpolation, the interpolation approaches
have zero prognostic value. When the gap between samples
is filled in with interpolation, the resulting observation is
autocorrelated to the anterior and subsequent observations, but
contains no correlation to any event that may have transpired
during the time between samples. Therefore, considering that
the measurements are for the same assets occurring at the
same time, the preferred method is to analyze the underlying
correlations among the signals during the interpolation process.
Best practice is to assume there is prognostic significance that
occurs between samples in the slower sampling rate signals
(including irregularly sampled signals). Hence, the impetus for
developing an ML based imputation method for upsampling
non-uniform sampling-rate signals is utilizing the inferential
physical correlations between the signals [14].

Given any dataset, the imputation technique first identifies the
fastest sampling rate signal and computes its sampling rate
with the timestamps. Then it sorts all of the slower signals
and temporarily performs an interpolation-based upsampling
technique (Figure 1). The values will be subsequently
improved in the systematic iterative imputation procedure
to fill in the temporal gaps between the slower signals and the
fastest signal. This first step is essentially a shape-preserving
piecewise cubic-spline interpolation that fills the missing
observations in the slower signals with a temporary starting
values. The innovative part of our imputation technique comes
after this interpolation. We split the uniform sampling dataset
to two subsets A and B of equal size.

For subset A, an MSET model is trained to characterize
the internal physical correlations between the signals. The
model is then deployed to generate MSET estimates for
subset B. Subsequently, the measurements that were generated
by the cubic interpolations are updated and replaced with
the corresponding MSET estimates, which constitutes a
new subset B’ which is more accurate and possesses closer
alignment with what the measurements would be if the sensors
were sampled at a faster speed. With this imputed subset
B, second MSET model is trained to produce estimates for
subset A. The previously interpolated values in subset A
are updated by the corresponding estimated values, resulting
in a new subset A’, thereby updating subset A with more
accurate imputed measurements. Further iterations for cross
training and estimation yield better imputation performance,
but the incremental improvements are greatest in the early
iterations and diminish with each subsequent iteration. It has
been determined empirically that 5 iterations converges to
optimal accuracy. After the 5th iteration subsets A’ and B’
are concatenated to reconstitute an upsampled data set with a
uniform sampling rate and higher accuracy.

To illustrate this process, an example signal from a dataset with
missing values is presented in Figure 1. The figure contains 4
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subplots. The first subplot is the example signal, in blue, the
missing indexes which are initially interpolate and represented
by the orange dot. The first step in the process is illustrated in
the second subplot form the top. On the left hand side we see
the portion of the signal that will be used for training the MSET
model. On the right hand side we see the portion of the signal
for which estimates will be made. After the first monitoring
step the value’s in purple will be updated with the estimated
values displayed as yellow markers in the third subplot. In the
third subplot the portion of the signal that contains the newly
imputed values will be used in the training set where the initial
training set is now used during monitoring. The last subplot
is the entire signal after all of the missing values have been
imputed. The results, when used for training an ML model,
contain more prognostic information than simply interpolating
on a univariate level. The detailed schematic for this MSET
based imputation for non-uniform sampling rate datasets is
presented in Figure 2.

Processing Correlated Signals with Uniform Phase Disparities

Use of telemetry associated with physical variables (dis-
tributed temperatures, voltages, currents, vibration levels, fan
speeds, power, integrated energy), can bring many benefits
to aerospace system monitoring, including enhancements to
availability, serviceability, performance, capacity planning,
QoS, and security. However, the raw telemetry metrics often
have disparate sampling rates (may be significantly out of
phase), and the phase shifts between and among signals that
are time varying with internal system loads. For dynamic
time-series signal analyses, any types of ML computations
involving differences of signals or ratios of signals incur
substantial inaccuracies in the computed results, if there is
even a slight lead-lag incoherence present between signals.

As a simple demonstrative example to motivate the subsequent
developments: consider two time series variables that are in
synchronization and that vary with approximately identical
sinusoidal dynamics. The difference of these two variables
produces a residual function that is stationary in time. Sim-
ilarly, the ratio of these two time series produces a quotient
time series that is stationary in time. However, if there was a
small lag between the variables, caused by latency in wireless
sensor and DAQ network, the difference and the ratio become
severely contaminated with serial correlation. This serial
correlation introduces substantial error terms in analytical
computations involving the time series variables, unless it
could be fixed “up-stream” of the analytical engine [15].

Time-Domain Synchronization of Telemetry Signatures—This
section presents a novel means that combine telemetry time
series with a pattern recognition technique called a Parity
Space algorithm for optimal synchronization of any number
of hardware clocks, with any number of software clocks
(typically on the domain side) [16]. One hardware-based
solution is to subscribe to commercial clock-synchronization
hardware/software systems that will periodically synchronize
a network of distributed clocks to a remote highly-accurate
atomic clock. This approach became popular in the previous
decade, in spite of the significant cost to design in clocks
with either network or wireless capability for periodic re-sync
updates. While effective this clock-sync methodology has
fallen out of favor for many business-critical facilities after a
few well-publicized hacks occurred when hackers discovered
they could tap into facility critical assets through the clock-
sync connections (which require a penetration through the
facility-network firewall). Additionally, alternative hardware
solutions have been developed that use ”GPS clocks” and
”radio clocks”. Such approaches should eliminate clock-

drift problems in future networks that implement these new
approaches. Unfortunately, it would be a prohibitively
expensive undertaking to retrofit legacy networks, with new
clock capability which is the impetus for the investing in a
algorithmic solution.

The time-domain technique developed in this section exploits
a pattern recognition approach called parity space to produce
residual time-series for each hardware/software clock in the
system. The residuals are monitored with a ”Detector” module–
another consumer module–as part of the telemetry framework.
The Parity Space Detector generates a time-sync validation
flag that is stored along with other telemetry data. Time stamp
sequences are used in a Parity Space (PS) algorithm. A PS
approach averages N available time series (in this case the N
clock signals) and computes a ”residual function” for each
individual clock by subtracting that signal from the realtime
mean.

Upon initialization, the residual functions are normalized
to zero. This means that if there is an initial offset among
the various system clocks, the telemetries-PS algorithm will
not attempt to correct the initial offset(s). It will record
and then zero out that offset in the residuals; then from
that point forward it will function as a time-sync validation
detector. If any of the N residual functions should exceed a
configurable threshold, a time-sync flag will be set to zero and
a warning will be generated (via the same PA framework as
other telemetry generated warnings).

Many variables of interest most often have disparate sampling
rates, are not synchronized, and may have time-varying
coherence. It is difficult to synchronize the samples from
disparate signal sources, and even more difficult to assure
phase coherence between/among the data streams. As stated,
and solved, in the previous section the first problem is
obtaining uniform sampling rates while the second problem is
that even if the sampling rates can be made exactly uniform,
the processes being monitored can be out of phase. For solving
the phase misalignment, there are three options developed by
Oracle: correlogram, Cross Power Spectral Density (CPSD),
and a Genetic Algorithm (GA). This section discusses the
correlogram (correlation coefficient vs lag) analysis, which
operates in the time domain. The correlogram determines
the optimum lag at which two signals are aligned the closest,
i.e., the lag at which the correlation (absolute value) is the
highest. One signal is picked as the ‘reference anchor’ signal,
meaning its timestamps will be assumed to be correct. All
other signals in the asset or fleet of assets will be empirically
aligned to the “reference anchor” signal by computing pairwise
cross correlation coefficients, then systematically “adjusting”
the lags for the individual signals to optimize the correlation
coefficient with respect to the “reference anchor”. This step
is required even though the signals may have common time
stamps due to various reasons mentioned previously.

In Figure 3, two signals with identical sinusoidal dynamics
were generated with Fourier composites. One signal, in orange,
has an additional lag time inserted to simulate the phase shift
that can occur for the myriad reasons expounded upon above.
The correlogram analysis is performed matching the out of
phase signal #2 (orange), to signal #1(blue) by iteratively
measuring the correlation coefficient between signal #1 and
shifted copies of signal #2 (middle plot). The non-zero lag
corresponding to the highest correlation is captured and used
to shift the signal #2, yielding the synced two signals (bottom
plot). In a multivariate set of signals the correlogram analysis
is performed for every pair of signals
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Figure 1: Illustration of the TAMI imputation process.
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Figure 2: Flowchart of MSET based imputation for
upsampling varying sampling rate dataset.

Frequency-Domain Synchronization of Telemetry Signatures:—
The technique presented in the previous section addresses
the challenge of optimizing the alignment of telemetry signals
with the analysis performed in the time domain. The technique
presented in this section, CPSD, comes at the challenge
from a different perspective:a signal transformation into the
frequency domain occurs. CPSD is a bivariate frequency-
domain technique that exploits a sophisticated Fast Fourier
Transform (FFT) computation inferring, with high accuracy,
the “phase angle” (in the frequency domain) between two
time-series. An algorithm is then employed to compute
an optimal estimate of the lag time from the phase angle.
Pairwise computations are performed for all signals in the

Figure 3: The phase differences between two correlated
signals are corrected by the correlogram technique in the

TAMI system.

collection, adjusting signals to bring the empirical lag times
to zero. This is an alternative approach and one that results in
significantly improved accuracy for optimal signal alignment
when the raw input telemetry signals contain any degree
of “quantization”. Most legacy digital assets contain 8-bit
A/D converter chips that produce physical variables with low
resolution and significant quantization. Conventional time-
domain approaches using correlation coefficients result in
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sub-optimal phase coherence when the input telemetry signals
are quantized

(a)

(b)

Figure 4: A phase shift between signal A and signal B
occurs (a), and is corrected after the CPSD analysis (b).

In this analysis, the phase angle is plotted against frequency,
then the slope of the phase-vs-frequency curve indicates
whether the original telemetry signals are aligned. A non-
zero slope in the phase angle vs frequency line indicates that
the two signals are not aligned. The phase angle is treated
as an adjustable parameter in a systematic stepwise iterative
algorithm that is recursively applied until a zero slope indicates
that the signals are perfectly aligned. As with correlogram
analysis, CPSD is required even though the signals may have
common time stamps. As an illustration of the inventive
technique, examples below show the CPSD (phase angle vs
frequency) for two signals when there is a non-zero lag (non-
zero slope) and when the telemetry metrics are brought into
optimal phase alignment with a zero lag (zero slope).

The novel frequency-domain technique has been developed for
analytical resampling and phase shift optimization of telemetry
signals coming from server telemetry but has been applied to
signals from many other industries including aerospace. The
advantage that this technique brings is that monitoring can
be performed more efficiently and accurately, even when the
signals are dynamically varying and even when those signals

are contaminated with significant degrees of quantization from
low-resolution A/D chips used in most legacy computing
systems. Conventional time-domain signal synchronization
techniques can presently only measure metrics while all
signals are held constant with time. If the signals are varying
dynamically, then any small time shifts due to clock skews
between the external hardware power meter, the temperature
measurements, and the OS throughput and performance
variables, causes very large uncertainties with conventional
methods.

Genetic Algorithm for Phase Shift Synchronization— The
Genetic Algorithm (GA), like the correlogram, is conducted
in the time domain but unlike the correlogram it does not rely
on brute force. The GA is an iterative process whereas in each
iteration, signals are given random perturbations in the positive
or negative directions, after which the overall synchronization
score for the population is evaluated. Perturbations that result
in an improvement are retained for the next “generation,”
whereas ones that worsen the degree of correlation are moved
back to the positions they held in the previous generation. Per-
turbation sizes are systematically reduced in each generation
to ensure convergence to the optimum synchronization value.

Figure 5 displays the sequential steps of the algorithm when
applied to an example pair of signals that exhibit correlation.
In the top subplot the signals are presented as they were
originally recorded, it is visually apparent that they are not
synchronous in the time domain. Moreover, they are quantita-
tively asynchronous as the cross-correlation coefficient (CCF)
between the two signals is approximately zero. The second
subplot illustrates the signals after the first iteration of the GA.
Signal A, in blue, was utilized as the reference signal while
Signal B, in red, was randomly shifted forward in time by 5
timestamps. The absolute value of the CCF after the first shift
increased to 0.88 indicating an increase in correlation. The
next iteration is displayed in the second subplot after signal B
has been randomly shifted forward in time again. Once again
there is an increase in the absolute CCF. The third step, in
the third subplot, randomly shifts signal B backwards in time
by one unit in time landing on the maximum absolute CCF.
An intermediary step (not pictured) subsequent to the third
subplot that shifts signal B both forward and backward in time
again. If the absolute CFF decreases in both directions the
algorithm determines the maximum has been reached. Once
the maximum absolute CCF is located the algorithm checks
the sign of the CCF. If the sign is negative the algorithm shifts
the signal back in time half a period aligning the signals in the
time domain. If the is CCF positive no action is taken. The
result of this last step is displayed in the fourth subplot and as
such the CCF is positive and close to 1.

To illustrate complexity improvements of the GA, when
compared to a brute force approach, a simple experiment was
conducted whereby the number of signals was increased to 8.
In turn the phase shift window size is 9 and the GA converges
in 30 iterations. While by comparison the brute force method,
terminates after 240 iterations.

Processing Correlated Signals with Dynamic Phase Misalign-
ment

All operating systems speed up and slow down the CPU
executions based on the utilization dynamics [17]. The
aerospace industry is not immune to this issue. As the
integration of automation and electronic monitoring into
aerospace equipment increases so does the increase in CPUs.
This issue can be especially problematic for telemetry used in
condition based monitoring. For example, if we run a dynamic
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Figure 5: The sequential steps of the Genetic Algorithm (TAMI Processed) for a pair of signals.

stress script on two identical DAQs, then overlay the dynamic
telemetry time series graphics on the same plot, and if we
synchronized the front end of the dynamic profile, the back
end of the dynamic signal is not synchronized. Conventional
real-time phase synchronization techniques are unable to solve
this issue. Figure 6 is a typical example illustrating the
artifact of the variable speed up/slow down nature of OS.
The whole Signal B is being synchronized with Signal A,
it is always the case that part of Signal B observations are
aligned with Signal A while the rest will be still out-of-phase
in reference to the corresponding parts of Signal A. Then
in the downstream process in the ML prognostic algorithm
Signal B will generate false-alarms and will leave open the
interpretation of those alarms and whether they come from
variable time step executions, or from a possible unknown
developing fault in the asset.

As demonstrated in the previous sections the synchroniza-
tion post-processing autonomously corrects for conventional,
constant, phase shifts in real-time but is unable to solve
the challenge discussed above because the synchronization
assumes lockstep temporal executions and consequential a
constant lead/lag time between the signals of interest. When
there is a dynamically varying lead/lag relationship in which
the Linux (and other OS) dynamically speed up / slow down,
a different synchronization technique is required.

To overcome the above challenges that increase false alerts
and missed alerts in any ML techniques, the “Compression-
Dilation Time-series Phrase Synchronization Framework,”
was developed. The framework transforms the signal of
interest by dynamically and iteratively shrinking/expanding
and resampling the signal before performing a global real-time
phrase synchronization technique in a sliding window fashion.
The output is a reconstituted signal of interest which aligns

Figure 6: Signal A and Signal B are produced by two
identical variable-step execution OS. Signal B is in varying
out-of-phase in reference to Signal A along the time axis.

with the reference signal throughout the time axis, and both
signals now have uniform equally spaced sampling intervals.

The detailed procedure is illustrated in a flowchart in Figure
7. The flowchart begins with reference signal A and varying
out-of-phase signal B. The technique then employs a moving
time window to segment both signals, and then each segment
of signal B will be going through an optimal compression or
expansion process by a “transform factor” from 80% to 120%
of the segment through phase-synchronization and analytical
resampling technique. Real measurements outside the present
window segment are used to support the resampling process
as needed. The transformed segment will then be shifted
by a set of pre-defined time lags through the Correlegram
technique and computing at each step the correlations to the
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corresponding segment of Signal A. The maximum correlation
is selected and the associated lead/lag time and transform
factor are determined optimally and used to reconstitute that
segment of signal B. Then the time window is moved one step
ahead and the above process is recursively repeated until the
end when all the reconstituted segments are combined to yield
the final reconstituted signal B.

Figure 7: Flowchart of Compression/Dilation timeseries
signal phase synchronization for variable phase signals.

To demonstrate the performance of the Compression and
Dilation technique, Figure 8 compares the results of the
algorithm using the same signals in Figure 6 with the outcome
of the typical time synchronization technique. The recon-
stituted signal B (green) by TAMI correctly aligns with the
original reference signal A with much better alignment than
the common solution (yellow).

Figure 8: Signal A and B responding to the same load
source which suffers from the variable time lag executions,
so they are out of synchronization in varying degree. The

simple time synchronization approach aligns the two
signals from the front end to the back end, causing

inconsistent alignment, while the compression and dilation
approach (black) corrects the varying phase shift.

This variable out-of-phrase situation will certainly cause false
alarms and missed alarms in the ML prognostic applications.

4. CONCLUSIONS
Anomaly Detection is the critical success factor in the aviation
Prognostic and Health Management system that detects the in-
cipience or onset of degradation mechanisms in any monitored
on-board subsystems, since it reports actionable prognostics to
anticipate when maintenance is required, rather than the clas-
sical preventive approach in which activities are planned on a

regularly scheduled basis for the maintenance. Moreover, sus-
taining operations for complex aircraft systems also requires
rapid processing and leveraging the sensor data in the avionics
and internal aircraft systems to improve operational readiness.
A reliable multivariate machine learning prognostic product
suite that can handle imperfect data from sensors is crucial.
This paper describes Oracle’s multivariate pattern recognition
technique for prognostic applications coupled with a portfolio
of data pre-processing innovations for monitoring time-series
telemetry signals for optimal prognostics performance. It
provides the best possible prediction of failure precursors and
onset of small degradation for the electronic components used
on aircraft, benefiting the aviation Prognostics and Health
Management system.
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