
Walkabout—A Retargetable Dynamic Binary
Translation Framework

Cristina Cifuentes, Brian Lewis, and David Ung

M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

Walkabout—A Retargetable Dynamic
Binary Translation Framework

Cristina Cifuentes, Brian Lewis, and David Ung

SMLI TR-2002-106 January 2002

Abstract:

Dynamic compilation techniques have found a renaissance in recent years due to their
use in high-performance implementations of the Java™ language. Techniques origi-
nally developed for use in virtual machines for such object-oriented languages as
Smalltalk are now commonly used in Java virtual machines (JVM™) and Java just-in-
time compilers. These techniques have also been applied to binary translation in
recent years, most commonly appearing in binary optimizers for a given platform that
improve the performance of binary programs while they execute.

The Walkabout project investigates and develops dynamic binary translation tech-
niques that are based on properties of retargetability, ease of experimentation, separa-
tion of machine-dependent from machine-independent concerns, and good debugging
support. Walkabout is a framework for experimenting with dynamic binary translation
ideas, as well as techniques in related areas such as interpreters, instrumentation
tools, and optimization.

In this report, we present the design of the Walkabout framework and its initial imple-
mentation. Tools generated from this initial framework include disassemblers, machine
code interpreters (emulators), and binary rewriting tools for the SPARC® and x86
architectures.

email address:
cristina.cifuentes@sun.com
brian.t.lewis@intel.com
david.ung@itee.uq.edu.au

© 2002 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Solaris, Java, JVM, and Java HotSpot are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.All technical
reports are available online on our Website, http://research.sun.com/techrep/.

Walkabout – A Retargetable Dynamic Binary
Translation Framework

Cristina Cifuentes
Sun Microsystems Laboratories

Palo Alto, CA 94303, USA
cristina.cifuentes@sun.com

Brian Lewis�

Sun Microsystems Laboratories
Palo Alto, CA 94303, USA
brian.lewis@sun.com

David Ungy

Sun Microsystems Laboratories
Palo Alto, CA 94303, USA
david.ung@sun.com

1 Introduction

Binary translation, the process of translating binary executables1, makes it possible to run code
compiled for a source (input) machine Ms on a target (output) machine Mt. Unlike an interpreter
or emulator, a binary translator makes it possible to approach the speed of native code on
machine Mt. Translated code may run more slowly than native code because low-level properties
of machine Ms must often be modeled on machine Mt. For example, the Digital Freeport
Express translator [Dig95] simulates the byte order of the SPARC(R) architecture, and the FX!32
translator [Tho96, HH97] simulates the calling sequence of the source x86 machine, even though
neither of these is native to the target Alpha architecture.

The Walkabout framework is a retargetable binary translation framework for experimenting with
dynamic translation of binary code. The framework had its inspiration in the University of
Queensland Binary Translator (UQBT) framework [CE00, CERL02, CERL01]. We took what
we had learned in the areas of retargetability and separation of machine-dependent from machine-
independent concerns, and applied these techniques to the new dynamic framework. Of course,
the code transformations we could support were different due to differences between dynamic and

�Now at Intel Microprocessor Research Labs. Email: brian.t.lewis@intel.com
yThe author was an intern at Sun Microsystems Laboratories when this work was conducted. Current address: The

University of Queensland,david.ung@itee.uq.edu.au
1In this document, the termsbinary executable, executable, andbinary files are used as synonyms to refer to the

binary image file generated by a compiler or assembler to run on a particular computer.

1

static translation. For example, a static translator operates before the target program executes, and
so can afford to use expensive optimizations. A dynamic translator, on the other hand, operates
while the target program is executing, and the time it requires is unavailable to the target program.

1.1 Goals and Objectives

Binary translation requires machine-level analyses to transform source binary code onto target
binary code, either by emulating features of the source machine or by identifying such features
and transforming them into equivalent target machine features. In the Walkabout system, we make
use of both types of transformations, and determine when it is safe to make use of native target
features.

One question that must be answered early in the development of a binary translation system is what
intermediate representation to use. In the UQBT system, we make use of RTLs and HRTLs. The
former is a register transfer language that makes explicit every transfer of control, while the latter
is a high-level register transfer language that resembles simple imperative languages, with explicit
control transfers.

Many other binary translation systems have used machine code itself as the intermediate repre-
sentation, mainly because these systems were binary code reoptimizers and were generating code
for the same machine. Such systems include Dynamo [BDB00], Wiggins/Redstone [DGR99] and
Mojo [CLCG00].

For Walkabout, we have initially used machine code as the intermediate representation. We plan to
use RTL as the next step. However, we want to experiment with how well RTLs support translation
into a target representation. RTLs are still machine-dependent as they expose such features as
delayed branches and register windows.

The goals of the project are:

� to derive components of binary translators as much as possible from machine descriptions,

� to understand how to instrument interpreters in a retargetable way,

� to determine whether an RTL representation is best suited for dynamic machine translation,
and how to best map Ms-RTLs to Mt-RTLs2,

� to understand how debugging support needs to be integrated into a dynamic binary transla-
tion system, and

� to develop a framework for quick experimentation with dynamic binary-manipulation tech-
niques.

We limit binary translation to user-level code and to multiplatform operating systems such as
Solaris(TM) and Linux.

2RTLs for a given machine M are denoted M-RTLs.

2

2 Previous Work

Dynamic binary translation techniques evolved from emulation and simulation techniques as a
more efficient way of running programs on other machines by generating target native code on the
fly. Many of the techniques used in dynamic binary translation systems were originally developed
in language interpreters and virtual machines for languages such as APL, Forth, Smalltalk, Self,
and now Java(TM). We review the literature in three main areas: existing examples of dynamic
binary translators, binary rewriting tools, and virtual machines for object-oriented languages.

2.1 Other Dynamic Binary Translators

DAISY (Dynamically Architected Instruction Set from Yorktown), is a VLIW virtual machine that
emulates existing machines in order to run applications, including low-level system programs, on
the DAISY machine [EA96]. The machines it supports are the PowerPC, x86, and S/390. DAISY
was developed at IBM T.J.Watson to aid in determining what features a new VLIW architecture
should have in order to successfully run a variety of existing programs. The DAISY system
provides simulations of how well a new architecture might perform if it were built.

HP’s Aries is a PA-RISC to IA-64 dynamic translator for the HP-UX operating system, which is
planned to be shipped with all IA-64 HP-UX systems [ZT00]. Aries combines a fast interpreter
with a dynamic optimizing compiler (i.e., a just-in-time, or JIT, compiler). It operates by compiling
frequently interpreted code sequences into native IA-64 code. Aries allows users to migrate their
PA-RISC applications transparently, without user intervention. Runtime verification support was
also built as part of this tool.

Transmeta’s Crusoe architecture makes use of dynamic binary translation—which they term “code
morphing”—to support running x86 applications on the Crusoe processor, a VLIW machine with
instruction level parallelism [Kla00]. The code morphing software resides in a ROM and is
effectively a layer that sits in between the BIOS and the VLIW processor. Crusoe has support
at the hardware level for features that are hard or expensive to support at the software level.
Precise exception handling is done by shadowing all registers holding x86 state information, and
providing a commit and rollback operation to copy registers between the working and the shadow
copies. Alias detection hardware guards against illegal moves of load instructions ahead of store
instructions, when the store instruction overwrites the previously loaded data. Self-modifying
code is supported by detecting when it happens, so that previously-translated code can be flagged
as invalid. This is done by protecting pages with a translated bit.

Two academic systems have been described in the literature: UQDBT [UC00] and bin-
trans [Pro01]. Both systems show that retargetable dynamic binary translation is feasible. The
former is based on the UQBT system and makes use of one intermediate representation for both
code generation and machine-independent translation purposes. The latter makes no use of an
intermediate representation and compiles all the code that is decoded on-the-fly, achieving better
performance for the limited class of architectures on which it was tested.

3

2.2 Other Binary Rewriting Tools

Areas related to dynamic binary translation include emulation and simulation, where work has
been done since the 1960s. Recent emulators and simulators include the Sun Microsystems
tools Shade [CK93] and Wabi [HMR96, FN96], as well as the Stanford research simulators
SimOS [RHWG95] and Embra [WR96].

In the last few years, several dynamic reoptimizers have been developed as research projects. Their
goal is to transparently reoptimize binaries at runtime to improve their performance. None of these
systems has been used commercially since there are still a number of open research questions in
how to implement these systems. For example, it is hard to achieve consistently good performance
while correctly executing all programs. The systems include: HP Labs’ Dynamo [BDB00], a
reoptimizer of PA-RISC code; Compaq’s Wiggins/Redstone [DGR99], a reoptimizer for Alpha
code; and Microsoft Research’s Mojo [CLCG00], a reoptimizer of (x86,Windows) binaries.

Both Dynamo and Mojo count branching instructions while interpreting code to detect fre-
quently executed code and generate native code for it, applying a variety of optimizations. Wig-
gins/Redstone samples CPU events for frequently executed instructions in the target program using
hardware event counters and the Digital Continuous Profiling Infrastructure (DCPI [ABD+97]).
This allows the tool to determine a seed instruction out of which a trace of frequently executed
code is determined.

All systems show mixed results: some SPEC benchmark programs perform faster, while others
perform slower. For programs where performance is degradated, no study has been reported in the
literature that aids in understanding what features affected these programs; some of the programs
that worked well under Dynamo did not work well under Wiggins/Redstone, for example. In
addition, common problems involving changes in a program’s phase behaviour have not been
studied.

2.3 Virtual Machines for Object-Oriented Languages

In recent years, there has been a renaissance of dynamic compilation techniques, mainly due to the
popularity of the Java programming language and the drive to build high-performance Java virtual
machines (JVM(TM)3) that run Java code faster.

JVMs such as Sun Microsystems Java HotSpot(TM) virtual machine [HBG+97, GM00, PVC01]
use dynamic compilation techniques to produce good quality native code. These techniques
have been derived over time from virtual machine technology used to implement object-oriented
languages such as Smalltalk [GR83, DS84] and Self [US87, Hol94]. Self was the inspiration for
the original Java HotSpot virtual machine.

The architecture of optimizing virtual machines is based on the premise that most programs spend
90% of the time in 10% of the code—therefore, the VM only optimizes that 10% of the code and
interprets or generates naive code for the rest, where little time is spent.

3The terms “Java virtual machine” and “JVM” mean a virtual machine for the Java(TM) platform.

4

3 Architecture of Walkabout

The Walkabout framework was designed with retargetability in mind. We were interested in
supporting binaries for different input and output machines, so we designed the framework to
be retargetable for both input and output machines. In our notation, we refer to the input machine
as thesource machine(Ms), and the output machine as thetarget machine(Mt). The framework
was designed so that users could instantiate new translators out of the framework for their source
and target machines of choice to run on the target machine, which we refer to as thehost machine.

Ms Interpreter

Ms -> M t
Translator

Dispatcher

Ms binary file

Mt Code
Generator

Mt Optimizer

Mt F$

Figure 1: The Architecture of the Walkabout Framework

The architecture of the Walkabout framework borrows from the architecture of most existing
dynamic compilation systems. Figure 1 illustrates the architecture of the Walkabout framework.
The source binary program is loaded into virtual memory and initially interpreted until a hot path4

is found. Code is generated for that hot path and placed into a translated instruction cache (called
the fragment cache or F$). During code generation, simple optimizations are applied to obtain
better code locality. Once the generated code is executed, control transfers to the dispatcher,
which decides whether to interpret more code or transfer control to code in the fragment cache.
If interpreted, the process repeats. Reoptimization of translated code occurs when a piece of
translated code in the fragment cache is executed too often.

Retargetability is supported in the Walkabout framework through the use of specifications: ma-
chine descriptions and specifications of the hot path selection methods. The machine descriptions
specify the syntax and semantics of machine instructions, and allow the automatic generation of
machine-code interpreters (emulators) and instruction encoders.

4A hot path is a frequently executed path in a program.

5

Ms Interpreter

Dispatcher

Ms binary file

Ms Code
Generator

Ms F$

Figure 2: The 2001 Walkabout Framework

The 2001 implementation of the Walkabout framework does not implement the complete frame-
work. The system was built in stages, starting from the interpreters, over a period of 9 months with
the help of 3 interns. Figure 2 illustrates the implementation components of the 2001 Walkabout
implementation. Next we describe different tools that can be built from this initial implementation.

4 The Interpreter

Interpreters in the Walkabout framework are automatically generated from specifications of syn-
tax and semantics of machine instruction sets. We reused the specifications we had used in the
UQBT project [CE00], namely, the New Jersey Machine Code (NJMC) toolkit’s SLED descrip-
tions [RF97] and the UQBT’s SSL descriptions [CS98].

SLED specifications allow users to specify the mapping between the binary and the assembly
representation of a machine instruction set, as well as the machine’s registers and names for those
registers. SSL specifications allow users to specify the mapping between assembly instructions
and their equivalent register transfers, to name new registers and declare overlaps, to define
superoperators in the from of macros for commonly set condition codes, and to specify the fetch-
execute cycle for the machine.

The combined SLED and SSL specifications provide complete information to generate a user-level
interpreter. The user-level restriction is imposed by the SSL descriptions, which describe semantics
for user-level instructions only, as per the goals of the UQBT project [CERL01].

The conceptual view of the interpreter generator is illustrated in Figure 3. The interpreter generator
takes as input a SLED and an SSL description for a given machine and generates source code for

6

Ms Interpreter
(C)

Ms SSL
Ms Interpreter

(Java)

Interpreter
Generator

Ms SLED

Figure 3: The Interpreter Generator Genemu

an interpreter for the specified machine in either the C or Java language. The generated code can
then be compiled into an executable representation, resulting in an interpreter.

The interpreter generator creates interpreters that use either the C or Java language because we
were interested in comparing the performance of interpreters implemented in these languages on
a relatively fair basis. However, the Java-based interpreters are not as object-oriented as desired,
due to implementation issues, as explained in the following section.

4.1 Implementation

Thegenemu tool is the implementation of the interpreter generator in the Walkabout framework.
genemu relies on the New Jersey Machine Code (NJMC) toolkit, which provides thematching
statement to decode machine instructions. The syntax of thematchingstatement resembles that of
the C language’sswitch statement. It matches the series of bits that identifies an instruction and
also extracts the operands and field values for that instruction.

The process used bygenemu to generate the C or Java language interpreters is illustrated in
Figure 4. SLED and SSL files for a machine are parsed bygenemu and checked for consistency.
A matching file (i.e., a.m file) is generated, consisting of the core decoder for machine instructions,
as well as the associated C language code to implement the semantics of each instruction in
predefined interpreter data structures that capture the state of the machine being interpreted. The
NJMC toolkit transforms the matching file into C language code. Optionally, a postprocessing
phase of thegenemu tool can transform the C language file into a Java language file, by making
transformations on the syntax more than anything else.

The generated C or Java language decoders are then compiled with three pieces of information:
file loading and system calls for the operating system of interest (SysV Personality), and
machine stubs (Ms stub). genemu’s implementation of OS support is for ELF binaries for two
SystemV operating systems: Solaris(TM) and Linux. System call support for both these OSs is
part ofgenemu. Machine stubs are written to initialize the state of the machine being interpreted,
that is, the interpreter’s internal data structures, at program startup time.

Thegenemu tool can also automatically generate disassemblers in the C and Java language for a
given machine; the SLED description is all that is needed in that case.

7

Ms SSLMs SLED

.m

NJMC
toolkit

Genemu
post-proc

C Compiler

Java
Compiler

.c

.java

Ms_stub.cc

Ms_stub.java

SysV_Personality.cc

Ms interpreter

Ms interpreter
(.class)

JNI

Genemu

Figure 4: Thegenemu Interpreter Generation Process

4.2 Performance Results

Usinggenemu and the SPARC and x86 architecture’s SLED and SSL descriptions, we generated
interpreters for the SPARC and x86 architectures running on the Solaris and Linux operating
environments respectively. In this section, we report on our experimental results with the C
language interpreter for the SPARC architecture.

Figure 5 shows results for the running of the C-language interpreter for the SPARC architecture
on a lightly loaded 4 CPU UltraSPARC(R) machine running at 450 MHz per CPU and 4GB of
memory. Results are for runs of SPECInt 95 programs, which were compiled for a SPARC V8
machine. For each program, the size of the program in bytes is listed, as well as the interpretation
time and the native time to run the programs, in seconds. The native time reported is the average
of three runs. The interpretation time reported is the result of one run. The slowdown of the
interpreter compared to native code is also shown: this is, on average, approximately 200x.

The Java language interpreters are considerably slower than their C language counterpart. This
is partly due to the difficulty of dynamically compiling a program that implements an interpreter.
Much of the execution time is spent in a dispatching loop that switches on each instruction, and
no significant amount of time is spent in any one path of theswitch statement. In practice, we
observed a 5x slowdown of the Java language version of the interpreter for the SPARC architecture
when compared against the unoptimized C language version of the same interpreter, and a 15.5x
slowdown when compared against an optimized (O4) version of the C language interpreter, on

8

Program Size Interpreted Native Slowdown
go 364,412 57,388 412 139
m88ksim 198,264 47,068 180 261
li 83,168 32,210 181 178
ijpeg 175,268 38,294 187 205
perl 298,296 22,972 137 168
vortex 665,088 40,180 203 198
sieve (3000) 24,452 3,287 15 219
fibo (35) 24,668 184 1.3 141
Mean 229,202 30,198 375.74 189

Figure 5: Performance Results for an Automatically-Generated, C-language Interpreter for the
SPARC Architecture

small benchmarks. The results point at a 1000x-3000x slowdown for programs executed by the
Java-based interpreter when compared against native code. These results were observed using the
Java SDK 1.3 on a SPARC machine.

5 Instrumenting an Interpreter for Hot Path Detection

Some optimizing virtual machines rely on an instrumented interpreter that determines hot paths in
the program being interpreted. Native code is then generated for such hot paths.

In the Walkabout framework, we were interested in experimenting with different ways to determine
hot paths within an interpreter. This is more challenging in a dynamic translator because binary
programs do not include such high-level information as procedure boundaries or loop information.
In addition, binary programs are typically less structured and regular than the byte code programs
executed by virtual machines, so it can be harder to find natural instrumentation points.

We designed a simple language called INSTR, for instrumentation language, to allow us to
instrument the interpreters automatically generated by thegenemu tool. INSTR allows us to
easily create different instrumented interpreters that make use of different instrumentation rules.
Figure 6 illustrates how INSTR is used.

The instrumented interpreter generator,genemu’ , parses SLED and SSL machine descriptions, as
well as the INSTR instrumentation description, and generates an interpreter for that machine that
can instrument instructions in the way specified in the INSTR specification file. The instrumented
interpreter is generated in the C language.

In the Walkabout framework, the INSTR language was used to write a specification for Dynamo’s
Next Executing Tail tracing method [DB00], as well as other variations of the method. In a similar
way, one could specify the method used by the Java HotSpot [GM00] virtual machine, for example,

9

Ms SSL

Instrumented
Interpreter
Generator

Ms SLED

Instrumented
Ms Interpreter

INSTR i

Figure 6: The Instrumented Interpreter Generator

or any other method that was being considered to determine hot paths in an interpreter, so long as
it can be specified based on one instruction-at-a-time information.

In the following sections, we describe the INSTR language and give some examples of its use for
other applications.

5.1 The INSTR Language

The INSTR language was designed to work in conjunction with an interpreter, therefore, it relied
on simple abstractions available in interpreters. An interpreter interprets code one instruction at a
time. It also knows about the fetch-execute cycle of the machine being interpreted. Consequently,
INSTR’s abstractions are centered around individual instructions and the fact that the interpreter
has a fetch-execute cycle to decode instructions for the given machine. Further, the interpreters of
interest were those automatically generated by the Walkabout framework using thegenemu tool;
therefore, the language required a way to relate to the instruction names that are used in the SLED
and SSL specifications from which the interpreters are generated.

Other instrumentation languages used in tools like ATOM [ES95] and Vulcan [SEV01] make
available high-level abstractions of the program to developers; the aims of these languages are
different than one that needs to be integrated with an automatically generated interpreter, and
therefore could not be reused for our purposes.

INSTR allows developers to instrument an instruction at three different points in time:

� before the instruction is fetched,

� before the instruction’s semantics are executed, or

� after the instruction’s semantics are executed.

Instrumenting in the fetch-execute cycle allows for instrumentation of repetitive actions on all
instructions that get fetched, for example, to observe and record each instruction’s opcode or
to count the number of instructions executed. Instrumenting before or after an instruction’s
semantics means that such actions are only executed on that particular instruction instead of on
each instruction being fetched.

10

An instrumentation file consists of three main sections:

1. Definition,

2. Fetch-execute cycle, and

3. Support code.

The definition section specifies which instructions are to be instrumented and their corresponding
instrumentation code. The fetch-execute cycle section specifies what, if any, commands need to be
executed at each iteration of the cycle. The support code section contains support functions used
in the instrumentation code; this code is expressed in the C/C++ language. Figure 7 provides the
EBNF for the language.

specification: parts+
parts: definition | support_code
definition: "DEFINITION" instrm+
instrm: table | semantics
table: %STRING "[" SLED_names "]"
semantics: (%STRING parameter_list instrument_code)+

["FETCHEXECUTE" instrument_code]
parameter_list: %STRING ("," %STRING)*
instrument_code: "{" (%action)* "}"
support_code: "IMPLEMENTATION_ROUTINES" %c_code

Figure 7: EBNF for the INSTR Language

In the INSTR language, both%action and%c code denote valid C/C++ language code; the
difference between them is that%action can make use of predefined keywords to refer to fields
of an instruction. The keywords and their meaning are:

1. "SSL INST SEMANTICS": this keyword denotes the standard semantics of an instruction,
as described in the SSL specification file.

2. "PARAM(" %STRING ")" : the "PARAM" keyword stands for parameter and it is the
way to refer to thevalueof a named parameter (i.e., operand) of an instruction. For example,
when instrumenting theBA label instruction,PARAM(label) refers to the value of the
branch’s label.

3. "SSL(%" %STRING ")" : the "SSL" keyword denotes one of the SSL-named register
locations. For example,SSL(%pc) is the location holding the value of the emulated PC
register.

5.2 Examples

The INSTR language allows the Walkabout framework to be used to construct instrumentation
tools that insert code during interpretation in order to understand the behaviour of running

11

programs. These tools can do basic block counting and profiling. They can also record dynamic
memory accesses, branches taken or not, and instruction traces. The data they collect can be used
to drive related tools such as pipeline and memory system simulators.

Basic Block Counting

If we want to count the number of basic blocks executed in a program, we need to increment a
counter each time an instruction that causes an end-of-basic block condition is reached.

Using INSTR, we can group all the SPARC architecture branching instructions in a table called
branch and then give semantics to that group of instructions as the instrumentation for such
instructions. In the example code, all branching instructions of the kindbranch will now
increment a counter calledBB count in the instrumented interpreter and will also maintain their
original semantics (as specified in the SSL representation of those instructions).

DEFINITION

branch ["BA", "BN", "BNE", "BE", "BG", "BLE", "BGE", "BL",
"BGU", "BLEU", "BCC", "BCS", "BPOS", "BNEG", "BVC", "BVS",
"BNEA", "BEA", "BGA", "BLEA", "BGEA", "BLA", "BGUA",
"BLEUA", "BCCA", "BCSA", "BPOSA", "BNEGA", "BVCA", "BVSA",
"RET", "RETL", "CALL", "JMPL"]

branch label {
BB_count++;
SSL_INST_SEMANTICS

}

Load Monitor

A load monitor could be specified in the following way. All load instructions of interest are
grouped in aload table. All load instructions take two operands, the effective address of the load
(eaddr) and the register where the value is to be loaded to (reg). Whenever a load instruction
is decoded, if themonitor mode flag is set, the C functionmonitor eaddr will be called
before the semantics of the load instruction is executed by the interpreter. Themonitor eaddr
function monitors the runtime value of the effective address of the load instruction (referred to
asPARAM(eaddr)) and records the memory reference of the load instruction (SSL(%pc) ; i.e.,
the PC value). Themonitor eaddr function would be defined in the support section of the
specification file.

DEFINITION

load ["LD", "LDA", "LDD", "LDUH", "LDUHA", "LDUB", "LDUBA",

12

"LDSH", "LDSHA", "LDSB", "LDSBA", "LDF", "LDDF", "LDSTUB"]

load eaddr, reg {
if (monitor_mode) {

monitor_eaddr (SSL(%pc), PARAM(eaddr));
}
SSL_INST_SEMANTICS

}

Edge Counting

In order to instrument all branches of an x86 architecture, we can define a tablejump32s with
the names of all such branches. If we want to count the number of occurrences of edges taken in
the program, we can extend the behaviour of the branches by incrementing a counter before the
instruction’s semantics is executed by the interpreter, as follows

DEFINITION

jump32s ["JVA", "JVNBE", "JVAE", "JVNB", "JVB", "JVNAE", "JVBE",
"JVNA", "JVC", "JVCXZ", "JVE", "JVZ", "JVG", "JVNLE", "JVGE",
"JVNL", "JVL", "JVNGE", "JVLE", "JVNG", "JVNC", "JVNE", "JVNZ",
"JVNO", "JVNP", "JVPO", "JVNS", "JVO", "JVP", "JVPE", "JVS",
"JMPJVOD"]

jump32s label
{

increment_counter(SSL(%pc), PARAM(label));
SSL_INST_SEMANTICS

}

where the functionincrement counter is defined in the support code section of the specifi-
cation file. In the above example, all branches take one operand, the target address of the branch
instruction, referred to aslabel in the example.

For illustration purposes, we show the support code section for this specification, in which the
function increment counter is implemented.

IMPLEMENTATION_ROUTINES

#include <map>
#include <iostream>

map <pair<unsigned, unsigned>, int> edge_cnt;

void increment_counter (int addr1, int addr2) {

13

pair<unsigned, unsigned> edge =
pair<unsigned, unsigned>(addr1, addr2);

map <pair<unsigned, unsigned>, int>::iterator i;
if ((i = edge_cnt.find(edge)) == edge_cnt.end())

edge_cnt[edge] = 1;
else

i->second++;
}

The increment counter routine makes use of theedge cnt map of edges to execution
counts, in order to record occurrences of branch taken edges during execution time. When a count
on a taken edge is to be incremented, the routine gets an iterator to traverse the map of pairs (i.e.,
the edges) and increment the counter for that edge.

At runtime, the instrumented emulator will increase the count on each edge taken during the
execution of the input program. A support print routine can then display the number of occurrences
of each edge.

6 The PathFinder

The PathFinder is a simple semi-optimizing virtual machine for SPARC machine code that
generates SPARC V9 code for hot paths, performs simple optimizations during code generation,
and places the generated code in a fragment cache. The PathFinder is a dynamic binary rewriting
tool that can be used to experiment with dynamic code optimization. The PathFinder is the core
of the 2001 implementation of the Walkabout framework. Figure 8 illustrates the PathFinder’s
architecture.

The instrumented SPARC V8 interpreter is automatically generated by thegenemu’ tool based on
the SLED and SSL specifications for the SPARC instruction set, and several different INSTR spec-
ification files. In its present form, the PathFinder tool for the SPARC architecture resembles the dy-
namic optimizing systems Dynamo [BDB00], Wiggins/Redstone [DGR99] and Mojo [CLCG00],
which were written for the PA-RISC, Alpha and x86 platforms, respectively. Part of the objective
for the PathFinder was to be able to contrast techniques used in other systems in the context of a
retargetable framework. However, the PathFinder does not currently implement a reoptimizer, and
so cannot be fully compared experimentally with those systems. Conceptually, all these translators
work in similar ways; i.e., they generate target code for hot pieces of source machine code based
on some criteria for determining what paths are frequently executed, and perform varying levels of
optimization.

The PathFinder’s code generator performs code layout optimizations as well as several simple
optimizations, which we explain in turn. No intermediate representation is built in the PathFinder;
the code generator relies on transforming SPARC V8 assembly instructions directly onto V9
instructions.

14

SPARC V8
Instrumented

Interpreter

Dispatcher

SPARC V8 binary file

SPARC V9 Code
Generator

SPARC
V9 F$

Figure 8: PathFinder: The Implementation of the 2001 Walkabout Framework

The PathFinder’s memory system is trivial. We reserve a fixed-sized fragment cache: once that
cache is full, it is flushed; no attempt is made to figure out what fragments to keep.

6.1 Code Layout

Code layout is a simple optimization that is achieved by placing basic blocks that execute
frequently in sequential fashion, contiguous in memory, to achieve better code locality as well
as reduce the number of branches needed in the code.

Figure 9 shows an example of code layout. To the left of the diagram is a control flow graph
for a program. The program executes a loop quite a large number of times by following the
path ACFGDEA. Note that the loop includes the call to a routine and its return from that routine.
The right side of the diagram illustrates how the code is placed in the fragment cache, therefore
improving code locality. In the diagram, ACFGDE are placed sequentially in memory. Nodes PB

and PH are theexit portalsof this fragment. An exit portal is an exit basic block for a fragment of
code. It contains code that allows the program to go back to the interpreter or to another fragment
of code (when fragment linking has been implemented, seex6.5).

6.2 Branch Inversion

As part of code layout, inversion of certain branch instructions is necessary to keep basic blocks
contiguous in memory. Branch targets that are not part of the trace jump to exit portals in that
fragment.

15

call

return

A

B C

D

E
F

G H

A

C

F

G

D

E

PB

P
H

Figure 9: Code Layout Example

The inversion of some delayed control transfer instructions in the SPARC and other architectures
is not as straightforward as replacing the branch by its inverse branch, as these instructions may
not be antonyms based on the delay slot semantics. In the following code, the annulling branch
instructionbne,a at address0xfe08d10 is to be inverted as the most common behaviour in that
program is to branch on not equals. This annulling branch executes the delay slot instruction only
if the branch is taken, otherwise it annuls it.

Trace:
0xfe08d0c: cmp %o0, 0
0xfe08d10: bne,a 0xfe08d2c
0xfe08d14: ld [%i3 + 0xc], %i3
...

Inverting the branch requires a non-annulling branch on equal, i.e.,be , and anop in the delay
slot of that branch, so that the fall through case executes the code that was previously located at
addresses0xfe08d14 and0xfe08d2c ; now located starting at<code cache+628> . The
code fragment looks as follows

...
<code_cache+616>: cmp %o0, 0
<code_cache+620>: be <code_cache+696>
<code_cache+624>: nop
<code_cache+628>: ld [%i3 + 0xc], %i3
...

16

6.3 Branch Linking

Branch linking relates to the removal of unconditional branches when the target of the branch is
moved to be located immediately following the branch instruction in the fragment cache. These
branches typically include the branch always (ba) and branch never (bn) instructions, as well as
their annulled counterparts. The following code serves as example, where the branch to address
0x50034 is removed in the fragment cache, and the code at source address0x74ae0 is placed
after the delay slot instruction.

0x4fe68: ba 0x50034
0x4fe6c: add %i5, 4, %i5
...
0x50034: ba 0x74ae0
0x50038: add %l0, 4, %l0
0x5003c: ba 0x7e510
0x50040: ld [%l0 + %i0], %g2

The SPARC call instruction is a special case of an unconditional branch, one that affects the state
of register%o7when the program counter is written to that register (in order to preserve the return
address). In this case, the semantics of the assignment to%o7is preserved, while the instruction is
modified, as per the following example, which includes one call instruction.

0x49f98: ld [%i0 + 0x11c], %o1 ! 0x9211c
0x49f9c: call 0x60f24
0x49fa0: mov %l4, %o0
...

The fragment generated for the above trace computes the return address of the source program
(0x49f9c), and stores it in register%o7, as per standard call semantics, leading to the following
code

<code_cache+3432>: ld [%i0 + 0x11c], %o1
<code_cache+3436>: sethi %hi(0x49c00), %o7
<code_cache+3440>: add %o7, 0x39c, %o7 ! 0x49f9c
<code_cache+3444>: mov %l4, %o0
...

Figure 10 shows a sample SPARC assembly code for a program on the left-hand side and its
corresponding code fragment. The left-hand side shows in bold face the instructions that belong to
a trace in this program. The branch at0xfe1c970 transfers control to0xfe1c9cc , the branch at
0xfe1c9e8 transfers control to0xfe1cad4 , and the branch at0xfe1cad8 jumps back to the
start of the trace at0xfe1c960 . In the example, code layout, branch inversion and branch linking
has been applied to the code. The right-hand side shows in bold face the branch at0x200b3ca0 ,
which has been inverted, and the last branch at0x200b3ccc which jumps to the start of the
fragment. The pieces of code at0x200b3cd4 , 0x200b3d00 , etc, are all exit portals.

17

...
0xfe1c960: sll %i2, 4, %i2
0xfe1c964: bl 0xfe1ca20
0xfe1c968: srl %i5, 1, %i5
0xfe1c96c: subcc %i3, %i5, %i3
0xfe1c970: bl 0xfe1c9cc
0xfe1c974: srl %i5, 1, %i5
0xfe1c978: subcc %i3, %i5, %i3
0xfe1c97c: bl 0xfe1c9a8
0xfe1c980: srl %i5, 1, %i5
...
0xfe1c9cc: addcc %i3, %i5, %i3
0xfe1c9d0: bl 0xfe1c9fc
0xfe1c9d4: srl %i5, 1, %i5
0xfe1c9d8: subcc %i3, %i5, %i3
0xfe1c9dc: bl 0xfe1c9f0
0xfe1c9e0: srl %i5, 1, %i5
0xfe1c9e4: subcc %i3, %i5, %i3
0xfe1c9e8: ba 0xfe1cad4
0xfe1c9ec: add %i2, 7, %i2
0xfe1c9f0: addcc %i3, %i5, %i3
0xfe1c9f4: ba 0xfe1cad4
0xfe1c9f8: add %i2, 5, %i2
...
0xfe1cad4: deccc %i4
0xfe1cad8: bge 0xfe1c96a
0xfe1cadc: tst %i3
0xfe1cae0: bl,a 0xfe1cae8
0xfe1cae4: add %i3, %i1, %i3
0xfe1cae8: tst %l1
...

0x200b3c90: sll %i2, 4, %i2
0x200b3c94: bl 0x200b3d84
0x200b3c98: srl %i5, 1, %i5
0x200b3c9c: subcc %i3, %i5, %i3
0x200b3ca0: bge 0x200b3d58
0x200b3ca4: srl %i5, 1, %i5
0x200b3ca8: addcc %i3, %i5, %i3
0x200b3cac: bl 0x200b3d2c
0x200b3cb0: srl %i5, 1, %i5
0x200b3cb4: subcc %i3, %i5, %i3
0x200b3cb8: bl 0x200b3d00
0x200b3cbc: srl %i5, 1, %i5
0x200b3cc0: subcc %i3, %i5, %i3
0x200b3cc4: add %i2, 7, %i2
0x200b3cc8: deccc %i4
0x200b3ccc: bge 0x200b3c90
0x200b3cd0: tst %i3
0x200b3cd4: !exit to 0xfe1cae0
...
0x200b3d00: !exit to 0xfe1c9f0
...
0x200b3d2c: !exit to 0xfe1c9fc
...
0x200b3d58: !exit to 0xfe1c978
...
0x200b3d84: !exit to 0xfe1ca20
...

Figure 10: Code Layout Example: Sample Trace (in bold face) and Generated Code for the Trace

6.4 Inline Caching

Inline caching is a technique originally developed for Smalltalk virtual machines to cache “in
line” a lookup result for a message send call, hence removing the overhead of the system’s lookup
routine [DS84]. The inlined routine adds, in its prologue, guard code to determine that the receiver
type is the expected one.

Inline caching is used in the PathFinder to predict the target address of indirect transfers of control.
The technique is simple: given a trace of the targets for such transfers of control at a given point in
a program, the most frequent target becomes the predicted one.

For example, an indirect jump on the contents of register%g1at offset 0xf4

18

jmp %g1 + 0xf4

can be transformed into an unconditional branch to the predicted location (labelledpredicted
in the below code). Lets say that the target address for this jump is predicted to be that stored
in predicted val , then, the code at the predicted location ensures that jumps reaching this
code are the right ones, i.e., it compares the predicted value against the expected value. This code
transformation avoids the indirect transfer of control for the most common destination address of
the branch

predicted: add %g1, 0xf4, scratch1
set predicted_val scratch2
cmp scratch1, scratch2
bne exit_scratch1
...

In a similar way, indirect calls and returns with no corresponding call instructions in the fragment,
are treated as indirect jumps. In the SPARC architecture, return instructions are indirect transfers
of control on the contents of register%i7 , which holds the address of the instruction that invoked
the procedure. The following code shows a trace that has a return instruction but no corresponding
call instruction in the trace itself. Once the return is executed, execution continues at address
0x4fb50 .

0x4fc40: sll %i0, 2, %g2
0x4fc44: mov 1, %o3
0x4fc48: ld [%g2 + %o5], %g2
0x4fc4c: ld [%o1 + %o5], %g3
0x4fc50: cmp %g3, %g2
0x4fc54: be 0x4fc64
0x4fc58: cmp %o3, 0
0x4fc5c: ret ! jmpl %i7+8, %g0
0x4fc60: restore %g0, 0, %o0

0x4fb50: cmp %o0, 0
0x4fb54: bne,a 0x4fb78
0x4fb58: clr %o0
...

The following code fragment shows how the one return instruction at address0x4fc5c
in the trace, is replaced by 5 instructions in the fragment cache, starting at address
<code cache+3932> . This is because a guard has been placed to check that the correct jump
targets reach the address<code cache+3956> , as this address is now contiguous to the rest of
the trace code.

19

<code_cache+3904>: sll %i0, 2, %g2
<code_cache+3908>: mov 1, %o3
<code_cache+3912>: ld [%g2 + %o5], %g2
<code_cache+3916>: ld [%o1 + %o5], %g3
<code_cache+3920>: cmp %g3, %g2
<code_cache+3924>: be <code_cache+4192>
<code_cache+3928>: cmp %o3, 0
<code_cache+3932>: add %i7, 8, %g5
<code_cache+3936>: sethi %hi(0x4f800), %g6
<code_cache+3940>: add %g6, 0x350, %g6 ! 0x4fb50
<code_cache+3944>: sub %g5, %g6, %g6
<code_cache+3948>: brnz,pn %g6, <code_cache+4140>
<code_cache+3952>: restore %g0, 0, %o0

<code_cache+3956>: cmp %o0, 0
<code_cache+3960>: bne,a <code_cache+4088>
<code_cache+3964>: clr %o0
...

6.5 Fragment Linking

Fragment linking is the process of joining one fragment to another, so as to avoid going through the
dispatcher; i.e., it reduces context switching. Fragment linking can be done during code generation
of a fragment or as a reoptimization which patches an existing portal to a new fragment.

During code generation, when generating a fragment where one of its exits leads to an address
that is the start of another fragment, instead of creating an exit portal, a direct jump to the second
fragment can be generated instead.

When performing reoptimization of code, fragment code that shows a frequently-executed be-
haviour can generate new hot traces (note that these are traces of code in the fragment cache). In
these traces, exit portals can be patched so that the flow of control does not need to go through the
dispatcher any longer.

6.6 Peephole Optimizations of V7 Code

The SPARC V7 architecture did not have integer multiply or division instructions at the hardware
level, hence, library routines were made available to implement these instructions in software by
making use of several additions and/or subtractions. Post V7 machines implement the multiply
and division instructions in hardware.

To this day, there are natively compiled SPARC binaries that make use of the V7 library routines
to perform multiplication and division. ISVs tend to compile for the lowest-common denominator
machine in many cases.

20

A simple peephole optimization for such binaries is to transform the V7 library calls and associated
instructions that set up its parameters and return value, to the equivalent multiply or divide
instruction for the host platform.

For example, if multiplying the values of registers%i0 and%i1 , and expecting the result into
register%i0 , the following V7 code

mov %i0, %o0
mov %i1, %o1
call .umul
nop
mov %o0, %i0

can be replaced by the more simple and efficient V8/V9 instruction

umul %i0, %i1, %i0

6.7 Experimental Results

The PathFinder was tested against SPEC95 benchmarks. Note that no reoptimization of code is
performed by the PathFinder, so these results can be improved upon. We report on experimental
results using Dynamo’s next executing tail (NET)5 trace selection method [DB00], a 1 MB cache
size and the following optimizations: code layout, branch inversion, branch linking and fragment
linking. Figure 11 shows the results. For each program, its static size in bytes is given, as well
as its user execution time running on the interpreter, the PathFinder, and on the native machine.
Results were obtained on a lightly loaded 4 CPU UltraSPARC II machine at 450 MHz per CPU
and 4 GB of main memory.

Except forcompress andsieve , which have a tight loop that performs the bulk of the program’s
work, the other benchmarks show slowdowns when compared against native execution runs. These
results were collected in a system that is not yet tuned for performance; simple optimizations
such as constant propagation, inline caching, and better fragment linking are missing. Of interest,
benchmarksgo , ijpeg andvortex behave badly; these benchmarks are the ones in which the
Dynamo system bails out as the system cannot accurately predict which paths to compile. The

5The NET method maintains counts only for executed targets of backward taken branches. Once the counter of
any such target exceeds a threshold, the next executing path is predicted by collecting that information on the next
iteration of the loop in a trace buffer, where its first element is named the trace-head. The end-of-trace conditions used
by NET are:

1. the target of the backwards branch is to the trace-head,

2. the current instruction is a backward taken branch (i.e., a new start-of-trace), or

3. the history buffer has reached a size limit.

21

Program Static Size Interpreter Time PathFinder Time Native Time
compress 85,572 n/a 74 76
go 364,412 57,388 3,717 412
m88ksim 198,264 47,068 709 180
li 83,168 32,210 1,821 181
ijpeg 175,268 38,294 1,816 187
perl 298,296 22,972 338 137
vortex 665,088 40,180 35,905 203
sieve(3000) 24,452 3,287 8.3 14.6

Figure 11: Experimental Results Using the Interpreter and the PathFinder, Without Performing
Optimization of the Code

PathFinder does not implement a bail out option. In the case ofvortex , the execution time in the
PathFinder approaches that of running the same program in interpretation mode.

Two classes of programs showed bad behaviour using this trace selection method: recursive
programs and largeswitch statement-based programs.

Recursive programs do not have a back branch that can be easily detectable as an end-of-trace
condition, hence, no trace is found to be hot in a method like NET. Some existing virtual machines,
such as the Self VM, used inlining of recursive methods to optimize for recursive programs.
Inlining was done once the count on a method entry became hot; in fact, the Self version of
highly recursive programs such as Fibonacci and Takeuchi runs much faster than the native C
version of the same program [Hol94]. Present day Java virtual machines do not seem to perform
inlining of recursive methods. Note that inlining of procedures in machine code programs is not
as straightforward as inlining of methods in VM-based languages such as Self and Java. This
is because the boundaries of a procedure in a binary program are not well defined, unlike their
VM-based languages.

Figure 12 shows results of running a highly recursive program, Fibonacci, using two different trace
selection methods in the PathFinder: NET and a variation which we call “recursive”. The recursive
method keeps track of the stack levels formed in the trace, and adds a new end-of-trace condition
to the NET method: stop building a trace after 5 levels of stack are in the trace (i.e., 5 levels of call
or returns). In this way, calls to the procedure Fibonacci are replaced by the setting up of the%o7
register. The stack frames themselves cannot be removed as there may be exits from the interpreter.

Program Static Size Scheme PathFinder Time Native Time
fibo (35) 24,668 NET 189s 1.3s
fibo (35) 24,668 Recursive 20s 1.3s

Figure 12: Experimental Results for Problematic Programs Using the PathFinder configured with
NET Trace Selection Method

22

The results in Figure 12 show that the version of the PathFinder using the NET approach behaves
just as slowly as the interpreter on its own; i.e., 189s vs 184s (see Figure 5). The results also show
considerable improvement in the execution time when using the procedure inlining method.

Programs where the core of the execution time is spent jumping between differentswitch arms
of the statement do not normally exhibit good behaviour in VMs unless particular arms of the
switch statement could be compiled. Using the NET method, the PathFinder detects a hot
instructions; however, as the hot trace is determined by executing the next iteration of the loop,
the trace that is collected for this type of programs tends to be incorrect most of the times.

7 Debugging Support

One of the goals of the Walkabout project was to provide better debugging support than its UQBT
counterpart. A debugger was built to integrate with the other components of the Walkabout system,
relying on the automatic generation of the disassembler and the interpreter as its core components.

The Walkabout debugger is a graphical Java language tool that provides several windows to display
the assembly instructions of the program, as well as its state (i.e., register contents). Users can set
breakpoints and run the program to a given state.

Programs are run on the C language version of the interpreter. Both the interpreter and the debugger
run in separate processes and communicate through a socket, allowing the debugger to remain
active even when the interpreter has crashed. The disassembler that is used is the Java language
version of the Walkabout disassembler.

Figure 13 shows a view of the Walkabout debugger. Five windows display different information
about the state of the program:

� The disassembly window (Disasm Output) shows the disassembly of the program. The first
column allows users to set breakpoints, the second column shows the virtual address where
the instruction is loaded, the third column displays the instruction in hexadecimal format,
and the last in assembly format.

� The command window allows simple debugging control, basically, to (re)start the program
run, to step one instruction at a time, to continue program execution until a breakpoint or the
end of program is met, or to stop program execution. Relocation in memory of the program
can also be set.

� The register values window displays the state of the registers, condition codes and program
counters of the machine after execution of each instruction, as well as the details of the
current instruction.

� The miscellaneous window displays breakpoint information, and

� The trace window displays a hot trace obtained by running the PathFinder tool.

23

Figure 13: A View of the Walkabout Debugger

24

8 Experience

The Walkabout framework was designed and partially implemented over a period of 9 months by
2 researchers and 3 interns. This work was done at the same time as the final experiments in the
static binary translation framework UQBT [CERL02]. The total effort was 3.5 researcher-months
and 11 intern-months.

Our experiences with the implementation and results of the Walkabout framework are positive.
These results were achieved thanks to a design that supported retargetability as well as a separation
of machine dependence concerns. Retargetability was achieved through the use of specifications
for both machine instruction sets and instrumentation.

The implementation of the Walkabout framework was staged. First, disassemblers were generated,
then machine code interpreters (emulators), followed by instrumented emulators that determine
hot paths in a program, followed by the creation of a binary-code rewriting tool called PathFinder.
Many of the components of these tools were generated automatically.

The machine code emulator generator was a big win. We were able to reuse existing syntactic
and semantic descriptions for the SPARC and x86 instruction sets and generate, automatically,
emulators for these machines. These emulators were able to run existing programs including the
SPEC95 benchmark suite. The emulator generator was able to generate two different versions of
each emulator: one in the C language and another in the Java language. This allowed us to compare
how well those languages worked for this purpose. The use of the emulator generator allowed us to
quickly experiment with multiple machines and to generate correct emulators, as extensive testing
in the past had ensured that the specifications were correct.

The development of a new specification language for instrumenting machine code emulators,
INSTR, was also a big win. The emulator generator was constructed in such a way that it
allowed easy integration of instrumentation support code at different points in a program. The
instrumentation language itself was simple and made it easy to specify new profiling schemes. It
could also be used for other kinds of instrumentation: e.g., traditional EEL-like instrumentation of
binaries. It was not restricted to use in a dynamic interpreter/reoptimizer.

Once we could specify and generate instrumented machine code emulators, the next step was
to decide how to determine a program’s hot paths. It proved straightforward to specify this
criteria. Code generation for these hot paths on the SPARC architecture was done by reusing
the syntactic instruction specifications for the SPARC architecture. The hot path analysis code was
only concerned with deciding what types of transformations to apply to the source machine code,
which simplified development time.

The current implementation of the Walkabout framework is incomplete. The PathFinder tool does
not reoptimize code, which is needed to improve the performance of running applications.

Since PathFinder does no optimizations at this time and, being mostly automatically generated, is
not tuned, we did not expect it would consistently improve the performance of programs. This is
confirmed by the performance results we obtained. The runtime of most programs is somewhere
between native code and interpreted code. Some programs require close to native time, others run

25

10 or more times slower than native code, and others run close to interpretation time (200x slower
in the Walkabout generated interpreters). Optimizations and fine tuning the code generated by
PathFinder would improve these results.

The graphical Walkabout debugger proved to be a help in debugging the system. It was imple-
mented using the Java language and relied upon several components which were automatically
generated from the Walkabout framework. This includes the Java version of the disassembler, the
C version of the interpreter, and the C version of the PathFinder’s hot trace generator.

9 Conclusions

This report describes the design of the Walkabout framework, a dynamic binary translation
framework designed to simplify experiments with binary manipulation ideas and based on the
use of specifications to simplify retargetability.

The 2001 implementation of the Walkabout framework provides mechanisms to automatically gen-
erate machine code interpreters (emulators) and disassemblers in both the C and Java languages.
It also supports the automatic creation of instrumented interpreters in the C language by the use
of a new specification language called INSTR. Finally, Walkabout includes a general-purpose bi-
nary rewriting tool called PathFinder that can be used to implement, for example, binary code
reoptimizers. The Walkabout framework can generate tools for the SPARC and x86 platforms.

Acknowledgments

The authors would like to thank Nathan Keynes for the implementation of the interpreter generator
genemu, and Bernard Wong for the implementation of the debugger. We would also like to thank
Mario Wolczko for suggestions in ways to improve the presentation of this report.

The Walkabout distribution is available online under an open source license. Please refer to the
Walkabout home site for more information about this project and for links to the distribution:
http://research.sun.com/walkabout

26

References

[ABD+97] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.A. Leung, R.L.
Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous profiling:
Where have all the cycles gone? Technical Report SRC Technical Note 197-016a,
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, July
1997.http://www.research.digital.com/SRC/ .

[BDB00] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimiza-
tion system. InProceedings of the ACM SIGPLAN’00 Conference on Programming
Language Design and Implementation, pages 1–12, Vancouver, Canada, June 2000.
ACM Press.

[CE00] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable binary translation at low cost.
Computer, 33(3):60–66, March 2000.

[CERL01] C. Cifuentes, M. Van Emmerik, N. Ramsey, and B. Lewis. The University of
Queensland Binary Translator (UQBT) framework, December 2001. Documentation
from the UQBT open source distribution, available fromhttp://www.itee.uq.
edu.au/csm/uqbt.html .

[CERL02] C. Cifuentes, M. Van Emmerik, N. Ramsey, and B. Lewis. Experience in the design,
implementation and use of a retargetable static binary translation framework. Tech-
nical Report TR-2002-105, Sun Microsytems Laboratories, Palo Alto, CA 94303,
January 2002.

[CK93] R.F. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution
profiling. Technical Report SMLI TR-93-12, Sun Microsystems Laboratories, Inc.,
July 1993.

[CLCG00] W. Chen, S. Lerner, R. Chaiken, and D. Gillies. Mojo: A dynamic optimization
system. InProceedings of the Third ACM Workshop on Feedback-Directed and
Dynamic Optimization, Monterey, California, December 2000.

[CS98] C. Cifuentes and S. Sendall. Specifying the semantics of machine instructions. In
Proceedings of the International Workshop on Program Comprehension, pages 126–
133, Ischia, Italy, 24–26 June 1998. IEEE CS Press.

[DB00] E. Duesterwald and V. Bala. Software profiling for hot path prediction: Less is more.
In Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, USA, November 2000.
ACM Press.

[DGR99] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Redstone: An on-line program
specializer. Slides compendium for Hot Chips 11. Stanford, CA, August 1999.

[Dig95] Alpha migration tools. Freeport Express.http://www.support.compaq.
com/amt/freeport/index.html , 1995.

[DS84] Peter Deutsch and Alan M. Schiffman. Efficient implementation of the Smalltalk-80
system. InConference Record of the 11th Annual ACM Symposium on Principles of
Programming Languages, pages 297–302. ACM Press, January 1984.

27

[EA96] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation for 100% architectural
compatibility. Technical Report RC 20538, IBM, IBM T.J. Watson Research Center,
Yorktown Heights, New York, August 1996.

[ES95] A. Eustace and A. Srivastava. ATOM a flexible interface for building high perfor-
mance program analysis tools. InProceedings USENIX Technical Conference, pages
303–314, January 1995. Also as Digital Western Research Laboratory Technical Note
TN-44, July 1994.

[FN96] S. Fordin and S. Nolin.Wabi 2: Opening Windows. Sun Microsystems Press, 1996.

[GM00] Robert Griesemer and Srdjan Mitrovic. A compiler for the Java HotSpot virtual
machine. In László Böszörményi, Jurg Gutknecht, and Gustav Pomberger, editors,
The School of Niklaus Wirth: The Art of Simplicity. Morgan Kaufmann Publishers,
Los Altos, CA 94022, USA, 2000.

[GR83] Adele Goldberg and David Robson.Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley, Reading, MA, 1983.

[HBG+97] U. Hölzle, L. Bak, S. Grarup, R. Griesemer, and S. Mitrovic. Java on steroids: Sun’s
high-performance Java implementation. Proceedings of HotChips IX, August 1997.

[HH97] R.J. Hookway and M.A. Herdeg. Digital FX!32: Combining emulation and binary
translation.Digital Technical Journal, 9(1):3–12, 1997.

[HMR96] P. Hohensee, M. Myszewski, and D. Reese. Wabi CPU emulation. Proceedings Hot
Chips VIII, 1996.

[Hol94] Urs Holzle. Adaptive optimization for SELF: Reconciling high performance with
exploratory programming. Thesis CS-TR-94-1520, Stanford University, Department
of Computer Science, August 1994.

[Kla00] A. Klaiber. The Technology Behind CrusoeTM Processors. Transmeta Corporation,
3940 Freedom Circle, Santa Clara, CA 95054, January 2000. White Paper.

[Pro01] M. Probst. Fast machine-adaptable dynamic binary translation. InProceedings of the
Workshop on Binary Translation, Barcelona, Spain, September 2001.

[PVC01] Michael Paleczny, Chnstopher Vick, and Cliff Click. The Java HotSpotTM server
compiler. InProceedings of theJavaTM Virtual Machine Research and Technology
Symposium (JVM-01), pages 1–12, Monterey, USA, April 23–24 2001. USENIX
Association.

[RF97] N. Ramsey and M. Fern´andez. Specifying representations of machine instructions.
ACM Transactions of Programming Languages and Systems, 19(3):492–524, 1997.

[RHWG95] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete computer simulation:
the SimOS approach.IEEE Parallel and Distributed Technology, pages 34–43, 1995.

[SEV01] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical Report MSR-TR-2001-50, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, April 2001.

[Tho96] T. Thompson. An Alpha in PC clothing.Byte, pages 195–196, February 1996.

28

[UC00] D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation. InACM
SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization, pages
30–40, Boston, MA, January 2000. ACM Press.

[US87] D. Ungar and R.B. Smith. SELF: The power of simplicity. InConference on Object-
Oriented Programming Systems, Languages and Applications, pages 227–241. ACM
Press, October 1987.

[WR96] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation. In
Proceedings of the Conference on Measurement and Modeling of Computer Systems
(Sigmetrics), Philadelphia, USA, 1996. ACM, ACM Press.

[ZT00] C. Zheng and C. Thompson. PA-RISC to IA-64: Transparent execution, no recompi-
lation. Computer, 33(3):47–52, March 2000.

29

About the Authors

Cristina Cifuentesis a Senior Staff Engineer at Sun Microsytems Laboratories in Mountain View,
California, where she investigates techniques and applications of binary translation. Cristina has
published in the areas of binary translation, program comprehension, software maintenance, com-
piler construction, reverse engineering, decompilation, copyright and legal aspects of computing.
She has co-edited two books, given invited lectures worldwide on various topics, and has served
on the program committee of numerous conferences and workshops. Cristina was principal inves-
tigator of the Walkabout, UQBT, and dcc projects. Prior to joining Sun Microsystems Laboratories
in July 2000, she held academic positions at The University of Queensland and The University
of Tasmania, Australia. Cristina obtained a Ph.D. from the Queensland University of Technology,
Australia, in 1995.

Brian Lewisis a Senior Staff Software Engineer in the Programming Systems Lab of Intel’s Mi-
croprocessor Research Labs. His interests include binary translation as well as virtual machine and
programming language implementation. Previously at Sun, he implemented automatic checkpoint-
ing in a high-performance Java virtual machine. He implemented the Tcl 8.0 and the Clarity C++
virtual machines. He also developed monitoring and debugging tools for the Spring distributed
operating system. Prior to joining Sun, Brian worked at Olivetti and Acorn Research, where he
implemented a user interface toolkit and runtime software. At Xerox, he led the team that devel-
oped the Shared Books distributed, multi-user publication management system. He implemented
portions of the Mesa programming system and developed software version management tools. He
received the Ph.D. in Computer Science from the University of Washington.

David Ung is a Ph.D. student at The University of Queensland in Brisbane, Australia, where he
works in the area of dynamic binary translation and optimization. His areas of interest include
binary translation, emulation, compilers, reverse engineering and mobile computing. David
graduated from the same university in 1996 with First Class Honours in Computer Science. He
was an intern at Sun Microsystems Laboratories in 1997 and 2001, where he worked on object
cache simulation and the Walkabout project.

30

	Walkabout-- A Retargetable Dynamic Binary Translation Framework
	Abstract
	Copyright
	1 Introduction
	1.1 Goals and Objectives

	2 Previous Work
	2.1 Other Dynamic Binary Translators
	2.2 Other Binary Rewriting Tools
	2.3 Virtual Machines for Object-Oriented Languages

	3 Architecture of Walkabout
	4 The Interpreter
	4.1 Implementation
	4.2 Performance Results

	5 Instrumenting an Interpreter for Hot Path Detection
	5.1 The INSTR Language
	5.2 Examples

	6 The PathFinder
	6.1 Code Layout
	6.2 Branch Inversion
	6.3 Branch Linking
	6.4 Inline Caching
	6.5 Fragment Linking
	6.6 Peephole Optimizations of V7 Code
	6.7 Experimental Results

	7 Debugging Support
	8 Experience
	9 Conclusions
	Acknowledgments
	References
	About the Authors

