
Industrial Experience of Finding Cryptographic
Vulnerabilities in Large-scale Codebases

Ya Xiao1, Yang Zhao2, Nicholas Allen2, Nathan Keynes2, Danfeng (Daphne) Yao1, Cristina Cifuentes2

1Computer Science, Virginia Tech, Blacksburg, VA
2Oracle Labs, Brisbane, Australia

{yax99, danfeng}@vt.edu, {yang.yz.zhao, nicholas.allen, cristina.cifuentes}@oracle.com

Abstract—Enterprise environments need to screen large-scale
(millions of lines of code) codebases for vulnerability detection,
resulting in high requirements for precision and scalability of a
static analysis tool. At Oracle, Parfait [1] is one such bug checker,
providing precision and scalability of results, including inter-
procedural analyses. CryptoGuard [2] is a precise static analyzer
for detecting cryptographic vulnerabilities in JavaTM1 code built
on Soot. In this paper, we describe how to integrate CryptoGuard
into Parfait, with changing intermediate representation and
relying on a demand-driven IFDS framework in Parfait, resulting
in a precise and scalable tool for cryptographic vulnerabilities
detection. We evaluate our tool on several large real-world ap-
plications and a comprehensive Java cryptographic vulnerability
benchmark, CryptoAPI-Bench [3]. Initial results show that the
new cryptographic vulnerability detection in Parfait can detect
real-world cryptographic vulnerabilities in large-scale codebases
with few false positives and low runtime.

Index Terms—Cryptography, misuse, API, static analysis

I. INTRODUCTION

Precise and scalable bug checking tools are important for
companies to guarantee the security of large scale projects.
Parfait [1] is a scalable static code analysis tool designed
for large-scale codebases to find security and quality defects
written in C/C++, Java, PL/SQL, and SQL languages. In
particular, Parfait focuses on defects from the lists of CWE
Top 25 [4] and OWASP Top 10 [5]. CryptoGuard [2] is
a precise static analyzer detecting Java cryptographic API
misuses. It contains an inter-procedural flow-, context- and
field-sensitive data-flow analysis for screening cryptography
code and significantly reduces the false alarms by a set of
refined slicing algorithms. Our work aims to achieve the
precise and scalable detection for Java cryptographic API
misuses based on the scalable framework of Parfait and the
refinement insights from CryptoGuard.

Many Java cryptographic APIs have been considered error-
prone [6]–[12]. APIs in Java Cryptography Architecture (JCA)
and Java Cryptography Extension (JCE) libraries are too
complicated for developers without cryptography expertise to
configure securely [13], [14]. The confusing official documents
and the misleading insecure code examples in popular coding
forums (e.g. StackOverflow) make the practices even worse
[9], [15]. The results of misusing these APIs are serious [7],

The work was performed while the first author was at Oracle Labs as an
intern.

1Java is a registered trademark of Oracle and/or its affiliates.

[16], [17], causing various vulnerabilities from exposing the
secret keys to using vulnerable ciphers. A survey shows that
the vulnerabilities in the “cryptography issues” category of the
Common Vulnerabilities and Exposures (CVE) database have
been dominated (83%) by the Cryptography API misuses [18].

The detection of cryptographic API misuses can be mapped
to a set of program analysis problems [19]. Most of these
vulnerabilities involve using constants or predictable sources
to generate secrets and random numbers. Starting from pre-
scribed sensitive arguments (e.g. cipher algorithms, keys) of
cryptographic APIs, we conduct backward data-flow analysis
to capture their constant sources. However, there are some
major challenges. First, the number of false positives from
static analyzers could be extremely high [20], [21]. Many
constants (e.g. resource identifiers) used in the generation
of the cryptographic materials are irrelevant to their security
properties, which aggravates the false positive issue [3]. Sec-
ond, the scalability of screening large-scale projects is always
a challenge for static analyzers [22].

Based on the precise detection in CryptoGuard [2], we
aim to implement a precise and scalable cryptographic vul-
nerability detection in Parfait. However, due to the different
implementations, we cannot directly incorporate CryptoGuard
in Parfait. First, Parfait is supported by LLVM while Cryp-
toGuard is based on Soot [23]. CryptoGuard defines five
refinements according to Jimple IR of Soot. Moreover, Parfait
has a layered framework to optimize the analysis ensemble.
We need to make the analyses for cryptographic vulnerability
detection compatible with the Parfait framework. Finally,
the data-flow analysis in Parfait follows the inter-procedural,
finite, distributive subset (IFDS) framework [24]. The IFDS
framework is a precise inter-procedural data-flow solution in
polynomial time by transforming the analysis into a graph-
reachability problem. It outperforms the ordinary flow-set
based data-flow analysis in CryptoGuard in terms of time
complexity. We need to achieve cryptographic vulnerability
detection in the context of a set of IFDS algorithms.

Our contributions can be summarized as follows:
• We incorporated the cryptographic vulnerability detec-

tion into Oracle tool Parfait. Specifically, we imple-
mented the backward inter-procedural, flow-, context-
, field-sensitivity analysis under Parfait/LLVM support.
Our analysis includes a set of refined IFDS-based analysis
algorithms under Parfait’s layered framework. These re-



fined algorithms have the same effects as CryptoGuard [2]
to reduce false positives and achieve high precision.

• We applied the cryptographic vulnerability detection on
large-scale applications and found many potential vul-
nerabilities with relatively high precision (93.44%). The
runtime for codebases that include 2.4K to 1321K lines
of code ranges from 2 seconds to 36 minutes. Most
of the projects can be finished within 10 minutes. We
further demonstrated some noteworthy examples to better
understand the practices.

• We evaluated our Parfait cryptographic vulnerability de-
tection on a comprehensive CryptoAPI-Bench. It demon-
strates that our detection achieves a high precision
(86.62%) and recall (98.40%) overall. The precision ex-
cluding the path-sensitivity test cases even reaches 100%.
We further analyzed the design choices and their impact
on precision and recall by several test cases.

II. BACKGROUND

Our detection tool aims Java cryptographic API misuses. We
introduce the covered vulnerabilities as well as the background
about CryptoGuard and Parfait in this section.

A. Java Cryptographic API misuses

We summarize the Java cryptographic API misuses covered
by our detection from the developers’ perspective, showing
the involved error-prone APIs and their common vulnerable
usages in Table I. The involved Java classes include:
SecureRandom Class. Any nonce used in cryptography
operations should be generated from SecureRandom instead
of Random. Furthermore, setting a static or predictable seed
via the constructors or setSeed methods2 is vulnerable.
MessageDigest Class. Passing a broken hash algorithm
(e.g. MD5) to the getInstance API is vulnerable.
Cipher Class. The getInstance API is error-prone of
using broken ciphers or insecure mode. The specific vul-
nerable usages include 1) passing a weak cipher algorithm
(e.g. "DES"); 2) specifying "ECB" mode for a block cipher
(e.g. "AES/ECB/NoPadding"); 3) a block cipher without
explicitly specifying a mode (e.g. "AES") because the vul-
nerable ECB mode is used by default.
KeyStore and Key Specification Classes. The APIs in
KeyStore and the various key specification classes (e.g.
SecretKeySpec, PBEKeySpec) accept secrets (e.g. pass-
word, key materials) through their arguments. Any method call
accepting a hard-coded or predictable secret is vulnerable.
Algorithm Parameters Classes. IvParameterSpec and
PBEParameterSpec classes manage the initial vector (IV),
salt, and PBE iteration count. IVs and salts that are static or
predictable cause vulnerabilities. Besides, the iteration count
is required to be not fewer than 1000.
javax.net.ssl Classes. The methods of Java
classes TrustManager, HostnameVerifier, and

2This API has two different method signatures (setSeed(long seed) and
setSeed(byte[] seed)), we skip them for simplicity.

SSLSocketFactory in javax.net.ssl package
provide the SSL/TLS services. Vulnerabilities usually happen
when developers override the default methods or skip
necessary steps to bypass proper verifications.

B. CryptoGuard

CryptoGuard [2] applies the backward program slicing to
discover constant sources and configurations causing Java
cryptographic API misuses. It develops a set of refined slicing
algorithms to achieve high precision.
False Positive Reduction. CryptoGuard invents five refine-
ment insights to remove the language-specific irrelevant el-
ements that cause false positives. During analysis, the state
indicators (e.g. getBytes("UTF-8")), resource identifiers
(e.g. keys of a map), bookkeeping indices (e.g. size pa-
rameters of an array), contextually incompatible constants,
and constants in infeasible paths are removed by refinements
conditioned on their Jimple representations.
Runtime Improvement. The most costly parts of the inter-
procedural analysis are usually the iterative orthogonal ex-
plorations. CryptoGuard improves the runtime by limiting the
orthogonal explorations to depth 1. Deeper orthogonal method
calls are handled by the refinement insights.

C. Data-flow Analysis in CryptoGuard and Parfait.

Parfait implements many functionalities supporting program
analysis. An important feature of Parfiat that has not appeared
in CryptoGuard [2] is the IFDS analysis framework3.
Data-flow Analysis in CryptoGuard. CryptoGuard achieves
data-flow analysis based on Soot’s FlowAnalysis library.
FlowAnalysis implements the intra-procedural data-flow
analysis that keeps a flow set and updates it along the data-flow
traces as shown in Fig. 1(b). CryptoGuard iteratively runs its
intra-procedural analysis for callee and caller methods on the
call graph. This design might cause re-exploring callee meth-
ods multiple times. To reduce complexity, its implementation
sets the default depth of the clipping callee method exploration
to 1.
IFDS in Parfait. Parfait implements the data-flow analysis as
well as the IFDS framework. As shown in Fig. 1(c), the IFDS
framework handles the analysis by building edges among the
data facts (i.e. variables) and summarizing the edges between
two program points on the super control-flow graph. It can
avoid unnecessary re-analysis as much as possible.
Parfait Framework. To improve scalability, Parfait offers a
layered framework to optimize the ensemble of static pro-
gram analyses. According to the time cost, the analyses are
scheduled from the quickest to the slowest. In this way, more
bugs can be found with a lower time overhead. Specifically,
in the cryptographic vulnerability detection, we break down
and dynamically schedule the analyses into different layers
according to the depth of callers. We introduce more details
in Section III-B.

3The project Hero [25] implements the IFDS framework on top of Soot,
however, the CryptoGuard only uses the FlowAnalysis library in Soot, which
does not provide IFDS.



TABLE I
ERROR-PRONE JAVA CRYPTOGRAPHIC APIS COVERED BY PARFAIT’S CRYPTOGRAPHIC API MISUSES DETECTION AND THE INVOLVED

VULNERABILITIES IN CWE. THE SEVERITY INFORMATION IS FROM CRYPTOGUARD [2].

Class Method Names Vulnerable Usage Severity CWE
Random constructor used in cryptography operations M 338: Use of Cryptographically Weak PRNG

SecureRandom constructor pass static or predictable seed M 337: Predictable Seed in PRNGsetSeed
MessageDigest getInstance pass weak algorithm H 328: Reversible One-Way Hash

Cipher getInstance pass weak algorithm L 327: Use of a Broken or Risky Cryptographic Algorithmpass ECB mode for block ciphers

KeyStore

load

pass hard-coded password H 259: Use of Hard-coded Passwordstore
setKeyEntry
getKey

SecretKeySpec constructor pass hard-coded key materials H 321: Use of Hard-coded Cryptographic Key

PBEKeySpec constructor
pass hard-coded password H 259: Use of Hard-coded Password
pass static or predictable salt M 760: Use of a One-Way Hash with a Predictable Salt
pass iteration <1000 L 916: Use of Password Hash With Insufficient Computational Effort

PBEParameterSpec constructor pass static or predictable salt M 760: Use of a One-Way Hash with a Predictable Salt
pass iteration <1000 M 916: Use of Password Hash With Insufficient Computational Effort

IvParameterSpec constructor pass static or predictable IV M 329: Not Using a Random IV with CBC Mode

TrustManager
checkClientTrusted override to skip validation

H 303: Incorrect Implementation of Authentication AlgorithmcheckServerTrusted override to skip validation
getAcceptedIssuers override to return null

HostnameVerifier verify override to always return True H 303: Incorrect Implementation of Authentication Algorithm
SSLSocketFactory createSocket miss hostname verification H 304: Missing Critical Step in Authentication

…
while(a>0){
x	=	a
a	=	a-1

}
api1(x)

{a}

{a}

api1(x)
{a}

a>0

x=a

a=a-1
{x}

{x}

{a}
{a}

Analysis	 trace

Λ x			a

(a)	A	program (b)	Ordinary	flow	analysis	 (c)	IFDS	

Fig. 1. The comparison of the ordinary iterative analysis and IFDS analysis.
(a) is a program demo. (b) shows the ordinary flow-set based analysis by
collecting and updating a flow set. (c) shows the IFDS based analysis process
which builds edges and then summarizes edges.

III. DETECTION METHODS AND IMPLEMENTATION

Our detection covers all the misuses shown in Table I. Two
scalability enablers of it are the layered framework of Parfait
and the summarization mechanism in IFDS to handle callee
methods.

A. Detection Methods

The detecting logic is similar to CryptoGuard which maps
the cryptographic API misuses to the data-flow analysis prob-
lems. In terms of the specific detection methods, there are
three groups.
Group 1: Inter-procedural Backward Data-flow Analysis.
This group includes the API misuses determined by constant
sources. Specifically, these are APIs in Table I of Java Class
SecureRandom, MessageDigest, Cipher, KeyStore,
SecretKeySpec, PBEKeySpec, PBEParameterSpec,
and IvParameterSpec. We require an inter-procedural

backward data-flow analysis to capture the constant sources
of the API arguments. We apply different detection rules to
the collected constant sources according to the vulnerability
types. The detection rules include whether it is a constant,
whether it is a number less than 1000, or whether it matches
to some weak algorithms.

Group 2: Intra-procedural Pattern Matching. The vulner-
abilities related to TrustManager, HostnameVerifier,
and SSLSocketFactory in Table I belong to this
group. These vulnerabilities often happen within one method
that is responsible for authentication operations. We find
them by the intra-procedural pattern matching. Specifically,
for HostnameVerifier, we detect whether the return
value of the method verify is always “True” regard-
less of the verification. For TrustManager, we detect
three vulnerable patterns in the checkClientTrusted
and checkServerTrusted methods including 1) miss-
ing verification behavior; 2) catching the verification ex-
ception without throwing it; 3) missing verification un-
der a certain path. For SSLSocketFactory, we perform
the intra-procedural pattern matching to check whether the
HostNameVerifier.verify method is called after the
SSLSocketFactory instance creation.

Group 3: Sanitizer VS. Verifier. In cryptography opera-
tions, Random is not strong enough [26]. However, it is
unreasonable to report every Random used in a program as
a vulnerability. Therefore, we regard Random as a verifier
and SecureRandom as a sanitizer for the traced arguments
in group 1. Accordingly, we only report Random in these
cryptographic usages.



Entry

cryptoApi1(sc)

slicing

Exit

…

…

method	a

Time

Entry

cryptoApi2(sc)

slicing

Exit

…

…

method	b
Entry

cryptoApi3(sc)

slicing

Exit

…

…

method	c

…

Entry

a(..)
slicing

Exit

…

…

method	d

Layer	1

Entry

b(..)
slicing

Exit

…

…

method	e

Bug

No	Bug

ends	with

ends	with

Entry

d(..)
slicing

Exit

…

…

method	 f

Layer	2

Layer	3

Fig. 2. The inter-procedural analysis under parfait’s layered framework

B. Cryptographic Vulnerability Detection Implementation

Supported by Parfait, we implement the inter-procedural
flow-, context-, and field-sensitive backward data-flow analysis
for cryptographic vulnerabilities detection.
Layered Scheduler for Caller Methods. Parfait optimizes
the analysis ensemble to improve scalability. Figure 2 demon-
strates the backward analyses that are broken down and
assigned to different layers. The analyses are scheduled layer
by layer. At each layer, the backward analysis ends up at the
entry point of the current method with three situations. First, a
real bug is verified. Second, the potential bug is sanitized as no
bug. Third, further analyses are required in its caller methods.
Further analyses will be scheduled at the next layer. In this
way, the analysis requiring less time can be performed first. It
also avoids the duplicated parts of two potential vulnerabilities
detection traces. This layered framework effectively improves
the efficiency of finding bugs.
Flow Functions in IFDS. There are several flow functions
used to define the analysis. In our cryptographic vulnerability
detection, they are:

• flow: This function specifies the data-flow edges
through ordinary non-call instructions. Specifically,
it applies to the LLVM instructions ReturnInst,
LoadInst, StoreInst, and BitCastInst.

• phiFlow: This function specifies the data-flow edges
through the LLVM phi instruction.

• returnVal: The function specifies the data-flow edges
between the ReturnInst of the callee method and its
callsite. The summary edges of the callee method are
queried at this point to handle the callee method.

• passArgs: The function specifies the data-flow edges
between the arguments of the callee method and the
parameters passed in its callsite.

• callFlow: The function handles the data-flow edges
regardless of the callee method. Most of the refinements

“UTF-8”keyBytes key key src

(b)	String	key	=	Context.getProperty (src)(c)	encryptor.<init>(src)

encryptor

(a) byte[] keyBytes = key.getBytes(“UTF-8”)

R
egular

R
efinem

ents

src

Fig. 3. Refinements represented in IFDS. The callFlow propagating edges for
three situations. The above one is the default propagating edges of callFlow.
The bottom one is the refined propagating edges.

happen here to handle the callee method whose imple-
mentation is unavailable.

The major differences of these flow functions between the
analysis for cryptographic vulnerabilities and taint analysis
are the data-flow edges from constants. The cryptographic
vulnerability detection covers the edges flowing out from con-
stants and refines them according to five refinement insights,
which does not happen in the taint analysis. Furthermore,
cryptography vulnerability detection redefines the default data-
flow edges in callFlow. More details are in Section III-C.
Summarization for Callee Methods. Another design im-
proving the scalability is the summarization mechanism for
the callee methods. After a method is explored, the summary
edges for it are stored for future usage. Parfait exhaustively
summarizes all methods in advance and queries the summary
edges of the callee methods on demand. All the methods
are summarized in a bottom-up manner according to the call
graph, beginning from leaf methods to their callers. This
design guarantees every method is only explored once. Hence,
the re-exploration for callee methods is eliminated to avoid
complexity explosion.

C. Refinement Insights Implementation

By applying the backward IFDS analysis, all the constant
sources that reach the sensitive arguments are captured. How-
ever, it is quite difficult to distinguish between truly insecure
sources and pseudo-influences, which leads to an extremely
high false-positive rate. CryptoGuard [2] summarizes five
types of pseudo-influences including state indicators, resource
identifiers, bookkeeping indices, contextually incompatible
constants, and constants in infeasible paths based on observa-
tion. The refinement insights are used to eliminate the pseudo-
influences. We apply these refinement insights on the context
of IFDS algorithms and LLVM IR instructions.

CryptoGuard described the refinement insights with Jim-
ple IR. To remove state indicators, it eliminates tracing for
callee arguments on condition that they appear in Jimple
assign statements marked with virtualinvoke. To remove
resource identifiers, CryptoGuard eliminates tracing for the
arguments appearing in Jimple assign statements marked with
interfaceinvoke or staticinvoke. In the form of
IFDS, they are translated into reachable edges applied to
different types of LLVM instructions. Specifically, we change



project 1
project 2

project 3
project 4

project 5
project 6

project 7
project 8

project 9
project 10

project 11
project 12

0

2

4

6

8

10

12

14

Nu
m

be
r o

f r
ep

or
te

d 
vu

ln
er

ab
ilit

ie
s

True positives
False positives

Fig. 4. Number of vulnerabilities of 12 real-world projects. Projects 2-10
achieves zero false positive. 10 of them are Oracle internal codebases. Projects
9 and 10 are open-source projects.

the default callFlow function for three kinds of call instruc-
tions. They are 1) assignment callsites for instance methods
2) assignment callsites for static methods 3) non-assignment
callsites for class constructors. The examples are shown in
Fig. 3.

IV. REAL-WORLD FINDINGS AND ACCURACY ANALYSIS

We tested the cryptographic vulnerability detection in Par-
fait on several large real-world codebases and a comprehensive
cryptographic vulnerability benchmark (CryptoAPI-Bench [3])
to evaluate the performance.

A. Real-world Findings

We ran Parfait on 12 large codebases. 10 of them are Oracle
internal products, 2 are open-source projects. There are 61
reported vulnerabilities and 57 of them are manually verified
as true positives. The precision is 93.44%. We have reported
the detected vulnerabilities to corresponding developers. In
terms of the open-source projects, we further find that the
vulnerabilities are either in their non-production (development)
mode or fixed in their latest versions. We show several real-
world detected cases below.

1 public class DesEncrypter{
2 private byte[] salt = { (byte) 0xC9, (byte) 0xDB

, (byte) 0xA3, (byte) 0x52, (byte) 0x56, (byte)
0x35, (byte) 0xE8, (byte) 0xB0};

3 private int iterationCount = 20;
4 public DesEncrypter(final String passPhrase){
5 initDesEncrypter(passPhrase);}
6 private void initDesEncrypter(final String

passPhrase){
7 ...
8 AlgorithmParameterSpec paramSpec = new

PBEParameterSpec(salt,iterationCount);}}

Listing 1. A real-world vulnerability about using constant salt and insufficient
iteration count (We modified the code to make the codebase unidentifiable.)

Listing 1 shows vulnerabilities of using constant salt and
insufficient iteration count as PBE parameters. This case
represents the most common vulnerable pattern of the sensitive

cryptographic materials (e.g. password, salt, IV, etc) to be
hard-coded in the initialization.

1 public String padding_salts(String salts){
2 StringBuffer sb = new StringBuffer();
3 for(int i=salts.getBytes().length; i<16; i++){

4 sb.append((byte)i&0xfe)}
5 String padded_salts = salts+sb.toString();
6 return padded_salts;}

Listing 2. A real-world vulnerability about insufficient entropy salts

Listing 2 is a noteworthy real-world example. It introduces
a vulnerability of using salts with insufficient entropy. When
a random salt is iteratively assigned by the same variable,
its value space is reduced significantly and hence makes the
exhaustive attack feasible. Our analysis reports a constant
number 16 at Line 3 involved in the construction of the salts.
However, to accurately capture the insufficient entropy issue,
symbolic execution is required.

1 public SecureRandom getObject() throws Exception{
2 SecureRandom rnd = SecureRandom.getInstance(

algorithm);
3 if(seed != null){
4 byte[] seedBytes = FileCopyUtils.

copyToByteArray(seed.InputStream());
5 rnd.setSeed(seedBytes); //manual seeding
6 }else{
7 rnd.nextBytes(new byte[1]) //self-seeding
8 }}

Listing 3. An example from CVE-2019-3795

Listing 3 shows a detected vulnerability in open-source
project Spring Security. It is published in CVE database [27].
This vulnerability appears in Spring Security versions 4.2.x
before 4.2.12, 5.0.x before 5.0.12, and 5.1.x before 5.1.5. Al-
though not involving a hard-coded seed, the SecureRandom
instance relies on an unreliable InputStream at Line 4 as
the seed. Inspired by this real-world vulnerability, we apply
a more strict rule for SecureRandom.setSeed to avoid
unreliable seeding. Only self-seeding and manual seeding by
the method SecureRandom.generateSeed() are con-
sidered as secure. A self-seeding (secure) will be automatically
enforced if the API nextBytes is called immediately after
the SecureRandom instantiation [28].

1 public void checkClientTrusted(X509Certificate[]
certs, String authType) throws
CertificateException{

2 throw new UnsupportedOperationException("
checkclientTrusted is unsupported in "+ this.
getClass().getName());}

Listing 4. A real-world false positive case about TrustManager

Listing 4 shows a reported case for bypassing certificate
verification. Although it is a false positive case, what happened
in the code is not recommended and required to be fixed. This
case completely disables the certificate verification by simply
throwing the UnsupportedOperationException for
all certificates. We reported it because it matches a vulner-
able pattern, that is, missing verification (e.g. the default
checkclientTrust). This situation is caused by the de-
velopment mode and will be fixed in the production mode.



TABLE II
EVALUATION RESULTS ON 158 TEST CASES OF CRYPTOAPI-BENCH. THERE ARE BASIC CASES (INTRA-PROCEDURAL), DIFFERENT INTER-PROCEDURAL

CASES THAT REQUIRES ACROSS METHODS, ACROSS CLASSES, FIELD SENSITIVITY, PATH-SENSITIVITY, AND HEURISTICS TO HANDLE.

Type Total Cases Insecure Cases Secure Cases Reported Cases False Positives False Negatives Precision Recall
Basic Cases 27 24 3 24 0 0 100% 100%
Multiple methods 57 56 1 54 0 2 100% 96.43%
Multiple Classes 23 18 5 18 0 0 100% 100%
Field Sensitivity 19 18 1 18 0 0 100% 100%
Path Sensitivity 19 0 19 19 19 0 0 % 0 %
Heuristics 13 9 4 9 0 0 100% 100%
Total 158 125 33 142 19 2 86.62% 98.40%

Pro
jec

t 1

Pro
jec

t 2

Pro
jec

t 3

Pro
jec

t 4

Pro
jec

t 5

Pro
jec

t 6

Pro
jec

t 7

Pro
jec

t 8

Pro
jec

t 9

Pro
jec

t 1
0

Pro
jec

t 1
1

104

105

106

Si
ze

 (L
oC

)

101

102

103

Ru
nt

im
e(

s)

Size
Runtime

Fig. 5. Runtime of different projects

Runtime Analysis. The scalability is always one of the most
important concerns. We list the runtime of several projects in
Figure 5. The detection is run on the machine with Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz, 128G memory, and
Oracle Linux Server release 6.9 operating system. The analysis
can be finished within 10 minutes for most of these projects
even including millions of lines of code (Project 10). Due to
the access limitation of these internal projects, we are not able
to run CryptoGuard on these projects to compare. However,
our cryptographic vulnerability detection has more designs to
achieve better scalability compared with CryptoGuard.

B. Accuracy Analysis on Crypto-Bench

We tested Parfait on 158 test cases for 13 cryptographic
vulnerability types of CryptoAPI-Bench. CryptoAPI-Bench
includes various kinds of test units from basic ones to more
advanced cases. The basic test cases only require intra-
procedural analysis to handle. The advanced cases are inter-
procedural ones that require the analyses across multiple
methods, multiple classes, achieving field sensitivity, and path
sensitivity.

The breakdown numbers are shown in Table II. The overall
precision and recall are 86.62% and 98.40%, respectively. All
the false positive cases come from path sensitivity cases, which
verifies that our tool has achieved high precision for the cases
excluding path-sensitive ones. We analyze several examples to
further reveal the details of Parfait cryptographic vulnerability
detection and discuss possible improvements.
Application Perspective VS. Library Perspective. Parfait
differs from CryptoGuard in the vulnerability definitions in
some situations. An example is given in Listing 7 in the
Appendix. When the potentially vulnerable method is not
called therefore the concerned field variable is left undeter-
mined, Parfait considers it as a non-vulnerable case. However,
CryptoGuard applies a forward slicing for this field variable

to find out the possible assignments in the initialization. If
a constant is assigned in the initialization, CryptoGuard still
considers it as a vulnerability. If the detected issues are in ap-
plications, Parfait’s design is better to avoid overestimating the
vulnerabilities. If they are in libraries, CryptoGuard’s design
is better to discover the potential buggy method although they
may not be called yet.
Potential Improvement. There are two potential improve-
ments to fix the false-negative cases. First, a false negative
could be caused by missing the summarization for clinit
method. An example is shown in Listing 8 in the Appendix.
This deficiency is derived from the fact that clinit has
not appeared in the Parfait’s call graph. A fix for this issue
could be updating the call graph construction to cover the
clinit of every class. Second, a false-negative case shown
in Listing 6 is caused by incompatible types between the
captured source (i.e. String) and the sensitive argument (i.e.
int). This corner case can be improved by checking the type
compatibility through the type casting in Java language.
Limitations. Our cryptographic vulnerability detection still
has limitations to handle path-sensitive cases and pointer
issues. We show a path-sensitive false-positive case in List-
ing 5 in the Appendix. Furthermore, another potential cause
for false positives could be the pointer issues. Due to the
limitation of static analysis, there may be over-approximation
in our call graph construction, which leads to potential false
positives. However, path-sensitivity and pointer precision are
too costly to achieve. Our analysis aims to massive-sized
projects, therefore we have to balance them to come up with
better overall performance.

V. CONCLUSION

We implemented a precise and scalable cryptographic vul-
nerability detection based on the scalable bug checker Parfait
and precise cryptographic vulnerability detection tool Crypto-
Guard. Leveraging the refinement insights from CryptoGuard,
our detection reproduced the high precision results (few or
no false positives) achieved by CryptoGuard. Experiments
show 93.44% precision for 12 real-world large-scale projects
and 100% precision for CryptoAPI-Bench excluding the path-
sensitivity cases. Benefited from the IFDS and layered frame-
work of Parfait, the cryptographic vulnerability detection also
achieves good runtime performance for large-scale codebases.
The runtime for 11 large-scale codebases ranges from 2



seconds to 36 minutes. Most of the codebases can be screened
within 10 minutes.

REFERENCES

[1] C. Cifuentes and B. Scholz, “Parfait: Designing a Scalable Bug
Checker,” in Proceedings of the 2008 workshop on Static analysis, 2008,
pp. 4–11.

[2] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. Yao, “Cryptoguard: High Precision Detection
of Cryptographic Vulnerabilities in Massive-sized Java Projects,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2455–2472.

[3] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Comprehen-
sive Benchmark on Java Cryptographic API Misuses,” in 2019 IEEE
Cybersecurity Development (SecDev). IEEE, 2019, pp. 49–61.

[4] 2019 CWE Top 25 Most Dangerous Software Errors, September
18, 2019. [Online]. Available: https://cwe.mitre.org/top25/archive/2019/
2019 cwe top25.html

[5] OWASP Top Ten. [Online]. Available: https://owasp.org/
www-project-top-ten/

[6] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory love Android: An analysis of Android
SSL (in) security,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 50–61.

[7] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Em-
pirical Study of Cryptographic Misuse in Android Applications,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 73–84.

[8] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl, “A
Stitch in Time: Supporting Android Developers in Writing Secure Code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1065–1077.

[9] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure Cod-
ing Practices in Java: Challenges and Vulnerabilities,” in Proceedings of
the 40th International Conference on Software Engineering, 2018, pp.
372–383.

[10] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak
and more: Large-scale threat analysis of inter-app communications,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2-6, 2017, R. Karri, O. Sinanoglu, A. Sadeghi,
and X. Yi, Eds. ACM, 2017, pp. 71–85. [Online]. Available:
https://doi.org/10.1145/3052973.3053004

[11] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged android malware with code-heterogeneity features,” IEEE
Trans. Dependable Secur. Comput., vol. 17, no. 1, pp. 64–77, 2020.
[Online]. Available: https://doi.org/10.1109/TDSC.2017.2745575

[12] N. Patnaik, J. Hallett, and A. Rashid, “Usability smells: An analysis of
developers’ struggle with crypto libraries,” in Fifteenth Symposium on
Usable Privacy and Security ({SOUPS} 2019), 2019.

[13] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through Hoops:
Why do Java Developers Struggle with Cryptography APIs?” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 935–946.

[14] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the Usability of Cryptographic APIs,” in
2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp.
154–171.

[15] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking for: The Impact of Information Sources
on Code Security,” in 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 2016, pp. 289–305.

[16] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 38–49.

[17] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering
the data leakage in cloud from mobile apps,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1296–1310.

[18] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does Crypto-
graphic Software Fail? A Case Study and Open Problems,” in Proceed-
ings of 5th Asia-Pacific Workshop on Systems, 2014, pp. 1–7.

[19] S. Rahaman and D. Yao, “Program Analysis of Cryptographic Im-
plementations for Security,” in 2017 IEEE Cybersecurity Development
(SecDev). IEEE, 2017, pp. 61–68.

[20] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking for
findbugs,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation. IEEE, 2011, pp. 299–308.

[21] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 672–681.

[22] F. Gauthier, N. Keynes, N. Allen, D. Corney, and P. Krishnan, “Scal-
able static analysis to detect security vulnerabilities: Challenges and
solutions,” in 2018 IEEE Cybersecurity Development (SecDev). IEEE,
2018, pp. 134–134.

[23] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A Java Bytecode Pptimization Framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[24] T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural Dataflow
Analysis via Graph Reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
1995, pp. 49–61.

[25] E. Bodden, “Inter-procedural Data-flow Analysis with IFDS/IDE and
Soot,” in Proceedings of the ACM SIGPLAN International Workshop on
State of the Art in Java Program analysis, 2012, pp. 3–8.

[26] “Class Random,” https://docs.oracle.com/javase/8/docs/api/java/util/
Random.html, 2017, [Online; accessed 29-Jan-2018].

[27] “NVD: CVE-2019-3795 Detail,” https://nvd.nist.gov/vuln/detail/
CVE-2019-3795, 2019, [online; Last Modified: 05/20/2019].

[28] “Class SecureRandom,” https://docs.oracle.com/javase/8/docs/api/java/
security/SecureRandom.html, 2017, [Online; accessed 29-Jan-2018].

https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1109/TDSC.2017.2745575
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://nvd.nist.gov/vuln/detail/CVE-2019-3795
https://nvd.nist.gov/vuln/detail/CVE-2019-3795
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html


APPENDIX

1 String defaultKey = "defaultkey";
2 int choice = 2;
3 byte[] keyBytes = defaultKey.getBytes();
4 //keyBytes-->key material after phiFLow
5 if(choice>1){
6 //nothing-->key material
7 SecureRandom random = new SecureRandom();
8 keyBytes = String.valueOf(random.ints()).

getBytes();
9 }

10 keyBytes = Arrays.copyOf(keyBytes,16);
11 SecretKeySpec keySpec = new SecretKeySpec(

keyBytes, "AES");

Listing 5. A false positive caused by path sensitivity

1 public class LessThan1000IterationPBEABICase2 {
2 public static final String DEFAULT_COUNT = "20";
3 private static char[] COUNT;
4 private static char[] count;
5 public static void main(){ //Bug condition:

"20"<1000?
6 LessThan1000IterationPBEABICase2 lt = new

LessThan1000IterationPBEABICase2();
7 go2(); //"20"-->PBE iteration
8 go3(); //this.COUNT-->PBE iteration
9 lt.key2(); //this.count-->PBE iteration

10 }
11 private static void go2(){
12 COUNT = DEFAULT_COUNT.toCharArray();
13 }
14 private static void go3(){
15 count = COUNT;
16 }
17 public void key2(){ //this.count-->PBE iteration
18 ...
19 pbeParamSpec = new PBEParameterSpec(salt,

Integer.parseInt(String.valueOf(count)));
20 }
21 }

Listing 6. A false negative case caused due to type matching

1 public class PredictableCryptographicKeyABSCase1 {
2 Crypto crypto;
3 public PredictableCryptographicKeyABSCase1()

throws Exception {
4 String passKey =

PredictableCryptographicKeyABSCase1.getKey("pass
.key");

5 if(passKey == null) {
6 crypto = new Crypto("defaultkey");
7 }
8 crypto = new Crypto(passKey);
9 }

10 //this.crypto.defaultKey-->secret key; no caller
for encryptPass, terminate

11 public byte[] encryptPass(String pass, String
src) throws Exception {

12 String keyStr =
PredictableCryptographicKeyABSCase1.getKey(src);

13 return crypto.method1(pass, keyStr);
14 //keyStr-->secret key; this.crypto.

defaultKey-->secret key
15 }
16 public static String getKey(String s) {
17 return System.getProperty(s);
18 }
19 }
20 class Crypto {
21 Cipher cipher;
22 String algoSpec = "AES/CBC/PKCS5Padding";

23 String algo = "AES";
24 String defaultKey;
25 public Crypto(String defkey) throws

NoSuchPaddingException, NoSuchAlgorithmException
{

26 cipher = Cipher.getInstance(algoSpec);
27 defaultKey = defkey;
28 }
29 //key-->secret key; this.defaultKey-->secret key
30 public byte[] method1(String txt, String key)

throws UnsupportedEncodingException,
InvalidKeyException, BadPaddingException,
IllegalBlockSizeException {

31 if(key.isEmpty()){
32 key = defaultKey;
33 }
34 byte[] keyBytes = key.getBytes("UTF-8");
35 byte [] txtBytes = txt.getBytes();
36 keyBytes = Arrays.copyOf(keyBytes,16);
37 SecretKeySpec keySpec = new SecretKeySpec(

keyBytes,algo); //A potential bug
38 cipher.init(Cipher.ENCRYPT_MODE,keySpec);
39 return cipher.doFinal(txtBytes);
40 }
41 }

Listing 7. A test cases considered non-vulnerable by Parfait but vulnerable
by CryptoGuard. The backward analysis in Parfait terminates at Line 11 and
leaves this.crypto.defaultKey as a variable due to no caller of this method.

1 public class PredictablePBEPasswordABICase2 {
2 public static String KEY = "sagar";
3 public static char [] DEFAULT_ENCRYPT_KEY = KEY.

toCharArray(); //"sagar"-->this.
DEFAULT_ENCRYPT_KEY happens in clinit

4 private static char[] encryptKey;
5 ...
6 public static void main(String [] args) { //this

.DEFAULT_ENCRYPT_KEY-->PBE password
7 ...
8 }
9 }

Listing 8. A false negative case caused due to the summarization


	Introduction
	Background
	Java Cryptographic API misuses
	CryptoGuard
	Data-flow Analysis in CryptoGuard and Parfait.

	Detection Methods and Implementation
	Detection Methods
	Cryptographic Vulnerability Detection Implementation
	Refinement Insights Implementation

	Real-world Findings and Accuracy Analysis
	Real-world Findings
	Accuracy Analysis on Crypto-Bench

	Conclusion
	References
	Appendix

