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Abstract
Key-Value (K-V) stores are an integral building

block of modern datacenter applications. With byte-
addressable persistent memory (PM) technologies, such
as Intel/Micron’s 3D XPoint, on the horizon, there has
been an influx of new high performance K-V stores that
leverage PM for performance. However, there remains
a significant performance gap between PM optimized
K-V stores and DRAM resident ones, largely reflecting
the gap between projected PM latency relative to that of
DRAM. We address that performance gap with Bullet, a
K-V store that leverages both the byte-addressability of
PM and the lower latency of DRAM, using a technique
called cross-referencing logs (CRLs) to keep most PM
updates off the critical path. Bullet delivers performance
approaching that of DRAM resident K-V stores by main-
taining two hash tables, one in the slower (backend) PM
and the other in the faster (frontend) DRAM. CRLs are
a scalable persistent logging mechanism that keeps the
two copies mutually consistent. Bullet also incorpo-
rates several critical optimizations, such as dynamic load
balancing between frontend and backend threads, sup-
port for nonblocking Gets, and opportunistic omission
of stale updates in the backend. This combination of
implementation techniques delivers performance within
5% of that of DRAM-only key-value stores for realistic
(read-heavy) workloads. Our general approach, based on
CRLs, is “universal” in that it can be used to turn any
volatile K-V store into a persistent one (or vice-versa,
provide a fast cache for a persistent K-V store).

1 Introduction
Key-value (K-V) stores with simple Get/Put based in-
terfaces have become an integral part of modern data
center infrastructures. The list of successfully deployed
K-V stores is long – Cassandra [28], Dynamo [13], Lev-
elDB [30], Memcached [36], Redis [44], Swift [48]
– to name just a few. The research community con-
tinues to publish K-V store improvements along a va-
riety of dimensions including network stack optimiza-
tions, cache management, improved parallelism, hard-
ware extensions, etc. [5, 14, 15, 20, 27, 31, 33, 32, 34,
37, 40, 51, 53, 56]. However, many of these works
assume that the K-V store is a volatile cache for a
backend database. Most of the persistent K-V stores
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Figure 1: Throughput vs. Latency results of hash table based K-V
stores: (i) phash, hosted entirely in emulated PM (Intel’s Software Em-
ulation Platform [43, 57]), and (ii) an almost identical K-V store hosted
entirely in DRAM (volatile). The emulated PM has 300 nanosecond
load latency and bandwidth identical to that of DRAM; DRAM latency
is approximately 150 nanoseconds. 0 and 15 represent the percent of
K-V accesses that are Puts; keys are selected according to a zipfian
distribution. The points on the curves represent the number of threads
used in the tests, ranging from 2 to 16 in increments of 2.

[7, 13, 18, 28, 30, 34, 51, 44, 48] assume a slow, block-
based storage medium, and therefore, marshal updates
into blocks written to the file system.

At the same time, byte-addressable persistent mem-
ory technologies are emerging, e.g., spin-transfer torque
MRAM (STT-MRAM) [21, 23], memristors [46]), and
most notably, the Intel/Micron 3D XPoint persistent
memory [1]. These technologies provide the persis-
tence of traditional storage media (SSDs, HDDs) with
the byte addressability and performance approaching that
of DRAM (100-1000x faster than state-of-the-art NAND
flash). Byte addressability allows load/store access
to persistence (as opposed to the traditional file system
interface). As a result, these technologies can profoundly
change how we manage persistent data.

The research community has recognized this poten-
tial, producing an endless stream of new, PM-optimized
K-V stores that leverage PM’s byte addressability and
low latency, yielding systems that greatly outperform tra-
ditional block-based approaches [3, 8, 9, 12, 22, 39,
41, 54, 55, 58]. While this body of work has grown
rapidly, most of it ignores the fact that for the forsee-
able future, PM will be much slower than DRAM [47],
making PM resident K-V stores significantly slower than
their DRAM counterparts. Figure 1 illustrates the per-
formance gap between K-V stores hosted in DRAM and



emulated PM. Their implementations differ only in their
failure semantics (section 3) and pointer representation
(section 6). The 0% writes curves in the graph mirror the
2X latency gap between DRAM and emulated PM. This
2X gap grows to 3− 4.5X in the 15%-write case, since
writes use expensive persist barriers and transactions for
failure atomic updates to the persistent data structures.

Recent PM-based K-V store proposals [41, 54, 55]
address this problem by partitioning their data struc-
tures between faster DRAM and slower PM, with the
DRAM resident structures reconstructed during recov-
ery/warmup. However, these optimizations focus exclu-
sively on B-Tree based indexing structures, not on hash
table based structures, which are predominantly used in
workloads with Get/Put point queries. Since these hash
tables are central to many popular K-V stores [30, 36,
44], leveraging both DRAM and PM in their implemen-
tations is critical to their performance.

We present Bullet, a new K-V store designed
for multi-/many-core systems equipped with persistent
memory. Bullet explicitly leverages the combination of
fast DRAM and slower, byte-addressable PM, to deliver
performance comparable to that of a DRAM resident K-
V store in realistic workloads. Bullet’s architecture is
designed to handle most, if not all, client requests in the
faster DRAM, minimizing the number of PM accesses on
the critical path. This naturally leads to an architecture
with a DRAM resident cache, similar to the approach
taken by traditional databases and K-V stores. How-
ever, Bullet deviates from traditional approaches in that
the cached frontend hash table and the persistent back-
end hash table representations are virtually identical –
differing only in their pointer representations (section 6)
and failure handling semantics. This facilitates efficient
access to backend data whenever there is a miss in the
frontend – PM’s byte addressability plays a critical role
in making this possible.

We keep the frontend and backend mutually consistent
by employing a novel, efficient, and highly concurrent
logging scheme, called cross-referencing logs (CRLs).
In an architecture using per-thread persistent logs, CRLs
track ordering dependencies between log records us-
ing simple cross-log links instead of synchronizing the
threads’ log access [29, 52]. Bullet processes Get re-
quests exclusively in the frontend, without log access.
On their critical path, Put requests access the frontend
as well, while also writing log records to CRLs. This
results in a single thread-local log append per update.

Backend threads, called log gleaners, apply persisted
log records to the backend hash table. We use an epoch
based scheme to apply log records to the backend in
batches. The epoch based scheme’s primary purpose is
to enable correct log space reclamation. The backend’s
hash table updates must be applied in a crash consis-

tent manner. We address this problem using a backend
runtime system [35] that supports failure atomic trans-
actions similar to several other persistent memory trans-
action runtimes [16, 50]. The resulting code path is com-
plex, but not on the critical path of client requests.

We apply four key optimizations in Bullet: 1) fully
decoupling frontend execution from PM performance
on Put operations, 2) nonblocking Gets, 3) dynamic
thread switching between the frontend and backend,
based on the write-load in the system, and 4) opportunis-
tic Put collapsing. Our base design, coupled with these
optimizations, make Bullet’s performance close to that
of a DRAM resident K-V store: For realistic, read-heavy
workloads, Bullet either matches or comes close to the
performance of a DRAM-resident volatile K-V store, de-
livering throughput and latency 2X better than that of a
state-of-the-art hash table based K-V store, HiKV [54],
on a system with emulated PM whose access latency is
2X of DRAM access latency. For pathological write-
heavy workloads, Bullet’s throughput is comparable to
or better than that of HiKV and its operations’ latency
is approximately 25− 50% lower. Relative to a volatile
K-V store, Bullet’s latency and throughput degrade by
approximately 50% under write-heavy workloads.

2 Bullet’s Architecture
2.1 Overview
Figure 2 depicts the high level architecture of Bullet, sep-
arated into the frontend and backend components, each
of which contains almost identical hash tables. The fron-
tend resides in the volatile domain (DRAM). It contains
a configurable number of threads that process incoming
requests, applying them to its hash table. Each frontend
thread additionally “passes on” update requests to the
backend, by appending update requests to a thread-local
persistent log. An update completes when it has been
safely written to the log. The backend resides in the per-
sistent domain (PM). The backend’s log gleaner threads
periodically read requests from their corresponding per-
sistent logs and apply them to the persistent hash table,
in a failure-atomic and correctly ordered manner. In this
“base” configuration, each persistent log maps both to a
log writer thread in the frontend and a log gleaner thread
in the backend.

While processing client requests, a frontend thread
first looks up the target key in the frontend K-V store. If
the lookup succeeds, the frontend applies the operation.
If it is an update (Put or Remove), the thread also ap-
pends the <opcode,payload> tuple to its persistent
log. If the lookup in the frontend fails, the thread issues
a lookup to the backend. A successful lookup creates a
copy of the key-value pair in the frontend, at which point
the operation proceeds as if the original frontend lookup
succeeded. If the lookup fails: (i) a Get returns a failure
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Figure 2: Bullet’s detailed architecture.

code to the client, (ii) a Put inserts the pair into the fron-
tend, including the log write, and (iii) a Remove returns
with a failure code.

The rest of this section details our solutions to a num-
ber of technical challenges: persistent and volatile hash
table implementation (subsection 2.2), the parallel log-
ging scheme (subsection 2.3), correct coordination be-
tween frontend and backend threads (subsection 2.4),
and failure atomic updates (section 3).

2.2 Hash Tables
As shown in Figure 2, Bullet’s frontend hash table is in
DRAM and therefore volatile. It supports the standard K-
V operations: Get, Put, and Remove. The hash table
is similar in structure to other key-value stores [36]: It is
closed addressed, with chaining to handle hash conflicts.
It grows via a background thread responsible for dou-
bling the number of hash table buckets when occupancy
crosses a threshold size (twice the number of buckets).
Regular operations can occur concurrently with growing
the table. Each hash table bucket has its own reader-
writer spinlock for thread synchronization – lookups ac-
quire the spinlocks for reading (shared), and updates ac-
quire the spinlocks for writing (exclusive).

The backend hash table is structurally identical to the
frontend one, with its own per-bucket chains and spin-
locks. However, unlike the frontend (volatile) hash table,
the backend hash table resides in persistent memory and
must survive failures. Bullet uses failure atomic trans-
actions for Put and Remove operations to provide this
guarantee (section 3). Gets execute identically to those
in the frontend (except a failure to find a key is always
a failure in the backend, while the frontend has to check
the backend before failing).

The per-bucket spinlocks in the persistent hash table

are used only for synchronization between concurrent
backend threads and are semantically volatile. We found
placing the spinlocks in the bucket extremely convenient,
with the added benefit of improved cache locality com-
pared to an alternative where the spinlocks are mapped
elsewhere in DRAM. Since a bucket’s spinlock resides in
persistent memory, its state can persist at arbitrary times
(e.g., due to cache line evictions). A failure could leave
a spinlock in the locked state. We leverage a generation
number technique [10] to reinitialize such locks after a
restart – Bullet increments a global persistent generation
number during every warm-up and compares that gener-
ation number to a generation number contained in every
lock. If the generation numbers do not match, Bullet
treats the lock as available and reinitializes it.

2.3 Cross-Referencing Logs
The frontend communicates updates to the backend via
a log. In a conventional, centralized log design [25, 26,
38], the log becomes a bottleneck, because concurrent
updates must all append records to the log. Thread-
local logs neatly address this contention problem, but in-
troduce a new challenge: records from a multitude of
logs must be applied to the backend in the correct or-
der – the order in which the corresponding operations
were applied in the frontend. While prior systems par-
tition the key space so that all updates to a particular
K-V pair appear in the same log file (e.g., [34]), Bul-
let does not partition the data and K-V pair updates can
happen in any thread. This way Bullet is not susceptible
to load balancing issues encountered in partitioned K-V
stores [34]. We address the ordering problem in a dif-
ferent way: We introduce cross-referencing logs (CRLs),
to provide highly scalable, concurrent logging on PM,
without relying on centralized clocks [29, 52] to enforce
a total order of update operations.

Figure 3 illustrates CRLs. Each frontend log writer
thread maintains its own persistent log. Logically, each
log record is a <opcode,payload> tuple. Opcode
allows the application to define high-level operations ex-
pressed by each log record. For example, when Bullet
manages a hash table of lists, each list append can be ex-
pressed by a single log record, where the opcode refers
to the list append operation, and the payload contains
the record identifier (a reference to the list in question)
plus the value to be appended. The order in which non-
commutative operations like this are applied is important,
hence the necessity of the CRL scheme. The logs require
no synchronization on appends, because there is only one
writer per log. The backend maintains corresponding log
gleaner threads that consume log records and apply them
to the backend persistent hash table in a failure-atomic
manner.

The logs are structured so that log gleaners can easily
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determine the correct order in which to apply log records.
Figure 3a shows the log record layout. The len,
klen, opcode, <key,value> fields contain the
information implied by their names. The applied field
contains a flag indicating whether the backend K-V store
accurately reflects the log record. The prev field con-
tains a persistent pointer to the prior log record, if one
exists, for the given key. We defer discussion of epoch
until subsection 2.4.

Appending Log Records: Figure 3b depicts three logs
L1, L2, and L3 containing log records for keys K1, K2,
and K3. The lentry field of the persistent key-value
pairs (shown at the bottom) contains a persistent pointer
to the most recent log record for the key-value pair.
Thus, the list formed by the lentry and prev point-
ers represents the evolution of a key-value pair in reverse
chronological order, where the log record containing a
NULL prev pointer indicates the first update to the pair
present in any of the logs. The list for a specific key can
criss-cross among multiple logs, hence the name cross-
referencing logs. For instance, log records for key K1
appear in all three logs, whereas log records for key K2
appear only in logs L1 and L2.

Before a log writer appends a log record, it acquires
the key’s hash bucket lock, to ensure that it is the only
writer for the target key-value pair. Then, the writer (i)
populates the log record at the tail end of the log, setting
the log record’s prev field to the value stored in the K-V
pair’s lentry, (ii) persists the log record, (iii) updates
and persists the log’s tail index, and finally (iv) updates
and persists the key-value pair’s lentry pointer, thus
completing the linked list insertion. In all, an append

requires 3 persist barriers.
Applying Log Records: Gleaner threads periodically
scan logs and apply log records to the backend hash table
in a failure-atomic manner. A log gleaner starts process-
ing from the beginning of the log (the head). For each
log record encountered, the gleaner looks up the corre-
sponding key-value pair in the backend persistent hash
table; a new key-value pair is created if necessary.

The gleaner retrieves the key-value pair’s lentry to
process all existing log records for that key-value pair.
At this point, we need to ensure that at most one gleaner
is processing log records for a given key-value pair. To
that end, we add another spinlock that enables only one
gleaner to apply all the log records for a key-value pair.
This spinlock is placed in the key-value pair itself. A
gleaner must acquire this spinlock before processing the
log records for the key-value pair. The gleaner then tra-
verses to the end of the list, checking the applied flag
of each log record to determine the point from which
the gleaner needs to apply log records. Upon finding the
last (chronologically the first) unapplied log record, the
gleaner applies the log records in the chronological order
determined by the linked list (i.e., in the reverse order of
the list). The gleaner sets the applied field after apply-
ing the log record to the persistent hash table. We discuss
the transaction mechanism that ensures recoverability of
these updates in section 3.

After applying all the log records for a key-value pair,
the gleaner can reset lentry to NULL. This however
races with a frontend log writer’s append for the same
key-value pair, which requires an update to the key-value
pair’s lentry. Fortunately the data race can be avoided
using a compare-and-swap instruction, by both the
appender and the gleaner, to atomically change lentry.

Consider the example in Figure 3. A gleaner for log L1
will first encounter log record labeled (1). It uses the log
record’s key, K1, to retrieve the corresponding persistent
key-value pair (at the bottom of Figure 3b). From that
key-value pair object, the gleaner begins at the end of
the log record list at L3(2), then continues to L2(1) and
finally L1(1). It then applies each of those log records in
reverse traversal order.
Handling Removes: Removes are unique, in that they
logically require removing a record at the front end, but
the same record at the persistent back end may not be re-
moved at the same time due to log delays. If a deletion
is followed by a re-insertion of the same key, the front
end and back end can grow inconsistent, due to the fact
that CRL relies on the back end record to generate cross-
references. To address this problem, we keep the front
end record alive as long as we need to by using a spe-
cial “tombstone” marker. Appending a delete log record
only sets the tombstone marker at the front end, but does
not remove the record. Future look-ups on the front end



regarding this record now return “not found”, until a re-
insertion clears this tombstone marker. The front end
records marked with tombstones are only physically re-
moved when the corresponding records in the back end
are removed during the log gleaning phase.

Rationale: While cross-referencing logs are interest-
ing, one could argue that the criss-crossing could lead
to bad cache locality for log gleaner threads. However,
it is a trade-off – a thread may suffer poorer locality in
its log traversal, but it enjoys superior cache locality, by
repeatedly acting upon the same key-value pair. This
cache benefit is further enhanced, because log records are
concise representations of operations, but the operations
themselves tend to lead to “write amplification”, access-
ing and updating many more memory locations than a
single log entry. By continuing to operate on the same
key-value pair, we observe that those accesses are far
more likely to produce cache hits. Additionally, glean-
ers never block behind other gleaners. If a gleaner de-
tects that the key-value pair it needs to process is already
locked by another gleaner, it can safely assume that the
spinlock owner will apply the log record. As a result,
the gleaner simply skips that log record. This approach
works for the fail-stop failure model we assume – a fail-
ure terminates the entire key-value store process.

2.4 Log Space Reclamation
The cross-referencing logs that act as bridges between
Bullet’s frontend and backend do not grow indefinitely.
In fact, they are circular logs and contain persistent head
and tail indexes. To keep the system running without
interrupt, Bullet must recycle log space.

The log gleaners work in phases or epochs. Between
epochs, the gleaners wait for a signal from the epoch ad-
vancer thread, which periodically tells the gleaners to
start applying logs records. Each gleaner reads the log,
beginning at the head, and applies the log records as de-
scribed above. However, it does not advance its log’s
head index. Instead, the epoch advancer periodically ter-
minates the current epoch by telling the gleaners to stop
processing the log. At this point, the epoch advancer up-
dates each gleaners’ head index. If a log writer fills the
log more quickly than the corresponding log gleaner ap-
plies the log, the log can fill. If this happens, the writer
blocks until the gleaner frees space in the log.

3 Failure Atomic Transactions
To ensure a consistent state after system failure, the back-
end’s hash table updates must be failure atomic. We use
failure atomic persistent memory transactions. Similar
to prior work [6, 10, 16, 50], we developed a persis-
tent memory access library [35], which contains sup-
port for low level programming abstractions that greatly
simplify application development for persistent memory.
Our access library supports transactions that provide fail-

pm_txn_t *txn_begin();
txn_state_t txn_commit(txn);
void txn_read(txn, src, len, dst);
void txn_write(txn, dst, len, src);
... // other accessor functions
pm_region_t *pm_region_open(path);
void pm_region_close(region;
void *pm_get_region_root(region);
void pm_set_region_root(region,addr);
... // other region management functions
void *pm_alloc(txn, len);
void pm_free(txn, addr);

Figure 4: Base persistent transactions API.

ure atomicity guarantees for updates to persistent mem-
ory.

Figure 4 presents our transaction runtime’s API.
The interface provides txn_begin and txn_commit
functions to delineate transaction boundaries and vari-
ous txn_read and txn_write accessor functions for
transactional reads and writes of persistent data. The
interface also provides transactional variants of general
purpose libc functionality, such as memcpy, memset,
memcmp, etc. We provide “flat nesting” semantics [19].
The transaction mechanism provides only failure atom-
icity semantics; it does not transparently manage concur-
rency control, as do some software transactional memory
runtimes [10, 50]. Bullet itself performs the necessary
synchronization to avoid data races and deadlocks.

The access library also provides a persistent region ab-
straction [6, 10, 50]. The persistent region builds over the
mmap interface, mapping a persistent memory file into
the application’s address space [49]. The persistent re-
gion contains a persistent heap, modeled after the Hoard
allocator [4, 50]. Application data hosted in a persis-
tent region can be made reachable via a special, per re-
gion, root pointer. Bullet uses the region’s root pointer to
reach its persistent hash table and cross-referencing logs.
Finally, the access library uses redo logging [16, 35, 50]
to implement failure atomic writes.

4 Optimizations
4.1 Tightening the Update Critical Path
Bullet is designed to streamline critical paths of update
operations. To that end, Bullet moves the persistent hash
table’s failure-atomic updates off the critical path. How-
ever, the design presented thus far does not entirely re-
move transactions from the update critical path. On a
Put operation, if the key does not exist in either the fron-
tend or backend hash tables, Bullet allocates a new per-
sistent K-V pair object, storing a reference to it in the
log record. Furthermore, when the persistent log append
completes, we must also update the the key-value pair’s
lentry to reference that newly created log record. Ac-
cessing the persistent K-V pair itself requires a lookup in
the backend hash table, which is costly due to the rela-



tively slower persistent memory. All these accesses and
updates contribute significant latency to the frontend up-
date operations.

We address this problem by completely decoupling
backend data accesses from the frontend update oper-
ations, by moving the lentry pointer to the frontend
hash table’s K-V pair. This gets rid of the requirement to
locate, and possibly allocate, the backend’s K-V pair for
a new key. It also eliminates the expensive persist bar-
rier required to persist the lentry, since it is no longer
persistent; it’s part of the volatile copy of the K-V pair.
This also eliminates the need for transactions in the fron-
tend, thereby considerably shortening the frontend’s up-
date critical path.

4.2 Nonblocking Gets
Bullet’s “base” version, as described in section 2, uses
reader-writer locks to synchronize access to the fron-
tend and backend buckets. While these work well with
few frontend and backend threads, they do lead to in-
creased cache contention between concurrent readers on
the lock’s readers counter – the lock implementation uses
a signed integer, where a value greater than 0 indicates
one or more readers, and a -1 indicates a writer. The re-
sulting cache contention can restrict scalability. This can
be especially pronounced in workloads where accesses
follow a power-law distribution and are skewed to a small
set of K-V pairs, as is experienced by real world K-V
stores [15, 40].

As in prior work [15], we support nonblocking Get
operations. The principal hurdle for nonblocking Gets
is memory reclamation – a Put or Remove can deallo-
cate an object being read by a concurrent Get. We need
support to lazily reclaim the removed objects. Bullet’s
epochs neatly enable this lazy memory reclamation. The
epoch advancer thread periodically increments Bullet’s
global epoch number. Each frontend thread maintains a
local epoch equal to the global epoch number at the be-
ginning of an operation.

When freeing an object, the frontend thread enqueues
the object on its local free queue. The enqueued node
contains a pointer to the object and the thread’s epoch
number. On each enqueue, the frontend thread frees the
head node of the queue if its epoch is older than the
smallest epoch of all the frontend workers. The small-
est epoch is a conservative approximation of workers’
epochs – it is computed periodically by the epoch ad-
vancer thread at the end of each epoch.

Additionally, we structure the frontend hash table’s
overflow list similar to prior nonblocking concurrent
lists [17] so that a reader does not get stuck in a cycle if
the node it is accessing is removed from the list by a con-
current writer. While reads are nonblocking, concurrent
writers do synchronize with each other on the bucket’s
spinlock.

4.3 Managing Writer and Gleaner Counts
In the base design, Bullet contains a static mapping
between frontend writers, logs, and backend gleaners.
Although this approach avoids synchronization among
writers and gleaners, it wastes CPU cycles if there is a
mismatch in the rates of log record production and con-
sumption. We need to decouple these three parts of Bul-
let to let threads dynamically perform the roles of fron-
tend and backend based on the write load.
4.3.1 Decoupling Writers from Gleaners
Maximizing Bullet’s throughput requires that we keep all
threads busy. In practice, this requires that we relax the
1:1 mapping between writers and gleaners. We permit
each writer/gleaner to append/consume entries to/from
any log. This way we achieve optimal throughput by
setting the writer/gleaner ratio according to the ratio of
the respective rates of production/consumption of log en-
tries.

Although this requires synchronization among both
writers and gleaners, we make the overhead negligible,
by coarsening switching intervals between writers and
gleaners. Writers lock their log and keep the lock as long
as the log is not full. When a log fills, the writer unlocks
it and switches to the next free log not currently in use.
The same thing happens for gleaners; they switch logs
when they have no work to do. For log sizes on the order
of megabytes, these switching events are rare enough not
to impact performance in an observable way.

4.3.2 Dynamic Adjustment of Writer/Gleaner Ratio
One drawback of the preceding approach is that, select-
ing the correct writer and gleaner counts, requires know-
ing the rates of producing and consuming log entries.
However, these rates depend heavily on the workload
(read/write ratio, key distribution), and the relative per-
formance of DRAM and persistent memory. For exam-
ple, a write-heavy workload on a machine with a slow
persistent memory generally requires more gleaners than
a read-heavy workload.

To achieve high throughput in as many scenarios as
possible, threads dynamically change their roles, writing
or gleaning depending on what is currently needed. The
advantage of this approach is twofold. First, it makes
Bullet suitable for a wide range of workloads, without
prior profiling and configuration. Second, the system
adapts to dynamically changing workload, maintaining
near optimal throughput throughout.

The key for achieving optimal throughput is prevent-
ing the logs from becoming full (writers stalling) or
empty (gleaners stalling). To this end, we periodically
check (once per epoch) the occupancy of the logs. If the
log occupancy passes a pre-defined threshold of 60%, we
switch one thread from writing to gleaning. If, upon the
next check, the occupancy is still increasing, we add yet
another gleaner. We repeat this until the log occupancy



starts decreasing. The inverse happens when the log oc-
cupancy drops below 30%, in which case we start mov-
ing gleaners back to writing.

Making threads switch between worker and gleaner
roles is an interesting control theory problem by itself.
Our algorithm evolved over several attempts at simpler
approaches, which failed to achieve both stability (i.e.,
avoid frequent role switching) and responsiveness.

4.4 Collapsing Put Operations
Recall that multiple updates to the same key result in a
linked list of log records. Gleaners traverse the chain
and apply all the log records from oldest to newest (see
subsection 2.3).

However, it is not necessary to apply every Put op-
eration, since the most recent Put overwrites the effects
of all older Puts and Removes; same is the case with
Removes. Thus, a gleaner applies only the newest op-
eration in a chain of log records, without following back
pointers at all. To prevent a newer value being overwrit-
ten by an older one, a gleaner applies a log record only
if it contains the globally newest update for the corre-
sponding key. To determine whether a log entry is the
newest for its key, the gleaner checks the corresponding
K-V pair’s lentry pointer, as this always points to the
key’s newest log record.

Collapsing updates appears to make the criss-cross log
record links unnecessary. However, this is the case only
for idempotent updates, e.g. Put and Remove. We how-
ever plan to extend Bullet to support non-idempotent
updates similar to recent data structure stores like Re-
dis [44], where the criss-cross links will be required for
correctness.

5 Recovery and Warmup
Recovery is simple for Bullet. Since updates must com-
plete in the frontend before we apply them to the backend
and the frontend disappears on failure, Bullet never has
anything to undo. In theory, recovery entails two parts:
1) reinitializing the frontend DRAM resident state and
2) applying log records in the CRLs to the backend. Bul-
let’s architecture however permits us to eliminate all of
step 2 from recovery, and reduce step 1 drastically: Dur-
ing recovery, the CRLs’ log records can be applied to the
frontend hash table, instead of applying them to the back-
end. This has the nice side effect that there is no special
recovery code for the backend. We assume that recovery
for the backend’s persistent transactions happens before
Bullet’s recovery is triggered. Application of CRLs to
the backend is relegated to the normal gleaning process.

Note that recovery itself “warms up” the frontend hash
table with key-value pairs found in the CRLs. There-
after, misses in the frontend populate the corresponding
key-value pairs from the backend as described in subsec-
tion 2.3. Thus warmup time and recovery time are one

and the same and are proportional to the time taken to
apply the CRLs.
6 Implementation Notes
We implemented Bullet in C++ and used our PM access
library (section 3) developed in C. We used pthreads
to implement both the frontend and backend threads. The
frontend K-V store uses the jemalloc library to han-
dle memory allocations. For the backend, we rely on
the access library’s heap manager, which is based on the
scalable Hoard allocator [4, 50].

The PM access library presents to Bullet a persistent
memory hosted mmap()ped file as a persistent region.
Bullet’s persistent domain is precisely that region. The
mmap dependency means that the address of the persis-
tent domain is unpredictable. Therefore, we must repre-
sent persistent pointers in a manner amenable to reloca-
tion, so we represent persistent pointers as offsets from
the region’s base address.

Bullet’s backend contains a root structure that hosts
persistent pointers to the persistent hash table and the
cross-referencing logs. Wherever we do not use persis-
tent transactions, we carefully order stores and persists to
persistent data structures (e.g. CRL appends, initializing
a newly allocated key-value pair) for crash consistency.

All update operations in Bullet’s backend threads use
transactions to apply CRL log records to the backend
hash table. In contrast, Bullet’s frontend updates need
not be transactional; they need only append records to
the the CRLs. This indicates two different implementa-
tions for all update operations (e.g., frontend and back-
end implementations of Put, Remove, etc. operations).
This doubles the coding effort for these operations.

The access library’s transactional runtime uses Intel’s
persistence enforcement instructions [24] – cache-line
writeback (clwb) and persist barrier (sfence) instruc-
tions to correctly order transactional writes to PM. CRL
appends also use these instructions: first, we write back
the cache lines of the updated log record using clwb and
then persist them using sfence. Next, we update and
persist the log’s tail index using the same instructions.
7 Evaluation
We evaluated Bullet’s performance on Intel’s Software
Emulation Platform [43, 57]. This emulator hosts a
dual socket 16-core processor, with 512GB of DRAM,
of which 384GB is configured as “persistent mem-
ory”. Persistent memory is accessible to applications
via mmapped files hosted in the emulator’s PMFS in-
stance [43].

The aforementioned persistence instructions, clwb
and sfence, are not supported by the emulator. We
simulated clwb with a nop and the sfence with an
idle spin loop of 100 nanoseconds. We expect these to
be reasonable approximations since clwb is an asyn-
chronous cache line writeback, and an sfence ensures



that prior writebacks make it to the memory controller
buffers, which we assume to be a part of the memory
hierarchy’s “persistence domain” [45] – 100 nanosec-
onds is the approximate latency to the memory controller
buffers on the emulator. The emulator does support con-
figurable load latency to persistent memory; we set it to
300 nanoseconds, twice the load latency of the DRAM
on the machine [57]. We configured the PM to have
the same bandwidth as that of the emulator’s DRAM.
We experimented with a lower bandwidth option (1/4
of DRAM bandwidth, which was the only other avail-
able option on the emulator), but obtained identical re-
sults, suggesting that our experiments did not saturate the
memory bandwidth available on the emulator (36 GB/s).

We conducted an 8-way evaluation to see how effec-
tively Bullet eliminates the gap between DRAM and PM
performance. The eight systems were as follows. 1) A
DRAM-only version that uses just the frontend hash ta-
ble (volatile), which places an upper bound on perfor-
mance. 2) A PM-only version that uses Bullet’s backend
hash table (phash), providing a lower bound on perfor-
mance. 3) hikv-ht, our implementation of the hash ta-
ble component of HiKV – a state-of-the-art K-V store,
whose hash table resides in PM [54]. HiKV gets a some-
what unfair advantage in our experiments, because it
does not ensure that the state of the persistent memory al-
locator persists. However, the allocator’s state can be re-
built after a restart from HiKV’s hash table, although we
have not implemented this. 4) bullet-st, the base version
of Bullet, which assigns frontend and backend threads
statically and uses transactions in the critical path of up-
date operations. 5) +lfr, the base version of Bullet with
optimized, lock-free Gets. 6) +opt, the version of Bullet
that additionally eliminates failure atomic transactions
from the critical path of update requests. 7) +dyn, the
Bullet version that, along with above optimizations, sup-
ports dynamic thread switching between the frontend and
backend. 8) bullet-full (also appears as +wrc(bullet-full)
in the graphs), the full Bullet version that additionally
contains the write collapsing optimization. Although the
frontend of Bullet can be a subset of the backend, in our
experiments the frontend is a full copy of the backend.

We evaluate various aspects of Bullet comprising scal-
ability and latency, dynamic behavior of worker threads,
and log size sensitivity in a microbenchmark setting. In
all our experiments, Get/Put requests are drawn from
a pre-created stream of inputs with a zipfian distribu-
tion of skewness 0.99, which is the same as YCSB’s
input distribution [11]. We average over five test runs
for each data point. We also use an evaluation frame-
work that uses independent clients to better understand
end-to-end performance of these systems as client load
increases. The clients are independent threads residing
in the same address space as Bullet and communicate re-
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Figure 5: Latency (99th percentile) vs. Throughput results. Each
point on the curves represents a different number of worker threads
ranging from 2 to 16 in increments of 2.

quests and responses through globally shared request/re-
sponse buffers. We do not use clients communicating
with Bullet over TCP connections, since the network
stack latency itself tends to significantly mute impor-
tant performance trade offs between the evaluated K-V
stores [14, 54].

7.1 Latency vs. Throughput
Figure 5 shows performance as a latency/throughput
tradeoff under workloads whose write percentage varies
from 0% (read-only) to 50% (write-heavy). We begin by
creating a 50-million key/value pair store with 16-byte
keys and 100-byte data values; these choices are in line
with what is observed in real-world settings [2, 54]. Each
experiment runs a specified number of of worker threads
with the requested read/write ratio, using Get/Put op-
erations (Remove performance is comparable to that of
Put). Each worker selects key-value pairs from the pre-
populated zipfian stream of keys and performs the se-
lected operation. The worker continuously repeats these
operations for 1 minute (we experimented with 5− 10
minute runs, but the results were unchanged).

For the dynamic worker role versions of Bullet (+dyn
and bullet-full), some workers switch roles to become
backend log gleaners. In such cases, the worker posts its
current unapplied operation on a globally visible queue
of requests, so that some other frontend worker will pro-
cess it (to ensure forward progress, we guarantee that
at least 1 worker remains in the frontend). We mea-
sure latency of only those operations that have a fron-
tend worker assigned to them (the requests posted in the
central queue are a rare occurrence and are processed rel-
atively immediately by frontend worker threads).

Notice the clear impact of slower PM on the 0% Put



case in Figure 5a. The difference between phash’s and
volatile’s latency and throughput mirrors the difference
in PM and DRAM latency. hikv-ht performs notice-
ably better than phash, owing to some of its cache lo-
cality oriented optimizations. But these marginal im-
provements suggest that additional optimizations cannot
eliminate the fundamental problem of slower PM. All
of Bullet’s versions’ latencies align almost exactly with
volatile. bullet-st shows slight overhead associated with
lock-based Gets. All static worker role assignment vari-
ants of Bullet (bullet-st, +lfr, +opt) effectively end up us-
ing just half of the available workers in the frontend and
produce throughput approximating half the throughput
of volatile; the backend worker threads effectively waste
CPU cycles. Our dynamic worker assignment framework
(in +dyn, +wrc(bullet-full)) correctly assigns all workers
to the frontend, which performs comparably to volatile.

The 2% Put test is more representative of real-world
(read-dominated) workloads [40]. As Figure 5b shows,
the relative latency differences remain similar; there is a
small increase in the absolute latencies reflecting effects
of longer latency Put operations. For the same reason,
the absolute throughput numbers are smaller, but the rel-
ative difference between volatile, phash, hikv-ht, and the
static variants of Bullet remains the same. However, in
+dyn and bullet-full we begin to see the impact of log-
ging. The primary source of these overheads is the dy-
namic switching of 1 or 2 worker threads between the
frontend and backend. Note that even with 2% Puts,
our CRLs quickly cross the occupancy threshold of 60%,
which forces frontend threads to incrementally switch
to the backend log gleaner roles if the occupancy keeps
growing across epochs. A consistent rate of 2% Put traf-
fic is large enough to force at least one worker to stay a
log gleaner through the entire execution. +dyn’s perfor-
mance drops by a significant 25% compared to volatile.
However, our write collapsing optimization works ex-
ceptionally well to significantly reduce that margin to
about 5%: the zipfian distribution of requests allows for
substantial write collapsing (30− 50%), which leads to
the log gleaner applying the log more quickly, spending
the saved time in frontend request processing.

The 15% workload, shown in Figure 5c, illustrates
more clearly the impact of the different optimizations.
Compared to volatile, Bullet’s bullet-st and +lfr ver-
sions show a 40% degradation in latency. The failure
atomic transactions used for Put operations of these ver-
sions are primarily responsible for this degradation. This
degradation is mitigated by half with our critical path op-
timization present in Bullet’s +opt, +dyn, and bullet-full
versions. Latency of the PM-only K-V stores, phash and
hikv-ht, is approximately 3X and 2.5X higher than that of
volatile. Notice the throughput of Bullet’s dynamic ver-
sions drops significantly. With 15% Puts, we observed
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Figure 6: Get, Put Cumulative Latency distributions on 16-thread
test runs with 2% Puts.x

a larger fraction (4−6) of worker threads getting forced
to operate as log gleaners in the backend for the entire
duration of the test. That leads to a significant reduction
in overall throughput, since threads migrated from the
frontend to the backend do not process new requests.

With the even higher 50% Put rate of Figure 5d, we
observe additional interesting behavior. The variants that
use transactions in their Put critical paths exhibit signif-
icantly increased latency, approaching that of hikv-ht’s
latency. The rest of Bullet’s variants (+opt, +dyn, and
bullet-full) exhibit lower latency, which starts to grow
only as the set of worker threads grows. We attribute this
performance degradation to cache contention between
frontend and backend threads. Notice that the work-
ing sets of the frontend and backend threads are largely
different – a frontend log writer accesses the frontend
hash table and a log, whereas the colocated (on the same
socket) backend log gleaner accesses the backend hash
table and possibly a different log. The more threads there
are, the greater the cache contention, and the worse the
performance. Overall, the results suggest that workloads
with very high write rates are not a good fit for Bullet.

7.2 Latency Distribution of Gets and Puts
Figure 6’s segregated cumulative latency distribution
graphs for Gets and Puts provide deeper insight into
the behaviour of the K-V stores. Figure 6a shows la-
tency of Gets. The phash and hikv-ht latencies av-
erage to about 450 and 380 nanoseconds respectively,
whereas volatile and all of Bullet’s versions average to
220 nanoseconds. Average latencies of Puts are more
scattered: volatile is the fastest with 750 nanoseconds,
followed by Bullet’s versions that do not contain trans-
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switches every 30 seconds. The left Y-axis shows throughput for ev-
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the end of each second.

actions in the critical path (at 1 microsecond), followed
by Bullet’s versions that contain transactions in the crit-
ical path (at 2.5 miroseconds). HiKV’s latency matches
that of Bullet’s versions with transactions on the critical
path. phash is the slowest with latency averaging to 5 mi-
croseconds; this is an 8X slowdown compared to volatile.
Note that the backend Put operations in all of Bullet’s
versions apply the same Put operation used in phash.
This largely explains the significantly higher cost associ-
ated with applying log records to the backend, and why
as little as 2% Puts can force worker threads to play the
log gleaner role for much longer durations that amplify
to a minimum of 10% slowdown in throughput compared
to volatile in Figure 5b.
7.3 Dynamic Behavior of Workers
Figure 7 shows bullet-full’s dynamic worker role frame-
work in action. It reports the throughput as well as the
gleaner count at the end of every second, over a duration
of 210 seconds. Every 30 seconds, we change the load of
Puts on bullet-full. After a warmup phase of 30 seconds
of 2% Put rate, we vary the Put rate between 2-15-
2-0-2-50-2%, in that order. As is clear from the graph,
our dynamic worker role adaptation strategy works well
in adapting to the changing load of Puts. At times, as
observed in the 15% and 50% Put phases, our adapta-
tion algorithm fluctuates around the optimal mix of fron-
tend and backend workers before converging to a stable
mix that matches frontend producers of log records with
backend gleaners that consume these log records.

Throughout the execution, for 2% Puts, the through-
put hovers around 16 Mops, and the number of log glean-
ers ranges from 1− 2. This helps explain the reduction
in observed throughput of bullet-full compared to the
throughput of volatile in Figure 5b. After a switch to
a 15% Put rate, the throughput switches immediately,
reflecting the corresponding uptick in the gleaner count.
For the 0% Put case, our algorithm quickly and cor-
rectly converges to a gleaner count of 0, thus explain-
ing the throughput reported in Figure 5a that matches the
throughput of volatile. For the 15% and 50% Put cases,
the number of gleaners needed settles down to 6 and 8
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respectively. Note that in our 100% Put experiments
(not reported here in detail), we observed the number of
gleaners vary between 13−15.

7.4 Log Size Sensitivity
Bullet’s CRLs act as speed matching buffers between the
frontend and backend worker threads. As long as there is
enough available space in CRLs, frontend workers keep
appending log records as quickly as they can. When
CRL occupancy gets too high, workers are incremen-
tally switched to the backend to match the frontend load
of CRL population. If the CRLs are too small in size,
Bullet can easily enter a mode where threads bounce be-
tween frontend and backend at a high frequency, which
in turn could lead to significant disruption in overall per-
formance. The question then to consider is – how big
should these logs be to avoid performance degradation
due to workers switching frontend and backend roles?

To that end, Figure 8 shows the results of our experi-
ment where we vary the per-thread log size from 64 MBs
(the size we used for all experiments described above),
down to 1 MB. In addition, the CRL infrastructure main-
tains 32 logs in-all; when a frontend worker exhausts its
log, it can switch to another log that is not in use by an-
other frontend worker. As a result, per-thread log sizes of
1, 4, 16, and 64 MBs result in total CRL footprint of 32,
128, 512, and 2048 MBs respectively. Even the largest
2048 MB CRL footprint may be acceptable in a future
PM-equipped system that hosts multi-terabytes of PM.

The overall results were quite surprising to us: We
expected log size to have a big impact on performance
across the board. However, for write-intensive work-
loads, the log size does not matter to throughput. The
Put load is high enough that the system converges to a
stable mix of frontend and backend threads. The interest-
ing case is 2% Puts. We observe a modest 3% drop in
throughput when we transition from 64 MB logs to 4 or
16 MB logs, whereas a further reduction in log size (to
1 MB) results in a significant 20% drop in throughput.
The problem with 1 MB logs is that the Put load gener-
ates enough log traffic to populate CRLs quickly enough
that worker threads switch to the backend more aggres-
sively than is necessary. Subsequently, a high number of
of backend workers drains the log quickly after which a
larger than necessary fraction of backend workers switch
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Figure 9: Latency (99th percentile) vs. Throughput results for test
runs with independent client threads (1,2,4,6,8). The number of work-
ers is kept to a constant 8. The graphs show the effect of increasing
client load on Bullet.

to the frontend role. This over-aggressive switching
of worker roles results in the performance degradation.
However, 4 MB log size is big enough to absorb the log
population rate more gracefully. Note that the size of
each log record (including its header) is 193 bytes.

7.5 End-to-End Performance
To understand the end-to-end performance observed by
independent clients, we conducted an experiment where
clients generated back-to-back requests based on the zip-
fian distribution mentioned earlier. The clients were
hosted as independent threads in Bullet’s address space,
eliminating the overheads related to network latencies.

Each client generates a request in its local buffer that
is visible to all of Bullet’s workers (but not other clients),
waits for a response from Bullet, and repeats. The work-
ers synchronize amongst each other, using a per buffer
lock, to get and process client requests. We reduce con-
tention on these locks by ensuring that workers serve a
multitude of requests (1,000 in our experiments) before
releasing an acquired lock and switching over to another
buffer. To minimize interference between workers and
client threads, we host the workers on one socket of the
emulator and the client threads reside on the other socket.
We effectively end up getting a maximum of 8 worker
threads for each test run in this experiment.

Figure 9 shows performance of the various K-V stores
with growing number of client threads. First, notice the
5X increase in latency of operations over all the K-V
stores compared to earlier experiments (Figure 5). This
slowdown was a big surprise. However, additional ex-
perimentation revealed cross-socket cache access laten-
cies to be the biggest contributor to the overheads: when

we pinned communicating workers and client threads on
the same socket the latency increase reduced to approx-
imately 10%. We did not pursue such an intermingled
topological layout for clients and workers since workers
tend to dynamically switch between clients when some
workers are busy performing gleaning operations, which
led to unpredictable performance.

Other than the unexpected NUMA effects on perfor-
mance, the observed relative degradation in latencies of
Bullet’s flavors bullet-st, +lfr, and +opt appears to be
much greater than our prior experiments (Figure 5). This
degradation can be squarely attributed to the fact that
these flavors of Bullet are effectively left with 4 frontend
workers, and a greater number of clients (up to 8) results
in overload leading to higher latencies at client counts
greater than 4. Similar relative latency degradation can
be observed in the 15% and 50% write loads for Bullet
flavors +dyn and +wrc(bullet-full) : Some worker threads
are forced to play the backend gleaner role, which in-
creases the load on the frontend workers since the num-
ber of clients is now greater than the frontend workers.

In general, since writes are expensive, an increasing
percentage of writes tends to reduce the performance
gains we get from the two-tiered architecture of Bullet.
We conclude that Bullet does not really close the perfor-
mance gap between volatile and persistent K-V stores for
write-heavy workloads. However, it significantly closes
this performance gap in read-dominated workloads.

8 Conclusion
While emerging byte-addressable persistent memory
technologies, such as Intel/Micron’s 3D XPoint, will ap-
proach the performace of DRAM, we expect to see a non-
trivial performance gap (within an order of magnitude)
between them. We showed that this performance gap can
have significant implications on the performance of per-
sistent memory optimized K-V stores. In particular, we
conclude that DRAM does have a critical performance
role to play in the new world dominated by persistent
memory. We presented our new K-V store, called Bul-
let, that is architected to exploit this exact observation.

We introduced cross-referencing logs (CRLs), a gen-
eral purpose scalable logging framework that can be
used to build a two-tiered architecture for a persistent
K-V store that leverages capabilities of emerging byte-
addressable persistent memory technologies, and the
much faster DRAM, to deliver performance approach-
ing that of a DRAM-only K-V store for read-dominated
workloads. Our performance evaluation shows the effec-
tiveness of Bullet’s architectural features that bring its
performance close to that of a DRAM-only K-V store for
read-heavy workloads. Write-heavy workloads’ perfor-
mance is severely limited by the high latency of failure-
atomic writes, and further research is warranted to reduce
these overheads.
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[14] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CAS-
TRO, M. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation (2014), pp. 401–414.

[15] FAN, B., ANDERSEN, D. G., AND KAMINSKY, M. Memc3:
Compact and concurrent memcache with dumber caching and
smarter hashing. In Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation (2013),
pp. 371–384.

[16] GILES, E., DOSHI, K., AND VARMAN, P. J. Softwrap: A
lightweight framework for transactional support of storage class
memory. In IEEE 31st Symposium on Mass Storage Systems and
Technologies, MSST 2015, Santa Clara, CA, USA, May 30 - June
5, 2015 (2015), pp. 1–14.

[17] HARRIS, T. L. A pragmatic implementation of non-blocking
linked-lists. In Distributed Computing, 15th International Con-
ference, DISC 2001, Lisbon, Portugal, October 3-5, 2001, Pro-
ceedings (2001), pp. 300–314.

[18] Apache HBase. http://hbase.apache.org/.

[19] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER,
III, W. N. Software transactional memory for dynamic-sized
data structures. In Proceedings of the Twenty-second An-
nual Symposium on Principles of Distributed Computing (2003),
pp. 92–101.

[20] HETHERINGTON, T. H., O’CONNOR, M., AND AAMODT,
T. M. Memcachedgpu: Scaling-up scale-out key-value stores. In
Proceedings of the Sixth ACM Symposium on Cloud Computing
(2015), pp. 43–57.

[21] HOSOMI, M., YAMAGISHI, H., YAMAMOTO, T., BESSHO, K.,
HIGO, Y., YAMANE, K., YAMADA, H., SHOJI, M., HACHINO,
H., FUKUMOTO, C., NAGAO, H., AND KANO, H. A novel non-
volatile memory with spin torque transfer magnetization switch-
ing: Spin-RAM. International Electron Devices Meeting (2005),
459–462.

[22] HU, W., LI, G., NI, J., SUN, D., AND TAN, K.-L. BP-Tree : A
Predictive B+-Tree for Reducing Writes on Phase Change Mem-
ory. IEEE Transactions on Knowledge and Data Engineering 26
(2014), 2368–2381.

[23] HUAI, Y. Spin-Transfer Torque MRAM (STT-MRAM): Chal-
lenges and Prospects. AAPPS Bulletin 18, 6 (2008), 33–40.

[24] Intel R© 64 and IA-32 Architec-
tures Software Developer’s Manual.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-manual-325462.pdf,
2015.

[25] JOHNSON, R., PANDIS, I., STOICA, R., ATHANASSOULIS, M.,
AND AILAMAKI, A. Aether: A Scalable Approach to Logging.
Proceedings of VLDB Endowment 3, 1-2 (Sept. 2010), 681–692.

[26] JOHNSON, R., PANDIS, I., STOICA, R., ATHANASSOULIS, M.,
AND AILAMAKI, A. Scalability of Write-ahead Logging on Mul-
ticore and Multisocket Hardware. The VLDB Journal 21, 2 (Apr.
2012), 239–263.

[27] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
rdma efficiently for key-value services. In Proceedings of the
2014 ACM Conference on SIGCOMM (2014), pp. 295–306.

[28] LAKSHMAN, A., AND MALIK, P. Cassandra: A Decentralized
Structured Storage System. SIGOPS Operating Systems Review
44, 2 (2010), 35–40.

[29] LAMPORT, L. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM 21, 7 (July
1978), 558–565.

[30] LevelDB – a fast and lightweight key/value database library.
http://leveldb.org/.

[31] LI, S., LIM, H., LEE, V. W., AHN, J. H., KALIA, A., KAMIN-
SKY, M., ANDERSEN, D. G., SEONGIL, O., LEE, S., AND
DUBEY, P. Architecting to achieve a billion requests per second



throughput on a single key-value store server platform. In Pro-
ceedings of the 42Nd Annual International Symposium on Com-
puter Architecture (2015), pp. 476–488.

[32] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
Mica: A holistic approach to fast in-memory key-value storage.
In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (2014), pp. 429–444.

[33] LIM, K., MEISNER, D., SAIDI, A. G., RANGANATHAN, P.,
AND WENISCH, T. F. Thin servers with smart pipes: Designing
soc accelerators for memcached. In Proceedings of the 40th An-
nual International Symposium on Computer Architecture (2013),
pp. 36–47.

[34] MAO, Y., KOHLER, E., AND MORRIS, R. T. Cache crafti-
ness for fast multicore key-value storage. In Proceedings of the
7th ACM European Conference on Computer Systems (2012),
pp. 183–196.

[35] MARATHE, V. J., MISHRA, A., TRIVEDI, A., HUANG, Y., ZA-
GHLOUL, F., KASHYAP, S., SELTZER, M., HARRIS, T., BYAN,
S., BRIDGE, B., AND DICE, D. Persistent Memory Transactions
https://arxiv.org/abs/1804.00701, 2018.

[36] Memcached – a distributed memory object caching system.
https://memcached.org/.

[37] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In Proceedings
of the 2013 USENIX Conference on Annual Technical Conference
(2013), pp. 103–114.

[38] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,
AND SCHWARZ, P. Aries: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using write-
ahead logging. ACM Transactions on Database Systems 17, 1
(1992), 94–162.

[39] NAWAB, F., IZRAELEVITZ, J., KELLY, T., MORREY, C. B.,
CHAKRABARTI, D., AND SCOTT, M. L. Dali: A Periodically
Persistent Hash Map. In Proceedings of the 31st International
Synposium on Distributed Computing (2017).

[40] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling memcache at facebook. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (2013), pp. 385–398.

[41] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T., AND
LEHNER, W. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings
of the 2016 International Conference on Management of Data
(2016), pp. 371–386.

[42] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory per-
sistency. In ACM/IEEE 41st International Symposium on Com-
puter Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-
18, 2014 (2014), pp. 265–276.

[43] RAO, D. S., KUMAR, S., KESHAVAMURTHY, A., LANTZ, P.,
REDDY, D., SANKARAN, R., AND JACKSON, J. System soft-
ware for persistent memory. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014
(2014), p. 15.

[44] Redis – in-memory data structure store, http://redis.io/.

[45] RUDOFF, A. Deprecating the PCOMMIT Instruction.
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-
pcommit-instruction, 2016.

[46] STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., AND
WILLIAMS, R. S. The missing Memristor found. Nature 453
(2008), 80–83.

[47] SUZUKI, K., AND SWANSON, S. A Survey of Trends in Non-
Volatile Memory Technologies: 2000-2014. In 2015 IEEE Inter-
national Memory Workshop (2015), pp. 1–4.

[48] Swift Object Store. https://swift.openstack.org/.

[49] THE SNIA NVM PROGRAMMING TECHNI-
CAL WORKING GROUP. NVM Programming
Model (Version 1.0.0 Revision 10), Working Draft.
http://snia.org/sites/default/files/NVMProgrammingModel_v1r10DRAFT.pdf,
2013.

[50] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
lightweight persistent memory. In Proceedings of the 16th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (2011), pp. 91–104.

[51] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S., ZHANG,
C., AND CONG, J. An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd. In Proceed-
ings of the Ninth European Conference on Computer Systems
(2014), pp. 16:1–16:14.

[52] WANG, T., AND JOHNSON, R. Scalable logging through emerg-
ing non-volatile memory. PVLDB 7, 10 (2014), 865–876.

[53] WU, X., ZHANG, L., WANG, Y., REN, Y., HACK, M., AND
JIANG, S. zexpander: A key-value cache with both high perfor-
mance and fewer misses. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (2016), pp. 14:1–14:15.

[54] XIA, F., JIANG, D., XIONG, J., AND SUN, N. HiKV: A Hybrid
Index Key-Value Store for DRAM-NVM Memory Systems. In
Proceedings of the 2017 USENIX Annual Technical Conference
(2017), pp. 349–362.

[55] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L., AND
HE, B. NV-Tree: Reducing Consistency Cost for NVM-based
Single Level Systems. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies (2015), pp. 167–181.

[56] ZHANG, K., WANG, K., YUAN, Y., GUO, L., LEE, R., AND
ZHANG, X. Mega-kv: A case for gpus to maximize the through-
put of in-memory key-value stores. Proceedings of the VLDB
Endowment 8, 11 (2015), 1226–1237.

[57] ZHANG, Y., AND SWANSON, S. A study of application perfor-
mance with non-volatile main memory. In IEEE 31st Symposium
on Mass Storage Systems and Technologies, MSST 2015, Santa
Clara, CA, USA, May 30 - June 5, 2015 (2015), pp. 1–10.

[58] ZHOU, J., SHEN, Y., LI, S., AND HUANG, L. NVHT: An
Efficient Key-value Storage Library for Non-volatile Memory.
In Proceedings of the 3rd IEEE/ACM International Conference
on Big Data Computing, Applications and Technologies (2016),
pp. 227–236.


	Introduction
	Bullet's Architecture
	Overview
	Hash Tables
	Cross-Referencing Logs
	Log Space Reclamation

	Failure Atomic Transactions
	Optimizations
	Tightening the Update Critical Path
	Nonblocking Gets
	Managing Writer and Gleaner Counts
	Decoupling Writers from Gleaners
	Dynamic Adjustment of Writer/Gleaner Ratio

	Collapsing Put Operations

	Recovery and Warmup
	Implementation Notes
	Evaluation
	Latency vs. Throughput
	Latency Distribution of Gets and Puts
	Dynamic Behavior of Workers
	Log Size Sensitivity
	End-to-End Performance

	Conclusion

