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Abstract—We describe our experience of building an
industrial-strength cryptographic vulnerability detector, which
aims to detect cryptographic API misuses in JavaTM1. Based on
the detection algorithms of the academic tool CryptoGuard, we
integrated the detection into the Oracle internal code scanning
platform Parfait. The goal of the Parfait-based cryptographic
vulnerability detection is to provide precise and scalable crypto-
graphic code screening for large-scale industrial projects. We
discuss the needs and challenges of the static cryptographic
vulnerability screening in the industrial environment.

Index Terms—cryptographic vulnerability detection, static an-
alyzer, industrial environment

I. INTRODUCTION

Cryptographic vulnerabilities that are caused by improper
or flawed cryptography implementation have become one
of the most serious threats [1]–[5]. Because of insufficient
security expertise, developers face challenges to understand the
implicit security rules behind the cryptographic APIs, such as
Java Cryptography Architecture (JCA) and Java Cryptography
Extension (JCE) libraries [6], [7]. Misuses of these crypto-
graphic APIs could result in various security vulnerabilities,
such as exposing secrets (e.g., password, key), bypassing
authentication [8], [9].

To aid this situation, static analysis is widely used to screen
the code and expose cryptographic vulnerabilities. Many tools,
such as CryptoLint [4], FixDroid [10], CogniCrypt [11],
CryptoGuard [12], are presented for this purpose. Despite the
progress, the acceptance and prevalence of these tools in the
industrial community are still low [13], which suggests a gap
between the state-of-the-art tools and the industrial demands.
In this work, we focus on an industrial-strength cryptographic
vulnerability detector. We realize the high-precision detection
algorithm presented by an academic tool CryptoGuard [12]
on the support of Parfait [14], an Oracle internal static
code analysis platform designed for large-scale codebases.
Our Parfait-based cryptographic vulnerability detection shows
nearly perfect precision and excellent scalability on large-scale
industrial projects.

II. INDUSTRIAL-STRENGTH PRECISION AND SCALABILITY

Most of the cryptographic vulnerabilities we focus on
can be attributed to assigning improper values to certain

1Java is a registered trademark of Oracle and/or its affiliates.

security-critical parameters used with cryptographic API calls.
For example, a cryptographic API call new PBEKeySpec(

password) (an API method that generates a cryptographic
key from a given password) accepts a hard-coded password.
The detection requires a backward dataflow analysis to figure
out the values assigned to the security-critical parameters.
Our backward dataflow analysis follows the interprocedural,
finite, distributive subset (IFDS) analysis algorithm presented
by Reps et al. [15]. We briefly introduce our technical enablers
for the high precision and scalability. Please check the full
paper [16] for the details.

High Precision. The technical enabler for our high precision
is the refined slicing algorithm presented in CryptoGuard [12].
When detecting the hard-coded security-critical parameters
(e.g., secret key, password), the precision challenge is caused
by a phenomenon, referred to as pseudo-influences [12].
Pseudo-influences are the constants captured by the backward
dataflow analysis, however, have non-security impacts. For
example, a file location constant is used to retrieve a cryp-
tographic key. With the refinement insights given in Crypto-
Guard [12], we are able to remove five language-specific sce-
narios that involve pseudo-influences without resulting in hard-
coded values. These pseudo-influences include state indicators,
resource identifiers, and bookkeeping indices to retrieve the
value. The contextually incompatible constants, and constants
in infeasible paths are also removed by the refinement insights.
Table I shows the detection results with and without the re-
finement insights on a well-known cryptographic vulnerability
benchmark, CryptoAPI-Bench [17]. The refinement insights
are able to reduce all false positives except for the test cases
that require path sensitivity to detect.

Scalability. Industrial projects are usually at a large scale,
which results in a higher requirement for scalability. Our
Parfait-based cryptographic vulnerability detection achieves
excellent scalability by two designs, the layered scheduler for
caller methods, and the summarization for callee methods. An
interprocedural analysis might go across multiple methods,
which makes the analysis take too much time. Instead of
running the analyses one after another, Parfait offers a layered
framework to optimize the execution order. The interprocedu-
ral analyses are broken down into several layers and scheduled
layer by layer. In this way, the analyses requiring less time



TABLE I
FALSE POSITIVE REDUCTION DERIVED FROM APPLYING THE REFINEMENT

INSIGHTS (RIS). WE COMPARE PARFAIT CRYPTOGRAPHIC
VULNERABILITY DETECTION WITH ITS INTERMEDIATE VERSION WITHOUT

THE REFINEMENT INSIGHTS.

Type Vulnerabilities FPs
(w/o RIs)/(w RIs)

Basic 24 1/0
Multiple Methods 56 3/0
Multiple Classes 18 1/0
Field Sensitivity 18 2/0
Path Sensitivity 0 19/19
Heuristics 9 12/0
Total 125 38/19

can be finished first. It guarantees that more vulnerabilities
can be reported within less time. Another design improving
the scalability is the summarization mechanism for the callee
methods. When a callee method is explored by the analysis, we
generate the summary edges for the callee method and store
them for future usage to avoid re-exploration. We scan 11 real
world projects provided by Oracle. Our detector achieves an
average runtime 338.8s for the 11 projects with average 395.4k
line of code. Besides, our detector reports 42 vulnerabilities
with 0 false positives, achieving 100% precision.

1 public class DesEncrypter{
2 private byte[] salt = { (byte) 0xC9, (byte) 0xDB

, (byte) 0xA3, (byte) 0x52, (byte) 0x56, (byte)
0x35, (byte) 0xE8, (byte) 0xB0};

3 private int iterationCount = 20;
4 public DesEncrypter(final String passPhrase){
5 initDesEncrypter(passPhrase);}
6 private void initDesEncrypter(final String

passPhrase){
7 ...
8 AlgorithmParameterSpec paramSpec = new

PBEParameterSpec(salt,iterationCount);}}

Listing 1. A real-world vulnerability about using constant salt and insufficient
iteration count (We modified the code to make the codebase unidentifiable.)

Listing 1 shows vulnerabilities of using constant salt and
insufficient iteration count as PBE parameters. This case
represents the most common vulnerable pattern of the sensitive
cryptographic materials (e.g., passwords, salts, IVs, etc) to be
hard-coded in the initialization.

III. FUTURE WORK

Based on our interaction with developers, there are many
future directions required to do to close the gap between
industrial demands and state-of-the-arts. One direction is to
generate more useful fixing suggestions. Many developers
pointed out that the fixing suggestions generated by the current
tools are too simple and not useful enough. Developers have
difficulties correcting the cryptographic code even though the
vulnerabilities are noticed [18]. Another interesting direction is
the context-aware cryptographic vulnerability detector. Many
developers pointed out that the alerts generated by the state-
of-the-art tools ignore the context of the cryptographic APIs,
which may overestimate the security threats.
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[11] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
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