
Remote Just-in-Time Compilation for Dynamic Languages
Andrej Pečimúth

Charles University

Czech Republic

pecimuth@d3s.mff.cuni.cz

Oracle Labs

Czech Republic

andrej.pecimuth@oracle.com

ABSTRACT
Cloud platforms allow applications to meet fluctuating levels of

demand while maximizing hardware occupancy at the same time.

These deployment models are characterized by short-lived appli-

cations running in resource-constrained environments. This poses

a challenge for dynamic languages with just-in-time (JIT) compi-

lation. Dynamic-language runtimes suffer from a warmup phase

and resource-usage peaks caused by JIT compilation. Offloading

compilation jobs to a dedicate server is a possible mitigation for

these problems. We propose leveraging remote JIT compilation as

means to enable coordination between the independent instances.

By sharing compilation results, aggregating profiles, and adapting

the compiler and compilation policy, we strive to improve peak

performance and further reduce warmup times. Additionally, an

implementation on top of the Truffle framework enables us to bring

these benefits to many popular languages.

CCS CONCEPTS
• Software and its engineering → Just-in-time compilers;
Dynamic compilers.

KEYWORDS
remote compilation, just-in-time compilation, dynamic languages,

virtual machines

ACM Reference Format:
Andrej Pečimúth. 2018. Remote Just-in-Time Compilation for Dynamic

Languages. In Proceedings of ACM Conference (Conference’17). ACM, New

York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 MOTIVATION
Modern applications, such as web applications, need to be able to

accommodate varying levels of demand. Cloud platforms enable

this elasticity [4] through horizontal scaling, which can be effec-

tively implemented using container orchestrators. In this setup, the

application is deployed across multiple independent replicas, each

running in a separate container distributed across multiple nodes.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Incoming requests are routed to these instances by the runtime.

When there is an increase in demand, the orchestrator automat-

ically starts additional instances to handle the load. Conversely,

when demand decreases, the orchestrator terminates instances to

optimize cost efficiency.

These applications are commonly implemented using dynamic

languages that rely on just-in-time (JIT) compilation to achieve

high performance. However, JIT compilation incurs runtime costs

in terms of CPU and memory usage. These environments experi-

ence an often significant warmup phase [2], when the application’s

performance is below peak. A virtual machine (VM) may reduce

the time it takes to warm up (i.e., warmup time) by utilizing and

interpreter and multiple JIT compilers in a tiered setup [10]. The

individual compilers offer varying optimization levels and compila-

tion latencies.

To guide optimization decisions [13], VMs collect profiles of the

running application. The quality of the compiled code depends on

the quality of profiles. Profiles are often collected by compiling

and running instrumented code [12], which incurs major runtime

overhead. Thus, they are captured during a limited time window.

Cloud environments with automatic scaling exacerbate the disad-

vantages of JIT compilation. Whenever the orchestrator terminates

a container, compiled code and profiling information is lost. Starting

a new container involves compiling from scratch, and thus going

through another warmup phase.

Moreover, JIT compilers cause spikes in CPU andmemory utiliza-

tion early in a container’s lifetime. Overloading the CPU may cause

a failure to meet latency expecations. These languase are usually

garbage collected, which performs poorly in low-memory condi-

tions. Thus, it is necessary to provision containers with sufficient

resources. However, compilation jobs quickly become less frequent

later in an application’s lifetime. As a result, the resources provi-

sioned for JIT compilation are not utilized. The underutilization of

provisioned resources leads to poor cost efficiency.

Possible mitigations include ahead-of-time (AOT) compilation

[11], caching [3] or sharing [17] compiled code, sharing profiles

[12], and remote compilation [9]. Native Image [11] solves the

problem of warmup and JIT-related resource usage by compiling

Java applications AOT. However, there are restrictions related to

dynamic features, and peak performance may suffer as runtime

recompilation is unavailable. Another approach taken by some VMs

is persisting compiled code [3] to the disk. The persisted code is

used as a cache in subsequent VM invocations. The Hip Hop VM

(HHVM) for the Hack language employs profile sharing [12] to

reduce warmup and improve peak performance. Finally, OpenJ9

offers JITServer [9], which allows offloading compilation jobs to

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA Andrej Pečimúth

a remote compilation server. By caching compiled code, JITServer

achieves lower warmup time and an overall reduction in resource

usage.

2 PROBLEM
Contemporary language runtimes are not well suited for elastic [4]

cloud environments. Although the techniques we described tackle

some of the issues, neither takes full advantage of the environment.

JITServer [9], the state-of-the-art remote compilation server for

Java, does not attempt to increase peak throughput by adapting

the compiler nor profile aggregation. HHVM [12] runs in a single-

VM setup and shares only profiles. We propose a multi-language

remote compilation server as a means to improve warmup and peak

performance. We can achieve this by sharing compiled code and

profiles, pushing code to clients, an improved compilation policy,

and an implementation on top of Truffle [16].

Tuning a JIT compiler for the remote-compilation scenario may

yield peak performance improvements. Compiler design is a trade-

off between compilation speed and the performance of compiled

code. JIT compilers are further restriced to conserve resources, be-

cause they run along user code. However, this is not true for the

compilation server: the server may spend as much resources as it

has available.

The VMs may obtain more precise profiles while utilizing less

resources overall by coordinating their efforts through the compi-

lation server. As profiles are merely samples of the application’s

characteristics, we can obtain higher-quality estimates by aggre-

gating the individually collected information. As soon there are

enough samples, there should be no further profile collection to

conserve resources. A natural place to coordinate these efforts is

the compilation server, which could immediately use the profiles

for compilation.

Another opportunity to reduce warmup is pushing compiled

code to clients. As all clients run the same application, the server

may determine which methods are needed by the clients. However,

this in conflict with profile aggregation: when the server pushes

code to a client, the client will not collect profiles. Thus, more

elaborate compilation policies are required.

We propose an implementation of remote compilation for Truffle

[16] to bring all the benefits to multiple popular languages. Truf-

fle [16] is a language implementation framework built on top of

GraalVM [7]. Implementations of popular dynamic languages using

Truffle are available, some of which are as fast or faster [6] than the

reference implementations. Truffle enables language implementers

to construct a high-performance VM by writing an abstract syntax

tree (AST) interpreter using the framework. This is made possible

by creating a JIT compiler from the AST interpeter using partial

evaluation.

3 APPROACH
Figure 1 demonstrates our approach. We propose a dedicated com-

pilation server that serves multiple containerized VMs. The VMs

run the same application, and the orchestrator may start or termi-

nate containers. Client VMs utilize an interpreter and a level-one

compiler optimized for compilation latency, such as the client com-

piler [10] from the HotSpot Java VM. The level-one compiler can

compilation server

level 2
compiler

global
compilation

policy

class cache

profile cache

code cache

container 1

VM

class cache code cache

local compilation
policy

interpreter level 1
compiler

container orchestrator

running application
(1) method m is hot (level 1)

(4) compiled method m (level 2)

(5) method m is hot (level 1)

(6) compiled method m (level 2)

container 2

VM

class cache code cache

local compilation
policy

interpreter level 1
compiler

running application

(2) collect profiles until level 2

(3) method m is hot (level 2), profiles

Figure 1: Our approach: a remote compilation with code shar-
ing and profile sharing.

also compile instrumented code to collect profiles. The compilation

server utilizes a level-two compiler striving for peak performance,

i.e., the GraalVM Compiler [5]. The server facilitates code and pro-

file sharing.

In the scenario shown in Figure 1, container 1 executes a non-

trivial method𝑚. The execution starts in the interpreter. After the

method exceed a predefined number of invocations (i.e., it is hot),
the local compilation policy informs the compilation server. The

server’s global compilation policy can now either let the VM collect

profiles, schedule the method for level-two compilation, or return

cached code. In this case, the former is true. When the method

exceeds another invocation threshold, the VM sends the collected

profiles to the server. The server compiles the method, caches the

profiles and code, and returns code to the VM. When method𝑚

becomes hot in container 2, the global compilation policy pushes

the cached code optimized for immediate peak performance.

We split the implementation into five stages. In the first stage,

we implement a remote compilation sever based on GraalVM. The

GraalVM Compiler [5] utilizes the Java Virtual Machine Compiler

Interface (JVMCI) to communicate with the VM. The VM requests

compilations using this interface, and the interface allows the com-

piler to access the required VM structures, such as information

about classes, methods, fields, etc. Thus, remote compilation is

feasible by forwarding JVMCI calls to the server. The technical chal-

lenge is reducing the number of JVMCI calls, as they are associated

with network overheads.

In the second stage, we aim to increase peak performance through

profile aggregation and compiler adaptions. As the clients collect

Remote Just-in-Time Compilation for Dynamic Languages Conference’17, July 2017, Washington, DC, USA

profiles and share them with the server, the accuracy of the profiles

increases. Thus, compilation outcomes should improve over time.

To adapt the JIT compiler for remote compilation, we can tune

the compilation budget or prepare a customized phase plan for

the optimizer. A possible risk of such a solution is an increased

compilation latency and a consequent regression in warmup time.

To counter this, we can employ two compiler configurations in the

compilation server: the first to decrease compilation latency, the

second to outperform local JIT compilers.

In the third stage, we enable caching and sharing compilation

results among multiple clients. The aim is to reduce overall resource

usage and the warmup time [9] of newly started VMs.

Compilation caching interplays with profile aggregation. After

the server compiles and caches a method for future use, it may still

receive additional samples to refine the profiles. Thus, whenever

the server detects a significant shift in the profiles, it discards older

compilation units and recompiles methods taking advantage of the

refined profiles.

To allow code sharing, the clients must have the same set of

loaded Java classes, with identical bytecodes for each method. We

must also track speculative assumptions in the compiled code and

the assumptions violated by each client. As another technical diffi-

culty, the native code may contain pointers to internal data struc-

tures, which differ between VM invocations. Thus, the code requires

relocation.

In the fourth stage, the server is allowed to prematurely push

optimized code to a client, as illustrated for container 2 in Figure 1.

The aim is to further reduce warmup times and overall resource

utilization. In this scenario, the client skips level-one compilation

and immediately installs level-two code. As a consequence, the

server will not receive any new profiles. The global compilation

policy may choose this action when it is confident that client will

need the compiled code and the profiles are already accurate.

Finally, in the fifth stage, we leverage the remote compilation

server for Truffle [16] workloads. A Truffle client can directly send

the AST of a method it wishes to compile. The server runs the

partial evaluator and returns compiled code. As there are many

Truffle implementations of popular languages, multiple runtimes

may benefit from this.

4 EVALUATION METHODOLOGY
The goal of this research is to answer whether we can utilize remote

compilation to further improve performance metrics of applications

running in horizontally scaled setups. In particular, we aim to an-

swer the questions below for Java and Truffle workloads.

• Does the remote compilation server with profile aggrega-

tion (from stage two) increase peak performance without

regressing in warmup time?

• Does the remote compilation server with caching and profile

aggregation (from stage three) improve peak performance

and warmup time?

• Does the remote compilation server with caching, profile

aggregation, and code pushing (from stage four) further de-

crease warmup time with improved peak performance?

To evaluate peak performance and warmup time, we run a bench-

mark on a fixed number of containers, each with predefined re-

source limits. We compare a locally compiled configuration with

a configuration using the remote server. The remote compilation

server runs in an independent container. For Java, there are web-

based workloads such as AcmeAir [1], DayTrader [8], and PetClinic

[15]. These applications require that we generate the requests for

them. We can also measure less specialized workloads from the

Renaissance [14] benchmark suite. After the last implementation

stage, we can measure workloads available for other languages on

Truffe [16].

REFERENCES
[1] [SW], Acme Air Sample and Benchmark 2023. url: https://github.com/bluepe

rf/acmeair-monolithic-java.

[2] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and

Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold. Proc. ACM
Program. Lang., 1, OOPSLA, Article 52, (Oct. 2017), 27 pages. doi: 10.1145/3133
876.

[3] Dev Bhattacharya, Kenneth B. Kent, Eric Aubanel, Daniel Heidinga, Peter

Shipton, and Aleksandar Micic. 2017. Improving the performance of JVM

startup using the shared class cache. In 2017 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM), 1–6. doi: 10.1109
/PACRIM.2017.8121911.

[4] Emanuel Ferreira Coutinho, Flávio Rubens de Carvalho Sousa, Paulo Anto-

nio Leal Rego, Danielo Gonçalves Gomes, and José Neuman de Souza. 2014.

Elasticity in cloud computing: a survey. Annals of Telecommunications, 70, 7-8,
(Nov. 2014), 289–309. doi: 10.1007/s12243-014-0450-7.

[5] [SW], Graal Compiler 2023. url: https://www.graalvm.org/latest/reference-m

anual/java/compiler/.

[6] [SW], GraalPy 2023. url: https://github.com/oracle/graalpython.

[7] [SW], GraalVM 2023. url: https://www.graalvm.org/.

[8] [SW], Java EE7: DayTrader7 Sample 2022. url: https://github.com/wasdev/sa

mple.daytrader7.

[9] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara. 2022. JIT-

Server: Disaggregated Caching JIT Compiler for the JVM in the Cloud. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,

Carlsbad, CA, (July 2022), 869–884. isbn: 978-1-939133-29-62. https://www.use

nix.org/conference/atc22/presentation/khrabrov.

[10] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-

driguez, Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot
™

Client Compiler for Java 6. ACM Trans. Archit. Code Optim., 5, 1, Article 7, (May

2008), 32 pages. doi: 10.1145/1369396.1370017.

[11] [SW], Native Image 2023. url: https://www.graalvm.org/latest/reference-ma

nual/native-image/.

[12] GuilhermeOttoni and Bin Liu. 2021. HHVM Jump-Start: Boosting BothWarmup

and Steady-State Performance at Scale. In 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), 340–350. doi: 10.1109/CGO5
1591.2021.9370314.

[13] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and ThomasWuerthinger.

2019. An Optimization-Driven Incremental Inline Substitution Algorithm for

Just-in-Time Compilers. In (Feb. 2019). doi: 10.5281/zenodo.2328430.

[14] Aleksandar Prokopec et al. 2019. Renaissance: Benchmarking Suite for Parallel

Applications on the JVM. In Proc. 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 17. doi: 10.1145/3314221.33
14637.

[15] [SW], Spring PetClinic Sample Application 2023. url: https://github.com/spri

ng-projects/spring-petclinic.

[16] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles

Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.

2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). Association for Computing Machinery, Indianapolis,

Indiana, USA, 187–204. isbn: 9781450324724. doi: 10.1145/2509578.2509581.

[17] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong Ye. 2018.

ShareJIT: JIT Code Cache Sharing across Processes and Its Practical Implemen-

tation. 2, OOPSLA, Article 124, (Oct. 2018), 23 pages. doi: 10.1145/3276494.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-monolithic-java
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1109/PACRIM.2017.8121911
https://doi.org/10.1109/PACRIM.2017.8121911
https://doi.org/10.1007/s12243-014-0450-7
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://www.graalvm.org/latest/reference-manual/java/compiler/
https://github.com/oracle/graalpython
https://www.graalvm.org/
https://github.com/wasdev/sample.daytrader7
https://github.com/wasdev/sample.daytrader7
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://www.usenix.org/conference/atc22/presentation/khrabrov
https://doi.org/10.1145/1369396.1370017
https://www.graalvm.org/latest/reference-manual/native-image/
https://www.graalvm.org/latest/reference-manual/native-image/
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.5281/zenodo.2328430
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/3276494

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	4 Evaluation Methodology

